平面几何入门(4)
- 格式:doc
- 大小:70.50 KB
- 文档页数:4
北师大版七年级数学上册第四章基本平面图形1.通过丰富的实例,认识线段、射线、直线、角等简单平面图形.2.能用符号表示角、线段;理解与多边形和圆有关的概念.3.会进行线段或角的比较,能估计一个角的大小,认识度、分、秒,会进行角的单位换算.4.初步培养学生的识图能力、语言表达能力及逻辑思维能力.1.经历观察、测量、折叠、模型制作等活动,发展空间观念.2.经历在操作活动中探索图形性质的过程,了解简单图形的性质,发展有条理的思考与表达能力.1.培养学生自主学习、主动参与、主动交流合作的意识和能力,在小组合作交流活动中互相激发灵感,取长补短,培养学生团结合作的学习精神.2.在探讨问题的过程中,提高学生动脑、动手能力,提高学生分析问题和解决实际问题的能力,从而树立学习数学的信心.本章首先接触的是简单的平面图形——线段和角,重点学习这两种平面图形的表示、度量和比较,由于线段和角有许多相似之处,因此教学中可指导学生类比线段学习角,在解决完这两种基本图形的基础上,又认识了多边形和圆.线段和角是几何图形中的基本元素,多边形和圆的初步认识是以后深化多边形和圆的学习的基础.因此本章知识在几何中占据基础性的地位,对于以后的学习具有重要的铺垫作用.教材在编排上力求使学生通过观察、操作、归纳等方法,从现实背景中抽象出有关的几何图形,进而研究它们的性质.在研究的同时,初步体验学习几何的基本方法,获得初步的数学活动经验,因此本章无论在知识上还是在学法上都具有积极的引导作用.本章内容是学习平面几何知识的入门知识.通过本章内容的学习,学生能理解、掌握平面中线段、直线、射线、角、多边形和圆等最简单、最基本的概念,掌握这些基本概念的表示方法以及它们的一些简单而直观的性质.教材在设计上注重通过现实的几何图形进行引导,利于学生对各种几何概念的直观意义的理解,有助于学生从具体到抽象、从特殊到一般地认识和理解有关的几何概念.对于学到的基本平面图形知识还原到生活中去,增强学生应用数学的意识.【重点】线段、射线、直线、角的概念及表示方法;线段、角的度量及大小比较;多边形和圆的有关概念.【难点】运用有关的性质进行合理描述,并会解决实际问题;会根据图形的相关性质进行有条理的思考和表达.1.现实中的几何实例与数学中的几何对象是具体和抽象、特殊和一般的关系,在实际教学中,如何引导学生从具体的实例中抽象出事物的一般性,是教学中的一个难点,这方面的处理是否得当直接关系到学生能否准确地理解数学中的各种几何概念.2.几何量的度量是几何中基础而重要的问题,是培养学生准确的几何观念的重要内容.教师通过让学生使用直尺、三角板、量角器和圆规等常用的数学工具,培养学生严谨的科学态度和基本的使用工具的能力,对于学生在日常生活中使用其他工具解决实际问题也很有帮助.3.几何知识应该在几何的实际背景中讲授.本章内容包含了大量的生活实例,有利于学生克服数学中抽象而形式化的困难,对学生准确理解并掌握几何概念以及一些简单性质十分有利.4.在教学中,应该鼓励学生通过观察、思考、实践和归纳等活动,理解和掌握本章的主要内容.教师要避免单纯地讲授知识,应该多留给学生实践和思考的时间.5.本章知识主要是一些基本的几何概念和它们的简单性质,在教学过程中多鼓励学生将每一个概念和性质与生活中的具体实例联系起来,这样有利于学生更好地理解和掌握有关知识,又能够进一步培养学生理论联系实际的学习习惯.1线段、射线、直线1课时本章概括整合1课时1线段、射线、直线1.通过图形理解并区别线段、射线、直线的概念.2.能够准确地画出线段、射线和直线.3.认识点和线之间的关系.通过让学生举出生活中的实例,从中抽象出线段、射线以及直线的几何模型,使学生能够理解三种线之间的区别和联系,掌握它们各自的表示方法.1.体会数学是如何将现实中具有相同特性的一类事物抽象出其本质属性,然后通过数学语言表示出来的过程.2.认识到一个事物表示方法的不唯一性;通过作图养成严谨的治学态度.3.了解曲线和直线之间的辩证关系,认识图形世界的丰富多彩,培养学生的审美观.【重点】1.理解并掌握线段、射线、直线的概念以及它们之间的区别.2.掌握线段、射线、直线的表示方法.【难点】1.能够从实例中抽象出线段、射线和直线的模型.2.能准确地画出线段、射线和直线.【教师准备】多媒体课件.【学生准备】预习教材P106~107.面图形?除了图中的情形外,你还能举出其他的例子吗?活动内容用多媒体出示一组生活中的图片,有绷紧的琴弦、手电光束、笔直铁轨、筷子图、人行横道.让学生观察.师:你们能在其中发现我们所熟知的几何图形吗?[处理方式]自由发言,认识到线段、射线、直线在生活中是普遍存在的.[设计意图]利用生活中的情境,激发学生的学习兴趣,让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情.根据学生的回答,有的不完全是教师想要的线段、射线和直线,教师可用一些过渡的语言点拨,我们今天的研究和学习就从其中最简单的图形——线段、射线、直线开始.(教师板书课题:1线段、射线、直线)导入二:师:《西游记》这部电视剧同学们看过吗?生:看过.师:在这部电视剧中给你们留下深刻印象的人物是谁?生:孙悟空.师:下面我们一起来欣赏一段《西游记》中的精彩片段.(学生看视频)师:通过刚才的视频短片,我们感受到了金箍棒的神奇.孙悟空手中的金箍棒在没有发生变化时,给我们以什么样图形的近似形象?生1:圆柱.生2:线段.师:当金箍棒向一个方向无限延长,又给我们什么样图形的近似形象?生:射线.师:当金箍棒向两个方向无线延长,又能给我们什么样图形的近似形象?生:直线.师:其实在我们的身边、在我们的日常生活中,很多物体也能给我们这样的近似形象,我们来看一组生活中的图片.(出示图片)师:绷紧的琴弦、霓虹灯发出的灯光、笔直的铁轨分别给我们什么样图形的近似形象?生:线段、射线、直线.师:我们在小学里已经初步学习了线段、射线、直线,从今天开始让我们共同走进平面图形的世界,本节课将要和同学们一起进一步研究线段、射线、直线.(教师板书课题:1线段、射线、直线)[设计意图]利用《西游记》中的精彩视频以及生活中熟知的情境图片给学生展现了线段、射线、直线的近似形象,使学生感受生活中所蕴含的图形,既活跃了课堂气氛,也激发了学生的学习兴趣.让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情,将学生的注意力迅速转移到课堂.段、射线和直线?[处理方式]学生观察思考,绷紧的琴弦可以近似地看作线段,探照灯射出的光线可以近似地看作是射线,笔直的铁轨可以近似地看作直线,立足现实背景呈现线段、射线、直线的概念.[设计意图]以学生熟知的现实生活为背景,让学生充分感受生活中所蕴含的三种基本的几何图形,立足现实背景呈现线段、射线、直线的概念,激发学生的好奇心.探究活动2线段、射线、直线的概念及表述方法思路一让学生动手在练习本上尝试画线段、射线和直线.议一议:认真观察所画的线段、射线和直线,合作探索这三种线的特征,并用自己的语言叙述出来,然后根据自己的探索和教材第106页的图4 - 1,4 - 2,4 - 3的提示,总结出线段、射线和直线的表述方法.生1:绷紧的琴弦、人行横道线都可以近似地看作线段.生2:线段包括它的两个端点,线段不能无限延伸,因此可以度量,但可以向两个方向延长.