电池隔膜的基本参数及意义
- 格式:wps
- 大小:20.00 KB
- 文档页数:5
隔膜Separator,在锂电池里面起着电子绝缘和离子导通的作用;隔膜,大家都知道,为锂电四大原材料之一,占整个电池成本的约20%;隔膜用的好与坏直接影响了电池的性能,不仅包含电性能,加工性能也深受影响,如:短路、低压等;相信很多厂家都一直在为客诉里面的低压和胀气而烦恼吧,那么,第一步,先选好您的隔膜;在检测隔膜之前,您要知道隔膜重点检测的参数有哪些;这篇帖子,我只介绍一般的锂电厂家需要检测的参数,这些项目最好都必检:1、基本参数,包括:厚度、宽度、面密度(计算法)、弧度(卷绕很重要)等;这些都很简单,不详述了;2、外观:白色,无毛刺,无毛边,光滑无皱,无污染,无划痕,无凝胶点,无黑色斑点,这些主要用看的;3、针孔:用暗箱测试,很简单一个装置,用箱子罩住一个灯泡,箱子上开个小口,小装置,大用途,这些针孔的多少直接影响短路率;用暗箱很容易发现针孔,如果不能辨别是否是针孔,可以照SEM,如下图片便是针孔的SEM 图:我们公司做了一个实验,将有针孔的和无针孔的同一品牌的隔膜做了测试,发现有针孔的短路率是无针孔的3倍,可见,针孔的检测是多么重要;4、透气度:不同的透气度会影响电池的性能,例如倍率性能,内阻等等;如果波动太大,直接影响组装过程的短路,所以,必须在样品认证的时候就规定好透气度的范围,量产后每批监控,波动范围不能超过50S/100CC;太大,就不能保证产品的一致性了。
透气度测试用Gurley指数测试仪就好了,进口的也才4万多一台,小投资,大回报;实在不想买的就送给我帮你们测试吧,少量收取费用,哈哈。
5、扫描电镜:没有条件的厂家必须在样品阶段送测,确认隔膜的成孔是否均匀,有没有破孔;通过SEM我们可以很直接的看到该厂家的产品一致性;还可以知道该厂采用的工艺,湿法还是干法;世界各国的隔膜SEM图片我都有,而且定期会更新,积累很重要,从这些也可以看出哪些厂在进步。
量产后,有条件的话可以每批次送测。
6、其他参数:吸液性(就是用电解液浸泡,看吸收了多少量,浸泡时间自己规定,规定好了就不要变,这样方便对比);热缩率(一般90度烘烤4h,标准可以参照供应商测试结果,也可以根据工艺要求来定,一般的隔膜这一项都没问题);这些参数样品承认的时候测试一下就好了,前面5项不出问题,这些都不会有太大的问题。
电解水隔膜参数
电解水隔膜参数:
麦克马琳数:这个数值表示的是填充了电解液的隔膜的阻抗除以电解液本身的阻抗,它一般能达到10-12的数量级。
电阻:隔膜作为一种绝缘体,当填充电解液之后,应有较低的电阻,以提高电解效率。
渗透性:通常用Gurley单位来描述,是测量空气在相同条件下穿透隔膜所需的时间,它影响着电解过程中的气体扩散效率。
孔径和孔隙率:孔隙率一般在40%左右,孔径应该在几十微米以下,以防止枝晶生长和杂质引起内部短路。
击穿强度:这个值越大,越能降低内部短路的可能性,提高电解的安全性。
热收缩:隔膜在特定条件下(如真空90℃1h)引起的收缩应该小于一定值(如5%),以保证其在高温环境下的稳定性。
抗拉强度:在横向和纵向的抗拉强度可能有所不同,这影响着隔膜的机械性能。
闭孔温度:如PE闭孔温度一般为135℃,这影响着隔膜在高温下的结构稳定性。
融化稳定性:隔膜在高温下应能保持其结构,防止因热变形而影响电解性能。
润湿性:隔膜应能吸收并保持电解液,确保电解过程的持续进行。
化学稳定性:在氧化还原条件下,隔膜应能保持其性能,不被化学反应破坏。
采用静电纺丝法制备锂离子电池隔膜的研究进展摘要:简述了锂离子电池对隔膜的应用要求,以及静电纺丝法制备锂离子电池隔膜的优缺点。