生3:画线段时要画出两个端点,且不能超出两个端点之外.生4:将线段向一个方向无限延长就形成了射线.射线虽然有一个端点,但它可以向另一个方向无限延伸,所以它没有长短,因此不可以度量.画射线要画出一个端点,且向一方延伸.生5:将线段向两个方向无限延长就形成了直线.直线没有端点,不可以度量.画直线时可以画一条直的线或在线上标注两个点给人以无限延伸的形象.[设计意图]在具体的情景中理解线段、射线、直线的定义,并了解线段、射线、直线的画法.思路二问题:在数学里,我们常用字母表示图形.一个点可以用一个大写字母表示,如图“·”,这个点可以表示成点A,那么一条线段、一条射线、一条直线又该怎样表示呢?请同学们自主学习线段、射线、直线的表述方法.(教材第106页)[处理方式]学生自主学习,用自己的语言总结、叙述线段、射线、直线的表述方法,教师补充并借助多媒体.(1)线段的图形及表示方法.用两个端点的大写字母来表示,或用一个小写字母表示,如图(1)所示,可以写成线段AB、线段BA、线段a.(2)射线的图形及表示方法.射线的表示:用它的端点和射线上的另一点来表示,如图(2)所示,可以写成射线AB.同时注意引导归纳:这两个点的排列顺序不能互相交换,表示端点的字母必须写在另一个字母的前面,也不能用一个小写字母表示.(3)直线的图形及表示方法.用直线上的两个点来表示或用一个小写字母来表示,如图(3)所示,可以写成直线AB、直线BA、直线l.探究活动3从生活中寻找线段、射线、直线生活中,有哪些物体可以近似地看作线段、射线、直线?学生讨论后举例子,如:吃饭的筷子、铅笔给我们以线段的形象;手电筒、激光笔射出的光线都给我们以射线的形象;高速路上的白色实线等给我们以直线的形象.[设计意图]让学生充分交流,丰富线段、射线、直线的生活背景,进一步巩固所学的线段、射线、直线的知识,并从中使学生感受现实生活中含有大量的数学信息,提高学习兴趣,培养学生分析、解决问题的能力.探究活动4线段、射线、直线的区别思路一观察图形,你能发现直线、射线、线段的联系和区别吗?线段BA射线直线BA[设计意图]让学生自己总结归纳,通过比较直线、射线、线段的联系和区别,加深学生理解线段、射线、直线的概念,以及它们的区别与联系,进一步发展学生抽象概括的能力.思路二[,适时指导,对学生的回答做出积极评价,同时借助多媒体给出的表格寻求线段、射线、直线的区别和联系.猜猜看:你能说出下列谜语的谜底吗?(1)有始有终——打一线的名称.(2)有始无终——打一线的名称.(3)无始无终——打一线的名称.[设计意图]让学生主动参与活动、参与数学概念、数学思维的形成过程.感受线段、射线、直线的区别与联系,最后举例加以验证,有利于培养学生的归纳、比较、抽象、概括等能力.有趣的谜语增强了学生的感性认识,有助于学生进一步认识和记忆三线的概念.巩固练习(一)请用两种方式分别表示出右图中的两条直线,点O是两条直线的公共点.根据直线的两种表示方法可以表示为:直线BO或直线m,直线AO或直线n.[设计意图]巩固直线、射线、线段的表示方法,训练图形语言与文字语言的相互转化.探究活动5直线的性质出示问题:做一做.(1)过一个点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如图所示,如果将一根细木条固定在墙上,至少需要几个钉子?它的依据是什么?分析:过一个已知点可以画无数条直线,过两个已知点可以画出直线但只能画一条直线.[处理方式]引导学生动手画图,自主思考,相互讨论,描述从操作中所发现的结论,与学生共同总结直线性质并板书“经过两点有且只有一条直线”.注意:(1)“有”表示存在性,“仅有”表示唯一性.(2)直线的性质还可以说成“两点确定一条直线”.[设计意图]学生通过动手画图,培养几何作图能力,并在作图过程中发现直线的某些性质.巩固练习(二)如右图所示,木匠师傅锯木料时,一般先在木料上画出两个点,然后过这两点弹出一条墨线,这是为什么?生:根据直线的基本性质“经过两点有一条直线,并且只有一条直线”,经过木料上画出的两个点能弹出一条笔直的墨线,而且只能弹出一条这样的墨线.师:请你举出一个能反映“经过两点有且只有一条直线”的实例.生1:射击时,目标在准星和缺口确定的直线上.生2:耕完地以后打畦田,先由两头确定直线,再画石灰线.生3:建筑工地垒墙时要挂线.[设计意图]给学生足够的时间,并鼓励他们积极思考,使学生联系实际,达到学以致用的目的.探究活动6拓展探索,实现创新出示问题:通过画图分析,填空.(1)当直线a上标有一个点时,可得到条射线,条线段;(2)当直线a上标有两个点时,可得到条射线,条线段;(3)当直线a上标有三个点时,可得到条射线,条线段;(4)当直线a上标有四个点时,可得到条射线,条线段;(5)当直线a上标有n个点时,可得到条射线,条线段.分析:借助图形探索规律,可得:当直线a上标出一个点时,可得到2=2×1条射线,0条线段;当直线a上标出两个点时,可得到4=2×2条射线,1条线段;当直线a上标出三个点时,可得到6=2×3条射线,3=1+2条线段;当直线a上标出四个点时,可得到8=2×4条射线,6=1+2+3条线段;当直线a上标出n个点时,可得到2n条射线,-条线段.[设计意图]通过“数线段”的活动,拓宽学生的思路,提高学生的思维能力,引发学生将一些生活问题转化为数学问题来思考.[知识拓展]1.线段无粗细之分,有两个端点.理解线段的概念要掌握它的三个特征:直的、有两个端点、可以度量.2.射线:将线段向一个方向无限延长就形成了射线.手电筒、探照灯等射出来的光线可以近似地看成射线.射线的特点:直的、有一个端点、向一方无限延伸.3.直线:将线段向两个方向无限延长就形成了直线.直线的特点:直的、没有端点、向两方无限延伸.4.经过两点有且只有一条直线,可以简述为:两点确定一条直线.“有且只有”中的“有”表示存在性,“只有”表示唯一性,“确定”与“有且只有”的意义相同.1.线段、射线、直线的概念.2.线段、射线、直线的表示方法.3.直线的性质:(1)两条直线相交,只有一个交点.(2)经过两点有且只有一条直线,可以简述为:两点确定一条直线.1.手电筒射出来的光线给我们的形象是()A.线段B.射线C.直线D.折线解析:手电筒射出来的光线是向一方无限延伸的,只有射线符合这个特点.故选B.2.经过A,B,C三点的任意两点,可以画出的直线条数为()A.1或2B.1或3C.2或3D.1或2或3解析:当三点在同一条直线上时,可以画出一条直线;当三点不在同一条直线上时,可以画出三条直线,故选B.3.线段有个端点,射线有个端点,直线端点.解析:,.答案:两一没有4.在直线l上取三点A,B,C,共可得条射线,条线段.解析:从直线上的一点向两方取射线可以得到2条,三个点可以得到6条射线,3条线段.答案:6 35.要把木条固定在墙上至少需要钉个钉子,依据是.解析:.答案:两两点确定一条直线1线段、射线、直线1.线段2.射线3.直线4.线段、射线、直线的区别与联系一、教材作业【必做题】教材第108页习题4.1的1,2题.【选做题】教材第108页习题4.1的3,4题.二、课后作业【基础巩固】1.如图所示,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段2.如图所示,观察图形,下列说法正确的个数是()①直线BA和直线AB是同一条直线;②射线AC和射线AD是同一条射线;③三条直线两两相交时,一定有三个交点.A.1B.2C.3D.0【能力提升】3.已知点B,C在线段AD上,下图中以A为一个端点的线段有几条?以B为一个端点的线段有几条?以C为一个端点的线段有几条?以D为一个端点的线段有几条?图中共有多少条线段?请分别表示出来.4.如图所示,A,B,C,D四个图形中各有一条射线和一条线段,它们能相交的是()【拓展探究】5.按要求作图:如图所示,在同一平面内有四个点A,B,C,D.①画射线CD;②画直线AD;③连接AB;④画直线BD与直线AC相交于点O.6.阅读下表:)图例线段总条数(1)在表中空白处分别画出图形,写出线段总条数;(2)猜测线段总条数y与线段上的点数n之间有什么关系;(3)当n=10时,计算y的值.【答案与解析】1.C(解析:射线OA与射线AB不是同一条射线,因为端点不同.)2.B(解析:①直线BA和直线AB是同一条直线,正确;②射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;③三条直线两两相交时,一定有三个交点,错误,也可能只有一个交点.所以共有2个正确的.故选B.)3.解:3条,分别是线段AB,AC,AD;3条,分别是线段BA,BC,BD;3条,分别是线段CA,CB,CD;3条,分别是线段DC,DB,DA.图中共有6条线段,分别为线段AB,AC,AD,BC,BD,CD.4.C(解析:直线的特点是两端都没有端点、可以向两端无限延伸;射线是有一个端点,向一端可以无限延伸;线段是有限的长度,不能无限延伸,可以测量.故选C.)5.解:如图所示.6.解析:当n=3时,线段总条数3=1+2=-;当n=4时,线段总条数6=1+2+3=-;当n=5时,线段总条数10=1+2+3+4=-;…;当点数为n时,线段总条数y=-.解:(1)图形如图所示,线段总条数为15=1+2+3+4+5. (2)y=-. (3)当n=10时,y=--=45.在这次教学活动中,利用多媒体为学生创设了生动、直观的活动情景,充分调动了学生的学习积极性.采用了探究式教学模式,充分发挥了学生的主体作用,体现了学生自主学习、合作学习、探究学习、操作学习的数学学习策略,使学生真正成为课堂的主人.在设计中没有关注学生的人文价值和情感态度,没有及时鼓励学生的积极参与与探究的信心.教师及时参与到学生的学习小组,发现问题并及时解决问题.随堂练习(教材第107页)1.解:例如:栽树时只要确定两个树坑的位置,就能确定一行树坑所在的直线.2.提示:选择的字母不同,表示就不同.习题4.1(教材第108页)1.解:直线AO或直线n;直线OB或直线m.2.解:如图所示.3.解:经过两点有且只有一条直线.4.解:(1)如图(1)所示,为叙述方便,可以给原图的7根火柴棒编上号,分别去掉原图的火柴棒①②③④⑦,②⑤,②③,①③④,③⑥,⑥,②③④⑦,③,⑦,就可以摆出1,2,3,4,5,6,7,9,0九个数字.(2)如字母B可以用如图(2)所示的图形表示,其他略.教法:采用让学生自学、回顾、探究、反思、自评的教学方式,让学生的主体地位得到充分体现;从学生好奇、好学、好问、好动手等心理特点出发,通过作图、问答反思等方式充分暴露学生的思维;同时结合学生的生活经验,把理论与实际的应用合为一体,帮助学生在学习的过程中理解、掌握新知识,提高他们的自学能力和解决实际问题的能力.学法:引导学生主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力.指出图中线段、射线、直线分别有多少条,并把线段表示出来.〔解析〕数线段时从一端数,不回头;数射线时找端点,一个端点两条射线.解:线段有3条,分别为线段AB,线段AC,线段BC.射线有6条.直线有1条.〔解题策略〕引导学生回想前面所学线段、射线、直线表示方法的区别与联系,说一说怎样表示线段、射线、直线,然后让学生完成本道题的回答,最后教师提问、点拨怎样数线段、射线、直线.2比较线段的长短1.直观理解两点之间线段最短的性质.2.能够用圆规画一条线段与已知线段等长.3.利用直尺和圆规等简单工具比较两条线段的长短.学生通过自主学习,在生活经验中获得知识,并通过实际操作掌握正确的作图方法.1.感受数学无处不在.2.使用工具解决数学问题的意识和能力.1.在观察和实践的基础上认识“两点之间线段最短的性质”.2.会使用直尺和圆规比较两条线段的长短.【难点】1.使用圆规进行作图.2.使用直尺等工具比较两条线段的长短.【教师准备】多媒体课件.【学生准备】预习教材.问题1如图所示,从A地到B地共有五条路,小红应选择第条路最近.生:选择第③条路最近.师:你具有一双慧眼,根据生活经验,可以发现“两点之间的所有连线中,线段最短”,我们把这一事实简述为“两点之间,线段最短”,把两点之间线段的长度叫做两点之间的距离.问题2图中两条线段a与b的长度谁长谁短?生1:a长.师:看来这个问题挺有迷惑性哦,实际上a与b的长度一样长,在现实生活中有很多事情我们不能光凭直觉,还需要用事实来说明,今天老师将和同学们一起来学习有关比较线段长短的方法.[设计意图]问题1通过对寻找最短路径的设计引出线段的性质及两点之间距离的概念,问题2的设计主要是想让学生明确数学的严谨,不能只通过眼睛来看问题,从而引出比较线段长短的必要性.导入二:师:什么叫线段、射线和直线?它们之间的联系和区别是什么?让学生观察如图所示的图片(多媒体出示图片),并回答两点之间什么最短.[处理方式]第1问学生口述,第2问由第1问作为基础,这时教师要恰当引导,以问题的形式提示,例如:这样做好不好?不好,为什么还要这样做?这其中蕴含着怎样的数学道理?“抄近路”就是运用两点之间线段最短的原理,学生会很快接受这个道理.学生容易发现结论:两点之间的所有连线中,线段最短,可以简述为:两点之间线段最短.教师适时补充定义:两点之间线段的长度,叫做这两点之间的距离.[设计意图]利用生活中可以感知的新闻情境,极大激发学习兴趣,使学生感受生活中所蕴含的数学道理.学生水到渠成知道两点之间线段最短,并学习两点间的距离的定义.探究活动1探究性质“两点之间线段最短”出示问题:如图所示,从A地到C地有四条路,哪条路最近?。
平面几何入门平面几何是数学中的一个重要分支,它研究的是二维空间中平面图形的性质和关系,是几何学的基础。
在本文中,我们将带您入门平面几何的基本概念和理论,让您对这一学科有一个全面的了解。
一、点、线和面的概念平面几何的基本元素包括点、线和面。
点是平面上最基本的对象,不占据空间,用大写字母标记,如A、B、C等。
线由无数个点组成,它是一维的,没有宽度和厚度,用小写字母表示,如l、m、n等。
面是由无数个线构成的,它是二维的,拥有长度和宽度,用大写字母表示,如P、Q、R等。
二、基本图形的性质1. 点的性质:点没有大小和形状,可以在平面上移动。
2. 直线的性质:直线无限延伸,在平面上任意两点可以确定一条直线,直线上的点不限定数量。
3. 射线的性质:射线由一个端点和一个方向组成,在平面上只能延伸一个方向。
4. 线段的性质:线段由两个端点组成,有固定的长度,在平面上不能无限延伸。
5. 角的性质:角由两条射线的公共端点和位于这两条射线之间的部分组成,用大写字母表示,如∠ABC。
角的大小可以用度、弧度或直角来度量。