从孔隙率、浸润性、热尺寸稳定性、离子电导率等方面综述了静电纺丝方法制备无纺布型锂电池隔膜的研究进展。
在经典纺丝的基础上,利用接枝功能基团、涂覆无机纳米颗粒、共混制备得到性能优异的无纺布型隔膜。
能源和环境问题已成为当今世界广泛关注的热点,矿物资源日益减少,环境污染日益严重,大力开发新能源和可再生能源的利用技术是世界发展的必然趋势。
锂离子电池因具有高比能量、长循环寿命、无记忆效应、安全无公害和快速充放电等优点作为绿色能源的重要方向之一,被广泛应用于便携式电子产品,如手机、笔记本电脑、摄录机、电动工具等所需充电电池,以及作为航空航天、深海作业等领域中有关设备的充电电源[1],并逐步走向电动汽车领域。
据报道,锂离子电池的正负极材料,以及电解液均已实现国产化,唯独锂离子电池隔膜还完全依赖进口,制约了锂离子电池的进一步发展。
作为锂离子电池的关键材料之一,目前隔膜约占电池成本的20%,其性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能等特性。
性能优异的隔膜对提高电池的综合性能具有重要的作用。
因此,制备高性能锂离子电池隔膜对促进锂离子发展具有重要意义。
1锂离子电池隔膜的性能指标1.1厚度锂离子电池的内部空间是有限的,所以要求隔膜尽量的薄,但是这样会影响到隔膜机械强度。
隔膜越厚,电池阻抗就越大,反之,越薄,其机械性能越差。
一般要求厚度小于25μm[2]。
1.2孔隙率一般孔隙率越高,隔膜的透气性、吸液性越好,离子电导率越高、电池的循环性能和使用寿命越好,这是因为高孔隙率更有利于储存电解质,电化学反应时为离子提供更多的通道。
过高的孔隙率会影响到隔膜的机械强度,也更容易被枝晶刺穿造成短路。
商用隔膜隙率大于40%,孔径1μm左右。
电纺纤维膜的孔隙率可以使用正丁醇浸泡法测得。
首先将制得的聚合物电纺膜裁剪成的正方形,先测试厚度,记为h,称重,记为W d;然后将其放入正丁醇中浸泡2小时,用滤纸小心拭去表面多余的液体,称重,记为Ww。
锂电池隔膜的性能要求锂电池隔膜(Lithium-ion Battery Separator)是一种重要的功能材料,用于分隔正负极,防止直接接触和短路。
它具有很高的物理和化学性能要求,对锂电池的性能和安全性有着重要的影响。
本文将从物理性能、电化学性能、安全性能三个方面介绍锂电池隔膜的性能要求。
一、物理性能要求1.厚度:锂电池隔膜的厚度应适中,既要保证足够的机械强度,又要能减少电阻和增加电导率。
一般要求在10-30微米之间。
2.孔隙率:隔膜应具有适当的孔隙率,以便正负极材料之间的离子和电荷传递。
较高的孔隙率可以提高离子导电性和电解液浸透性,使得充放电更加高效。
3.热收缩性:隔膜应具有较低的热收缩性,以避免在高温下缩小孔径,导致锂离子传输的阻碍。
4.机械强度:隔膜应具有足够的机械强度,以保证其在电池生命周期内的稳定性和耐久性。
同时,隔膜应具有较高的拉伸强度和撕裂强度,以避免在装配和使用过程中出现断裂或破损。
二、电化学性能要求1.离子传输性能:隔膜应具有高离子导电性,以便锂离子能够快速地在正负极之间传输。
低内电阻能够提高电池充放电效率和功率密度。
2.电化学稳定性:隔膜应具有良好的电化学稳定性,能够在电池工作过程中抵抗电解液和电极材料的腐蚀和溶解。
此外,隔膜还应具有较低的锂离子交换与失活,以保持电池的循环寿命和容量保持率。
3.封闭性:隔膜应具有良好的封闭性,以防止电解液溢漏和外界杂质的进入。
这有助于保持电池的稳定性和安全性。
三、安全性能要求1.热稳定性:隔膜应具有良好的热稳定性,能够在高温下保持结构稳定,不产生分解或熔融。