6. 三角形的性质:三角形是由三条线段组成的平面图形,它有三个顶点和三个边。
根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和一般三角形。
7. 四边形的性质:四边形是由四条线段组成的平面图形,它有四个顶点和四条边。
根据边长和角度的不同,四边形可以分为正方形、长方形、菱形、平行四边形等。
8. 圆的性质:圆是由一个固定点到平面上任意点的距离相等的点的集合。
圆由圆心和半径确定,圆心用大写字母表示,如O,半径用小写字母表示,如r。
三、平面几何的定理与推理平面几何的定理是通过逻辑推理和证明得出的,它们是描述平面图形性质和关系的真实命题。
下面介绍几个常见的定理:1. 垂直平分线定理:如果一条线段的中点处于另一条线段上,并且这条线段与另一条线段垂直相交,那么这条线段就是另一条线段的垂直平分线。
2. 同位角定理:当两条直线被一条交叉直线切割时,同位角是对应于同一边的内角或外角,它们互补。
第九章 平面解析几何第4课时 圆 的 方 程第十章 ⎝ ⎛⎭⎪⎫对应学生用书(文)119~121页 (理)124~126页考情分析考点新知了解确定圆的几何要素(圆心、半径、不在同一直线上的三个点等);掌握圆的标准方程与一般方程与一般方程.能根据问题的条件选择恰当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系并会进行互化.1. 方程x 2+y 2-6x =0表示的圆的圆心坐标是________;半径是__________. 答案:(3,0) 3解析:(x -3)2+y 2=9,圆心坐标为(3,0),半径为3.2. 以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是_________. 答案:(x -1)2+(y -2)2=25解析:设P(x ,y)是所求圆上任意一点.∵ A 、B 是直径的端点,∴ PA →·PB →=0.又PA →=(-3-x ,-1-y),PB →=(5-x ,5-y).由PA →·PB →=0(-3-x)·(5-x)+(-1-y)(5-y)=0x 2-2x +y 2-4y -20=0(x -1)2+(y -2)2=25.3. (必修2P 111练习8改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是________.答案:⎝⎛⎭⎫-∞,14∪(1,+∞) 解析:由(4m)2+4-4×5m >0得m <14或m >1.4. (必修2P 102习题1(3)改编)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为______________.答案:x 2+(y -2)2=1解析:设圆的方程为x 2+(y -b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b =2.故所求圆的方程为x 2+(y -2)2=1.5. (必修2P 112习题8改编)点(1,1)在圆(x -a)2+(y +a)2=4内,则实数a 的取值范围是________.答案:(-1,1)解析:∵ 点(1,1)在圆的内部,∴ (1-a)2+(1+a)2<4,∴ -1<a <1.1. 圆的标准方程(1) 以(a ,b)为圆心,r (r>0)为半径的圆的标准方程为(x -a)2+(y -b)2=r 2. (2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r . 2. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,方程表示以⎝⎛⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形.3. 确定圆的方程的方法和步骤确定圆的方程的主要方法是待定系数法,大致步骤为: (1) 设所求圆的标准方程或圆的一般方程;(2) 根据条件列出关于a ,b ,r 的方程组或关于D ,E ,F 的方程组; (3) 求出a ,b ,r 或D ,E ,F 的值,从而确定圆的方程. 4. 点与圆的位置关系点M(x 0,y 0)与圆(x -a)2+(y -b)2=r 2的位置关系: (1) 若M(x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2. (2) 若M(x 0,y 0)在圆上,则(x 0-a)+(y 0-b)=r . (3) 若M(x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2.[备课札记]题型1 圆的方程例1 已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆. (1) 求实数m 的取值范围; (2) 求该圆半径r 的取值范围; (3) 求圆心的轨迹方程.解:(1) 方程表示圆的充要条件是D 2+E 2-4F>0,即有4(m +3)2+4(1-4m 2)2-4(16m 4+9)>0-17<m<1.(2) 半径r =-7⎝⎛⎭⎫m -372+167≤4770<r ≤477. (3) 设圆心坐标为(x ,y),则⎩⎪⎨⎪⎧x =m +3,y =4m 2-1,消去m ,得y =4(x -3)2-1.由于-17<m<1, 所以207<x<4.故圆心的轨迹方程为y =4(x -3)2-1⎝⎛⎭⎫207<x<4.变式训练已知t ∈R ,圆C :x 2+y 2-2tx -2t 2y +4t -4=0.(1) 若圆C 的圆心在直线x -y +2=0上,求圆C 的方程;(2) 圆C 是否过定点?如果过定点,求出定点的坐标;如果不过定点,说明理由.解:(1) 配方得(x -t)2+(y -t 2)2=t 4+t 2-4t +4,其圆心C(t ,t 2).依题意t -t 2+2=0t =-1或2.即x 2+y 2+2x -2y -8=0或x 2+y 2-4x -8y +4=0为所求方程.(2) 整理圆C 的方程为(x 2+y 2-4)+(-2x +4)t +(-2y)·t 2=0,令⎩⎪⎨⎪⎧x 2+y 2-4=0,-2x +4=0,-2y =0⎩⎪⎨⎪⎧x =2,y =0. 故圆C 过定点(2,0).题型2 求圆的方程 例2 求过两点A(1,4)、B(3,2)且圆心在直线y =0上的圆的标准方程,并判断点P(2,4)与圆的关系.解:(解法1)(待定系数法)设圆的标准方程为(x -a)2+(y -b)2=r 2. ∵ 圆心在y =0上,故b =0. ∴ 圆的方程为(x -a)2+y 2=r 2.∵ 该圆过A(1,4)、B(3,2)两点, ∴ ⎩⎪⎨⎪⎧(1-a )2+16=r 2,(3-a )2+4=r 2,解之得a =-1,r 2=20. ∴ 所求圆的方程为(x +1)2+y 2=20.(解法2)(直接求出圆心坐标和半径)∵ 圆过A(1,4)、B(3,2)两点,∴ 圆心C 必在线段AB 的垂直平分线l 上.∵ k AB =4-21-3=-1,故l 的斜率为1,又AB 的中点为(2,3),故AB 的垂直平分线l 的方程为y -3=x -2即x -y +1=0.又知圆心在直线y =0上,故圆心坐标为C(-1,0).