这可以避免高温下发生热失控的情况。
2.弹性变形能力:隔膜应具有一定的弹性变形能力,以适应电池在充放电过程中的体积变化。
这有助于减少电池内部应力和应变,提高电池的循环寿命。
3.阻燃性:隔膜应具有较好的阻燃性,以避免电池在发生故障或异常情况下的加剧燃烧。
综上所述,锂电池隔膜的性能要求包括物理性能、电化学性能和安全性能。
电池隔膜的基本参数及意义电池隔膜是电池的关键组成部分,具有重要的作用。
本文将介绍电池隔膜的基本参数及其意义。
首先,电池隔膜的基本参数包括厚度、孔隙率和抗针穿刺强度等。
1.厚度:电池隔膜的厚度直接影响到电池的性能。
隔膜过厚会增加电池内阻,降低电池的放电性能;而隔膜过薄则容易引起短路,影响电池的安全性能。
因此,对于不同类型的电池,厚度的选择需要根据具体的应用需求进行合理设计。
2.孔隙率:孔隙率是指电池隔膜中的孔隙所占的比例。
隔膜的孔隙率决定了气体的透过性,对电池的性能有着重要影响。
适当的孔隙率可以提高氧气和电解质的传输速率,促进电化学反应的进行,从而提高电池的功率密度和循环寿命。
3.抗针穿刺强度:抗针穿刺强度是指隔膜材料抵抗外力侵入的能力。
高抗针穿刺强度可以降低电池的短路概率,提高电池的安全性能。
因此,在电池设计中,抗针穿刺强度是一个重要的考量因素。
其次,电池隔膜的意义体现在以下几个方面:1.防止电池内短路:电池隔膜起到隔离正负极的作用,防止直接接触产生短路。
隔膜材料通常具有较高的电阻率,可以有效阻止直流电流的流动,从而保证电池的正常使用。
2.促进离子传输:电池隔膜具有较好的离子导电性和电解液吸附性能,可以促进电解质中离子的传输。
这有助于提高电池的放电性能,提高功率密度和能量密度。
3.控制电池反应速率:电池隔膜可以限制正负极之间的电子转移速率,通过调节隔膜的孔隙率和厚度,可以控制电化学反应的速率。
这对于一些特定应用场景下的电池来说尤为重要,例如电动汽车和移动设备中的锂离子电池,需要具备较高的功率和循环寿命。
4.提高电池安全性能:电池隔膜材料通常具有一定的热稳定性和抗化学腐蚀性能。
它可以防止电解质直接与电极发生接触,降低电极的腐蚀速率,从而提高电池的安全性能。
综上所述,电池隔膜的基本参数及意义非常重要。
通过合理选择隔膜的厚度、孔隙率和抗针穿刺强度,可以提高电池的性能、安全性和使用寿命,从而满足不同应用场景对电池的需求。
隔膜对锂电池性能的影响1)OCV特性:对于电压一致性要求较高的18650 电池为例,薄隔膜或孔洞过大会加快电池的自放电过程,从而降低电池的电压一致性。
笔者经验,较薄的单层隔膜有着相对大一写的自放电速度表现。
2)电化学特性:三层隔膜与单层隔膜相比,单层隔膜由于通常厚度较薄,离子迁移通道较短,极化现象有一定消弱,电池的低温电压平台相对较高。
同理,采用薄隔膜或者大孔径隔膜的电池循环也表现相对较好。
3)厚度:对于消耗型锂离子电池(手机、笔记本电脑、数码相机中使用的电池),25微米的隔膜逐渐成为标准。
然而,由于人们对便携式产品的使用的日益增长,更薄的隔膜,比如说20微米、18微米、16微米、甚至更薄的隔膜开始大范围的应用。
对于动力电池来说,由于装配过程的机械要求,往往需要更厚的隔膜,当然对于动力用大电池,安全性也是非常重要的,而厚一些的隔膜往往同时意味着更好的安全性.4)透气率:从学术角度来说,隔膜在电池中是惰性的,即隔膜不是电池的必要组成部分,而仅仅是电池工业化生产的要求。
隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。
含电解液的隔膜的电阻率和电解液本身的电阻率之间的比值称为MacMullin数。