∴ 半径r =|AC|=(1+1)2+42=20.故所求圆的方程为(x +1)2+y 2=20.又点P(2,4)到圆心C(-1,0)的距离为d =|PC|=(2+1)2+42=25>r.∴ 点P 在圆外.备选变式(教师专享)已知圆C 的圆心与点P(-2,1)关于直线y =x +1对称,直线3x +4y -11=0与圆C 相交于A 、B 两点,且||AB =6,求圆C 的方程.解:设圆C 的方程为(x -a)2+(y -b)2=r 2(r>0),则圆心C(a ,b),由题意得⎩⎪⎨⎪⎧b -1a +2=-1,b +12=a -22+1,解得⎩⎪⎨⎪⎧a =0,b =-1.故C(0,-1)到直线3x +4y -11=0的距离d =||-4-115=3.∵AB =6,∴r 2=d 2+⎝⎛⎭⎫AB 22=18,∴圆C 的方程为x 2+(y +1)2=18.例3 在平面直角坐标系xOy 中,二次函数f(x)=x 2+2x +b(x ∈R )与两坐标轴有三个交点.记过三个交点的圆为圆C.(1) 求实数b 的取值范围; (2) 求圆C 的方程;(3) 圆C 是否经过定点(与b 的取值无关)?证明你的结论.解:(1) 令x =0,得抛物线与y 轴的交点是(0,b),令f(x)=0,得x 2+2x +b =0,由题意b ≠0且Δ>0,解得b<1且b ≠0.(2) 设所求圆的一般方程为x 2+ y 2+Dx +Ey +F =0,令y =0,得x 2+Dx +F =0,这与x 2+2x +b =0是同一个方程,故D =2,F =b ,令x =0,得y 2+ Ey +b =0,此方程有一个根为b ,代入得E =-b -1,所以圆C 的方程为x 2+ y 2+2x -(b +1)y +b =0.(3) 圆C 必过定点(0,1),(-2,1).证明:将(0,1)代入圆C 的方程,得左边= 02+ 12+2×0-(b +1)×1+b =0,右边=0,所以圆C 必过定点(0,1);同理可证圆C 必过定点(-2,1).备选变式(教师专享)已知直线l 1、l 2分别与抛物线x 2=4y 相切于点A 、B ,且A 、B 两点的横坐标分别为a 、b(a 、b ∈R ).(1) 求直线l 1、l 2的方程;(2) 若l 1、l 2与x 轴分别交于P 、Q ,且l 1、l 2交于点R ,经过P 、Q 、R 三点作圆C. ① 当a =4,b =-2时,求圆C 的方程;② 当a ,b 变化时,圆C 是否过定点?若是,求出所有定点坐标;若不是,请说明理由.解:(1) A ⎝⎛⎭⎫a ,a 24,B ⎝⎛⎭⎫b ,b 24,记f(x)=x 24,f ′(x)=x 2,则l 1的方程为y -a 24=a 2(x -a),即y =a 2x -a 24;同理得l 2的方程为y =b 2x -b 24.(2) 由题意a ≠b 且a 、b 不为零,联立方程组可求得P ⎝⎛⎭⎫a 2,0,Q ⎝⎛⎭⎫b 2,0,R ⎝⎛⎭⎫a +b 2,ab . ∴经过P 、Q 、R 三点的圆C 的方程为x ⎝⎛⎭⎫x -a +b 2+(y -1)(y -ab)=0,当a =4,b =-2时,圆C 的方程为x 2+y 2-x +7y -8=0, 显然当a ≠b 且a 、b 不为零时,圆C 过定点F(0,1). 题型3 圆与方程(轨迹)例4 如图,已知直角坐标平面上点Q(2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ|的比等于 2.求动点M 的轨迹方程,并说明它表示什么.解:设直线 MN 切圆于N ,则动点M 组成的集合是P ={M||MN|=2|MQ|}. 因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M 的坐标为 (x ,y),则x 2+y 2-1=2(x -2)2+y 2,整理得(x -4)2+y 2=7. 它表示圆,该圆圆心的坐标为(4,0),半径为7. 备选变式(教师专享)如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN(M 、N 分别为切点),使得PM =2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.解:以O 1O 2的中点O 为原点,O 1O 2所在的直线为x 轴,建立如图所示平面直角坐标系,则O 1(-2,0),O 2(2,0).由已知PM =2PN ,得PM 2=2PN 2.因为两圆的半径均为1,所以PO 21 -1 = 2(PO 22 -1).设P(x ,y),则(x +2)2+y 2-1=2[(x -2)2+y 2-1],即(x -6)2+y 2=33,所以所求轨迹方程为(x -6)2+y 2=33(或x 2+y 2-12x +3=0). 题型4 与圆有关的最值问题例5 P(x ,y)在圆C :(x -1)2+(y -1)2=1上移动,试求x 2+y 2的最小值.解:由C(1,1)得OC =2,则OP min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.变式训练已知实数x ,y 满足(x -2)2+(y +1)2=1,则2x -y 的最大值为________,最小值为________.答案:5+5 5-5解析:令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b与圆相切时,b 取得最值.由|2×2+1-b|5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.1. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为________.答案:x 2+⎝⎛⎭⎫y±332=43解析:由题可知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b),半径为r ,则rsin π3=1,rcos π3=|b|,解得r =23,|b|=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y±332=43. 2. 过点P(1,1)的直线,将圆形区域{(x ,y)|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为________.答案:x +y -2=0解析:当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴ 直线OP 垂直于x +y -2=0.3. 已知AC 、BD 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M(1,2),则四边形ABCD 的面积的最大值为________.答案:5解析:设圆心O 到AC 、BD 的距离分别为d 1、d 2,垂足分别为E 、F ,则四边形OEMF为矩形,则有d 21+d 22=3.由平面几何知识知|AC|=24-d 21,|BD|=24-d 22,∴ S 四边形ABCD=12|AC|·|BD|=24-d 21·4-d 22≤(4-d 21)+(4-d 22)=8-(d 21+d 22)=5,即四边形ABCD 面积的最大值为5.4. 若直线l :ax +by +4=0(a>0,b>0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为________.答案:1解析:圆C 的圆心坐标为(-4,-1),则有-4a -b +4=0,即4a +b =4.所以ab =14(4ab)≤14⎝⎛⎭⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.5. 如图,已知点A(-1,0)与点B(1,0),C 是圆x 2+y 2=1上的动点,连结BC 并延长至D ,使得CD =BC ,求AC 与OD 的交点P 的轨迹方程.解:设动点P(x ,y),由题意可知P 是△ABD 的重心.由A(-1,0),B(1,0),令动点C(x 0,y 0),则D(2x 0-1,2y 0),由重心坐标公式得⎩⎨⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎨⎧x 0=3x +12,y 0=3y 2,y 0≠0,代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0),故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).6. 已知圆M 过两点A(1,-1),B(-1,1),且圆心M 在x +y -2=0上. (1) 求圆M 的方程;(2) 设P 是直线3x +4y +8=0上的动点,PA ′、PB′是圆M 的两条切线,A ′、B′为切点,求四边形PA′MB′面积的最小值.解:(1) 设圆M 的方程为(x -a)2+(y -b)2=r 2(r>0),根据题意得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2) 由题知,四边形PA′MB′的面积为S =S △PA ′M +S △PB ′M =12|A ′M||PA ′|+12|B ′M||PB ′|.又|A′M|=|B′M|=2,|PA ′|=|PB′|,所以S =2|PA ′|,而|PA′|=|PM|2-|A′M|2=|PM|2-4,即S =2|PM|2-4.因此要求S 的最小值,只需求|PM|的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM|的值最小,所以|PM|min =|3×1+4×1+8|32+42=3,所以四边形PA′MB′面积的最小值为S =2|PM|2-4=232-4=2 5.1. 圆x 2+y 2-4x =0在点P(1,3)处的切线方程为________. 答案:x -3y +2=0解析:圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k(x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33.所以切线方程为y -3=33(x -1),即x -3y +2=0.2. 若方程ax 2+ay 2-4(a -1)x +4y =0表示圆,求实数a 的取值范围,并求出半径最小的圆的方程.解:∵方程ax 2+ay 2-4(a -1)x +4y =0表示圆,∴a ≠0. ∴方程ax 2+ay 2-4(a -1)x +4y =0可以写成x 2+y 2-4(a -1)a x +4ay =0.∵D 2+E 2-4F =16(a 2-2a +2)a 2>0恒成立,∴a ≠0时,方程ax 2+ay 2-4(a -1)x +4y =0表示圆. 设圆的半径为r ,则r 2=4(a 2-2a +2)a 2=2⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎫1a -122+1,∴当1a =12即,a =2时,圆的半径最小,半径最小的圆的方程为(x -1)2+(y +1)2=2.3. 如图,在平面斜坐标系xOy 中,∠xOy =60°,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若OP →=x e 1+y e 2(其中e 1、e 2分别为与x 轴、y 轴同方向的单位向量),则P 点斜坐标为(x ,y).(1) 若P 点斜坐标为(2,-2),求P 到O 的距离|PO|;(2) 求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 解:(1) ∵P 点斜坐标为(2,-2), ∴OP →=2e 1-2e 2. ∴|OP →|2=(2e 1-2e 2)2=8-8e 1·e 2=8-8×cos60°=4. ∴|OP →|=2,即|OP|=2.(2) 设圆上动点M 的斜坐标为(x ,y),则OM →=x e 1+y e 2. ∴(x e 1+y e 2)2=1.∴x 2+y 2+2xy e 1·e 2=1.∴x 2+y 2+xy =1. 故所求方程为x 2+y 2+xy =1.4. 已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程.解:设圆P 的圆心为P(a ,b),半径为r ,则点P 到x 轴、y 轴的距离分别为|b|、|a|. 由题设知圆P 截x 轴所得劣弧所对圆心角为90°,知圆P 截x 轴所得的弦长为2r. 故2|b|=2r ,得r 2=2b 2,又圆P 被y 轴所截得的弦长为2,由勾股定理得r 2=a 2+1,得2b 2-a 2=1.又因为P(a ,b)到直线x -2y =0的距离为55,得d =|a -2b|5=55,即有a -2b =±1,综上所述得⎩⎪⎨⎪⎧2b 2-a 2=1a -2b =1或⎩⎪⎨⎪⎧2b 2-a 2=1,a -2b =-1,解得⎩⎪⎨⎪⎧a =-1b =-1或⎩⎪⎨⎪⎧a =1,b =1.于是r 2=2b 2=2.所求圆的方程是(x +1)2+(y +1)2=2,或(x -1)2+(y -1)2=2.5. 已知圆C :x 2+y 2=9,点A(-5,0),直线l :x -2y =0. (1) 求与圆C 相切,且与直线l 垂直的直线方程;(2) 在直线OA 上(O 为坐标原点),存在定点B(不同于点A),满足:对于圆C 上任一点P ,都有PBPA为一常数,试求所有满足条件的点B 的坐标.解:(1) 设所求直线方程为y =-2x +b ,即2x +y -b =0,∵ 直线与圆相切,∴ |-b|22+12=3,得b =±35,∴ 所求直线方程为y =-2x±3 5.(2) (解法1)假设存在这样的点B(t ,0),当P 为圆C 与x 轴左交点(-3,0)时,PB PA =|t +3|2;当P 为圆C 与x 轴右交点(3,0)时,PB PA =|t -3|8,依题意,|t +3|2=|t -3|8,解得,t =-5(舍去),或t =-95.下面证明点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PBPA 为一常数. 