一般来说,消耗型锂离子电池的这个数值为接近 8,当然这个数值越小越好。
通常来说,锂离子电池隔膜中会有一个透气率的参数,或者叫Gurley数。
这个数是这么定义的,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间,气体的体积量一般为50cc,有些公司也会标100cc,最后的结果会差两倍。
面积应该是1平方英寸,压力差记不太清楚了。
这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。
然而,对于不同的隔膜,该数字的直接比较没有任何意义。
因为锂离子电池中的内阻和离子传导有关,而透气率和气体传到有关,两种机理是不一样的。
换句话说,单纯比较两种不同隔膜的Gurley数是没有意义的,因为可能两种隔膜的微观结构完全不一样;但同一种隔膜的Gurley数的大小能很好的反应出内阻的大小,因为同一种隔膜相对来说微观结构是一样的或可比较的。
电池隔膜产品规格参数表电池隔膜产品规格参数表型号准材质厚度(um)01面密度(g/m2)7孔隙率(%)测试标SD4多层PP复合膜3462±20±20±22SW3PE16±2GB/T6672-20003-200T/SEN003-200720±222±1236±21±22±28±2 210±212±4442±22±22±2040-5 040-5040-5透气率(sec/100ml)7穿刺强度(g)7T/SEN50001-200T/SEN006-20055060001≤400s≤400s≤400s>900>>≥1200500≥600700≥≥≥≥MD:MD:MD:度1040130015001500≥1500≥1500≥1500(Kgf/cm2)【1】.3-2006断裂伸333MD:4MD:4MD:4长率(%)0~1500~1500~1500-1000-1000-100热MGB/T≤≤≤≤≤≤收缩(%)D3.03.03.03.03.03.090℃T12027-2<<<≤1≤1≤1/2hrD0040.50.50.5产品应用动力电池数码类电池拉伸强GB/T[产品详细介绍]动力锂离子电池隔膜特点·独特工艺设计:针对国内动力电池工艺特点设计,消除传统隔膜固有工艺缺陷;·高安全性能:高温下横向无热收缩,高拉伸强度,高抗穿刺强度,耐大电流冲击,耐高温性能好,更适用于户外电动车工作环境;·高透过性能:孔隙率高,孔径大且分布均匀,孔曲折度低,透气性好;·电解质相容性好:吸液率高,持液能力强,内阻小;·高均匀性能:厚度控制均匀性好,孔径分布均匀;·高选择性:能够提供25-80u厚度的隔膜。
电池隔膜的基本参数及意义
(项目部高鹏)
电池隔膜最主要的功能是分隔电池中的正负极板,防止正负极板直接接触产生短路,同时,由于隔膜中具有大量贯通的微孔,电池中的正负离子可以在微孔中自由通过,在正负极板之间迁移形成电池内部导电回路,而电子则通过外部回路在正负电极之间迁移形成电流,供用电设备利用。
(注意:目前有些人解释的隔膜功能时,认为“隔膜可以让离子通过而电子不能通过”的说法是没有根据的,不符合原电池的基本原理,因为电池内部的电解液中只存在正负离子而没有自由电子,电池内部的导电是靠离子在正负极之间的迁移来实现的)
对于锂离子电池用隔膜,基本性能参数如下:
1、厚度:
2、透气率:
3、浸润度:
4、化学稳定性:
5、孔径及分布:
6、穿刺强度:
7、热稳定性:
8、闭孔温度、破膜温度
9、孔隙率:
基本参数
1、厚度
对于消耗型锂离子电池(手机、笔记本电脑、数码相机中使用的电池),25微米的隔膜逐渐成为标准。
然而,由于人们对便携式产品的使用的日益增长,更薄的隔膜,比如说20微米、18微米、16微米、甚至更薄的隔膜开始大范围的应用。