设P(x ,y),则y 2=9-x 2,∴ PB2PA 2=⎝⎛⎭⎫x +952+y 2(x +5)2+y 2=x 2+185x +8125+9-x 2x 2+10x +25+9-x 2= 1825(5x +17)2(5x +17)=925, 从而PB PA =35为常数.(解法2)假设存在这样的点B(t ,0),使得PBPA为常数λ,则PB 2=λ2PA 2,∴ (x -t)2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入得,x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2),即2(5λ2+t)x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,∴ ⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0,解得⎩⎨⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去), 所以存在点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PB PA 为常数35.1. 利用待定系数法求圆的方程,关键是建立关于a ,b ,r 或D ,E ,F 的方程组.2. 利用圆的几何性质求方程,可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.3. 解决与圆有关的最值问题的常用方法(1) 形如u =y -bx -a型的最值问题,可转化为定点(a ,b)与圆上的动点(x ,y)的斜率的最值问题;(2) 形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;(3) 形如(x -a)2+(y -b)2型的最值问题,可转化为动点到定点的距离的最值问题.[备课札记]。
专题四 平面解析几何(解答题4+)1.【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-.(2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 2.【解析】(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由||AB =,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ , 从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=, 由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x = 由215x x =5(32)k =+,两边平方,整理得2182580k k ++=, 解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-.3.【解析】(1)由题意得2c =,所以c =c e a ==,所以a = 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x mx y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PAyk k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-, 因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 4.【解析】(1)椭圆22:143x yE +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.则(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍.由此得|343||30403|355x y -+⨯-⨯+=⨯,则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键.。
2015年第56届国际奥林匹克数学竞赛(2015年7月10-11日,泰国清迈)试题选讲【分析】AO是O的弦FG的中垂线,要证明X在AO上,只要证明XF XG∠=∠。
=或者XFG XGF(下面只是证明本题最关键的步骤,略去了大量的文字阐述和引用的常用中间结论,这在正式竞赛中是不允许的。
所以,同学们如果要自己动手做一做、练一练,一定要把过程写详细、写清楚!) Array【证一】∵AFX AFK FKB FAB FDB FCB DFC∠=∠=∠-∠=∠-∠=∠,AGX AGL CLG CAG CEG CBG EBG∠=∠=∠-∠=∠-∠=∠,∴F N M G,,,四点共圆,可得NFM NGM DFC EGB∠=∠⇒∠=∠,∴AFX AGX∠=∠。
而AF AG AFG AGF∠=∠。
,,则XFG XGF=∠=∠这样,A X,两点都在弦FG的中垂线上。
而弦FG的中垂线必过圆心O,可知A X O,,三点共线。
【证二】【另证F N M G,,,四点共圆】=∠。
FMG【本题剖析,及拓展】如图,可以证明以下诸多结论:(1)JHF KIG ∆∆——JHF JBF ABF KIG KCG ACG JHF KIG F G A AF AG A F B C G O ∠=∠=∠⎧⎪∠=∠=∠⎪⇒∠=∠⎨=⎪⎪⎩,在上,,,,,在上; AFX AFJ FJB FAB FDB FCB DFC LFM AFX AFJ FJB FAB FDB FGB FGE FGB BGE LGM AFX AFJ FHB FGB HBG AGX AGK GKC GAC GIC GFC FCI AGX AGK GKC GAC GEC GBC EGB LGM AGX AGK ∠=∠=∠-∠=∠-∠=∠=∠∠=∠=∠-∠=∠-∠=∠-∠=∠=∠∠=∠=∠-∠=∠∠=∠=∠-∠=∠-∠=∠∠=∠=∠-∠=∠-∠=∠=∠∠=∠=∠或或或或AFX AGX GKC GAC GEC GFC GFD GFC DFC LFM⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⇒∠=∠⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪-∠=∠-∠⎪=∠-∠=∠=∠⎪⎩;而AF AG AFG AGF =⇒∠=∠,可知JFH KGI ∠=∠,FJH GKI ∠=∠。
平面几何之入门教学平面几何入门教学通常是指平面几何的基本概念、相交线和平行线以及三角形这三部分内容的教学。
要搞好平面几何的入门教学,关键是解决好以下几个问题。
一、抓住公理,培养适当的逻辑推理,训练思维能力教学大纲要求:“通过各种图形的概念、性质、作(画)图及运算等方面的教学,发展学生的逻辑思维能力、空间能力和运算能力。
”其中培养学生的逻辑推理能力是平面几何入门教学的重中之重,是教学中的难点所在。
教师必须善于引导学生从已熟悉的例子中获得逻辑推理的能力,并使学生在平面几何学习中自觉使用。
在平面几何的入门教学中,除了不定义的概念外,还有赖以逻辑推理的基石――公理,正是这些基石建成了欧氏几何这座大厦。
在讲授公理时,除了应该说清楚公理是不能用其它定理证明且不证自明的道理外,还应该交代,迄今为止,公理所揭示的规律无一例外,这更使公理的成立无法动摇。
有了公理,如何利用公理来证明定理,又如何利用定理来证明所需要的结论,即“怎样证”的逻辑推理问题。
在日常生活中,学生已经自觉或不自觉地运用逻辑推理的思维方式,教师要抓住这个有利条件,进行对比、诱导。
比如:例一:①9月10日是教师节。
②今日是9月10日。
③所以今日是教师节。
例二:①对顶角相等。
②∠A与∠B互为对顶角。
③所以∠A=∠B。
上述二例是演绎推理中的三段论,①②两个判断是前提,新判断③是结论。
教师在教学中应充分利用上述例子,点破其共同点:①或是国家规定,或是已证明成立的定理;②则或是已知的事实,或是题设条件;①和②都是真实可靠且毋庸置疑的正确判断;③则是我们所要证明的。
在教学中,教师应讲清例中①②与③的关系。
①和②是③能成立的前提,而且①和②缺一不可。
比如例一,单有“9月10日是教师节”,不知道“今日是9月10日”,就无法得出“今日是教师节”的结论。
同样,如果知道“今日是9月10日”,而没有“9月10日是教师”的规定,也仍得不到“今日是教师节”的结论。
教师在讲解例二时,应逐项与例一参照对比。
高中数学专题复习《平面解析几何初步直线圆的方程等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.1 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()13nx n N nx x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .72.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( ) A .33B .23C .3D .1(2020广东文)(解析几何)3.已知直线x=a (a>0)和圆(x -1)2+y 2=4相切,那么a 的值是( ) A .5 B .4C .3D .2(2020全国文3)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞5.下列说法正确的是 . [答]( ) (1)若直线l 的倾斜角为α,则0απ≤<;(2)若直线l 的一个方向向量为(,)d u v =,则直线l 的斜率v k u=; (3)若直线l 的方程为220(0)ax by c a b ++=+≠,则直线l 的一个法向量为(,)n a b =.A .(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3)6.直线1:2l y k x ⎛⎫=+⎪⎝⎭与圆22:1C x y +=的位置关系为( ). A.相交或相切 B.相交或相离 C.相切 D.相交7.圆x 2+y 2+2x +6y +9=0与圆x 2+y 2-6x +2y +1=0的位置关系是 ( )A .相交B .相外切C .相离D .相内切8.圆224460x y x y +-++=截直线50x y --=所得弦长为( ) A、6 B、522C、1 D、59.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A 、425x y += B 、425x y -= C 、25x y += D 、25x y -=10. 直线l 过点(-1,2)且与直线垂直,则l 的方程是 A .3210x y +-= B.3270x y ++=C. 2350x y -+=D.2380x y -+=第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题11.在平面直角坐标系xOy 中,已知圆C 与x 轴交于A (1,0),B (3,0)两点,且与直线x -y -3=0相切,则圆C 的半径为 ▲ . 解析:可设圆心为(2,b ),半径r =b 2+1,则|-1-b |2=b 2+1,解得b =1.故r =2.12. 已知从点(2,1)-发出的一束光线,经x 轴反射后,反射光线恰好平分 圆:222210x y x y +--+=的圆周,则反射光线所在的直线方程为 13.圆2240x y x +-=在点(1,3)P 处的切线方程为 ▲ .14.如果直线210mx y ++=与20x y +-=互相垂直,那么实数m = ▲ .15.两圆221:2220C x y x y +++-=与222:4210C x y x y +--+=的公切线有且仅有_____条。
几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。
棱柱的侧面有可能是长方形,也有可能是平行四边形。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。
平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。
平面几何入门(4)
叶中豪(老封)知识要点
三角形的基本元素
边(side)——a,b,c
角(angle)——∠A,∠B,∠C 三角形的全等
如果两个三角形:△ABC和△A'B'C'
三个角都对应相等,就称这两个三角形全等。
记为:△ABC≌△A'B'C'。
三角形全等的性质
全等三角形的对应边相等,对应角相等,对应线段也相等。
三角形全等的判定
边角边公理(SAS)——有两边和它们的夹角对应相等的两个三角形全等。
角边角公理(ASA)——有两角和它们的夹边对应相等的两个三角形全等。
推论角角边定理(AAS)——有两角和其中一角的对边对应相等的两个三角形全等。
边边边公理(SSS)——有三边对应相等的两个三角形全等。
例题和习题
AD⊥BC,EF⊥BC,∠1=∠E。
求证:AD平分∠BAC。
2.如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+∠2=90°。
求证:BC⊥AB。
3.在△ABC中,∠A的外角平分线交CB延长线于E点。
求证:∠E=1
2
(∠ABC-∠ACB
)。
4.在△ABC中,∠ACB=90°+∠B,AD、AE分别是∠A和其外角的平分线,并交BC和其延长线于点D、E。
求证:∠ADE=∠
AED。
5.如图,△ABC中,AB=AC,延长CB到E,延长BC到F,使EB=CF。
求证:AE=
AF。
E
6.已知:B为线段AC上的一点,△ABE与△BCD为AC同侧的两个等边三角形。
求证:AD=CE。
7.如图,已知:AB=AC,AD=AE,∠1=∠2。
求证:BD=CE。
8.如图,AB=AE,∠C=∠D,且∠BAC=∠EAD。
求证:BM=EN。
B
E
9.如图,AE=DE,AE⊥DE,AB⊥BC,DC⊥BC。
求证:AB+CD=BC。
10.已知正方形ABCD,E点在AB延长线上,F点在BC上,且BE=BF,联结AF、CE。
求证:AF⊥CE。
E
11.在正△ABC中,D、E分别是AB、BC上的点,且AD=BE,AE、CD交于F点。
求证:∠CFE=60°。
12.在正△ABC内部有一点O,已知∠AOB=113°,∠BOC=123°。
若一个三角形的边长等于OA、OB、OC。
试求:这个三角形的各角度数。