对于动力电池来说,由于装配过程的
机械要求,往往需要更厚的隔膜,当然对于动力用大电池,安全性也是非常重要的,而厚一些的隔膜往往同时意味着更好的安全性、
2、透气率:
从学术角度来说,隔膜在电池中是惰性的,即隔膜不是电池的必要组成部分,而仅仅是电池工业化生产的要求。
隔膜的存在首先要满足它不能恶化电池的电化学性能,主要表现在内阻上。
含电解液的隔膜的电阻率和电解液本身的电阻率之间的比值称为MacMullin数。
一般来说,消耗型锂离子电池的这个数值为接近8,当然这个数值越小越好。
通常来说,锂离子电池隔膜中会有一个透气率的参数,或者叫Gurley数。
这个数是这么定义的,即一定体积的气体,在一定压力条件下通过一定面积的隔膜所需要的时间,气体的体积量一般为50cc,有些公司也会标100cc,最后的结果会差两倍。
面积应该是1平方英寸,压力差记不太清楚了。
这个数值从一定意义上来讲,和用此隔膜装配的电池的内阻成正比,即该数值越大,则内阻越大。
然而,对于不同的隔膜,该数字的直接比较没有任何意义。
因为锂离子电池中的内阻和离子传导有关,而透气率和气体传到有关,两种机理是不一样的。
换句话说,单纯比较两种不同隔膜的Gurley数是没有意义的,因为可能两种隔膜的微观结构完全不一样;但同一种隔膜的Gurley数的大小能很好的反应出内阻的大小,因为同一种隔膜相对来说微观结构是一样的或可比较的。
3、浸润度:
为了保证电池的内阻不是太大,要求隔膜是能够被电池所用电解液完全浸润。
这方面没有一个公认的检测标准。
大致可以通过以下试验来判断:取典型电解液(如EC:DMC=1:1,1M LiPF6),滴在隔膜表面,看是否液滴会迅速消失被隔膜吸收,如果是则说明浸润性基本满足要求。
更准确的测试可以用超高时间分辨的摄像机记录从液滴接触隔膜到液滴消失的过程,计算时间,通过时间的长短来比较两种隔膜的浸润度。
浸润度一方面个隔膜材料本身相关,另一方面个隔膜的表面及内部微观结构密切相关。
4、化学稳定性:
换句话说就是要求隔膜在电化学反应中是惰性的。
经过若干年的工业化检验,一般认为目前隔膜用材料PE或PP是满足化学惰性要求的。
5、孔径:
一般来说,隔膜为了阻止电极颗粒的直接接触,很重要的一点就是防止电极颗粒直接通过隔
膜。
目前所使用的电极颗粒一般在10微米的量级,而所使用的导电添加剂则在10纳米的量级,不过很幸运的是一般碳黑颗粒倾向于团聚形成大颗粒。
一般来说,亚微米孔径的隔膜足以阻止电极颗粒的直接通过,当然也不排除有些电极表面处理不好,粉尘较多导致的一些诸如微短路等情况。
6、穿刺强度:
这个参数实际上是由于电极表面不够平整,以及装配过程中工艺水平有限而提出的一个要求,因此要求隔膜有相当的穿刺强度。
穿刺强度的测试有工业标准可遵循,大致是在一定的速度(每分钟3-5米)下,让一个没有锐边缘的直径为1mm的针刺向环状固定的隔膜,为穿透隔膜所施加在针上的最大力就称为穿刺强度。
同样的,由于测试的时候所用的方法和实际电池中的情况有很大的差别,直接比较两种隔膜的穿刺强度不是特别合理,但在微结构一定的情况下,相对来说穿刺强度高的,其装配不良率低。
但单纯追求高穿刺强度,必然导致隔膜的其他性能下降。
7、热稳定性:
隔膜需要在电池使用的温度范围内(-20C~60C)保持热稳定。
一般来说目前隔膜使用的PE 或PP材料均可以满足上述要求。
当然还有一个就是由于电解液对水份敏感,大多数厂家会在注液前进行80C左右的烘烤,这对PP/PE隔膜也不会存在太大的问题
8、热关闭温度:
内容由于安全性问题比较严重,目前锂离子电池用隔膜一般都能够提供一个附加的功能,就是热关闭。
一般我们将原理电池(两平面电极中间夹一隔膜,使用通用锂离子电池用电解液)加热,当内阻提高三个数量级时的温度称为热关闭温度。
这一特性可以为锂离子电池提供一个额外的安全保护。
实际上关闭温度和材料本身的熔点密切相关,如PE为135C附近。
当然不同的微结构对热关闭温度有一定的影响。
但对于小电池,热关闭机制所起的作用很有限。
9、孔隙率:
内容目前,锂离子电池用隔膜的孔隙率为40%左右。
孔隙率的大小和内阻有一定的关系,但不同种隔膜之间的空隙率的绝对值无法直接比较。
市场情况:
目前隔膜供应商主要为以下几家:
美国:Celgard (三层PP/PE/PP), Entek (单层PE)
荷兰:DSM (单层PE)
德国:Degussa (为无机有机复合膜,较厚,主要适用于动力型大电池)
日本:Asahi, Tonen (单层PE), UBE (三层PP/PE/PP)
此外国内有三到五家在做,但目前产品性能还不尽如人意。
国内制作的目前主要有以下一些问题:
1、孔隙率不够
2、厚度不均
3、有针孔
4、均匀度不够
5、强度不够
Bellcore技术大概是使用共聚物和某种溶剂形成胶状物,然后刮在电极或其他平面表面,然后使溶剂蒸发形成多孔膜,然后和电极片堆叠或卷绕在一起,用铝塑膜封装,然后注液。
具体的工艺就各家稍有不同。
这种电池使用自成膜的电解质,不再需要PP/PE隔膜了。
国内的有:新乡的格瑞恩,浙江有一家(华容),此外有BYD和衫衫在做。
目前市面上新乡
的和浙江的已经有样品了,但相对来说性能和进口的还有较大的差距。
实际上任何高分子膜材料都不可避免的存在热收缩性问题,或多或少而已。
这是由高分子的特性决定的,而且越接近高分子的熔点,这种收缩越强烈。
比如说隔膜材料,PE的熔点大概在130C左右,如果将此隔膜加热到120度左右,那么隔膜的自由状态的收缩率会超过30%。
对于PP/PE/PP三层来说,由于PP熔点较高,相对来说在高温的收缩性要好一些。
国内有些厂家将隔膜的收缩率和安全性联系起来,实际上是没有太多道理可讲的。
收缩大的隔膜安全性并不一定差,而收缩小的安全性并不一定好。
由于在电池中隔膜是固定在电极片之间的,一般来说如果在80C十五分钟的隔膜自由收缩率小于5%基本上就不会出现问题。
其他方面的影响不明显。
当然,如果过充电压超过5V的化,基本上电池的温度肯定会上升的,毫无疑问。
如果是这个时候,那么隔膜就在里面起一定的作用了,比如说如果电池内部温度超过130C的话,就应该隔膜发生关闭作用,降低电流,阻止温度进一步上升。
但如果是小电池,更多的应该还是要从电池材料和设计入手解决。
不过好像UL的标准没有这么高的,是什么样的客户需要这么高的过充电压测试啊。
因为过充测试的目的是说如果保护电路坏了,那么电池的充电电压可能超过4.2V,达到5V左右。
这个标准是有一定道理的。
但如果说是超过5V过充,就是意味着充电器变压器坏了,这时候就肯定不只5V了,可能就是市电了,这还有意义么?当然这里说的是小电池,比如说容量<2Ah的,大电池另当别论。
另外相对来说单向拉伸的隔膜在横向的收缩率一般是要比双向拉伸的小一些,但这并不能保证电池会安全些。
特别是对于高比容量(即使用较薄隔膜的)电池更是这样的。
我做过相应的测试。
针刺试验的时候,的确即使别的东西完全一样,而仅仅是隔膜换了,导致的结果是有区别的。
但这个还是无法直接和隔膜联系起来,只能说两者的工艺出现不匹配,换句话说出现问题的隔膜不太适合该电池工艺,而需要一定的调整才行。
如果直接归结为隔膜的原因则有些勉强,造成冤假错案。
具体的还真的不太好说,得看具体的情况具体分析。