余弦定理基础知识及常见题型汇总
- 格式:doc
- 大小:115.50 KB
- 文档页数:6
正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。
下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。
2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。
3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。
三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。
2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。
3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。
正、余弦定理复习题(一)选择题1.已知△ABC的三边a,b,c成等比数列,它们的对角分别是A,B,C,则sinA·sinC等于( B ).A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B2.若三角形三边长之比如下:①3︰5︰7;②10︰24︰26;③21︰25︰28,其中锐角三角形、直角三角形、钝角三角形的顺序依次是( B )A.①②③B.③②①C.③①②D.②③①.3.某人向正东方向走了x km后,向左转1500,然后朝新方向走3km,结果他离出发点恰好3km,那么x的值为( C )A.3B.2 3C.3或23D.3.(二) 填空题4.在△ABC中,bc=30,S△ABC=1523,则A=___600或1200_______.5.在△ABC中,已知角A,B,C成等差数列,且边a=2,c=4,则△ABC的面积等于6.在△ABC中,已知a=5,c=23,∠B=1500,则边长b=7.若三角形三边分别为a,b,a2+b2+ab,则三角形的最大角为______1200______. 8.在△ABC中,a2-c2+b2=ab,则∠C=_____ .(一)选择题9.在△ABC中,“sinA>sinB”是“A>B”的( B )A.必要不充分条件B.充分不必要条件C.充要条件D.不充分不必要条件.10.在△ABC中,有acosA2=bcosB2=ccosC2,则△ABC的形状是( B )A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形. 提示:由已知及正弦定理可得sinA2=sinB2=sinC2,从而可得A=B=C.11.0<a<3是使a,a+1,a+2为钝角三角形的三边的( B )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件.(二)填空题12.在△ABC中,已知a=x cm,b=2cm,B=450,满足条件的三角形有两解,则x的取值范围是解法1:由正弦定理,得:x=22sinA,又因三角形有两解,知A≠900且A>450. 所以,2<22sinA<2 2. 即x的取值范围是(2,22). 解法2:∵有两解,在三角形A’BC中,∠CA’B>∠A’BC ∴x>2又由图知,CE<2,∠ABC=450,∴x=BC<CE/sin450=2CE<2 2 x的取值范围是2D13. 在△ABC 中,三个角满足2A =B +C ,且最大边与最小边分别是方程3x 2-27x +32=0的两个根,则a =___7 . 14. 从地平面上共线的三点A 、B 、C 测得某建筑物的仰角分别为300,450,600,且AB=BC=60m ,则此建筑物的高为解:如图所示: 设DE =3x m ,由已知可得: AE =3x ,BE =3x ,CE =x ,设∠CBE =α,则在△ABE 中,由余弦定理,得:9x 2=3x 2+3600+1203x cosα ①在△BCE 中,由余弦定理,得: x 2=3x 2+3600-1203x cosα ② \①+②,得: 10x 2=6x 2+7200 解之,得:x =30 2∴ DE =3x =30 6(三) 解答题15. 在△ABC 中,如果lg a -lg c =lgsinB =-lg 2,且B 为锐角,度判断△ABC 的形状.解:∵ lgsinB =-lg 2, ∴ sinB =22又∵ B 是锐角,∴ B =450 由lg a -lg c =-lg 2,得a c =22, 由正弦定理,得:sinA sinC =22,∴ 2sin(1350-C)=2sinC ,∴ 2[sin1350cosC -cos1350sinC]=2sinC , ∴ cosC =0 ∴ C =900, ∴ △ABC 是等腰直角三角形.16. 在△ABC 中,已知a =3,b =2,B =450,求角A ,B 及边C.解:由正弦定理::sinA =a sinB b =2sin4502=32∵ B =450<900且b <a∴ A 有两解A =600或1200.①当A =600时,C =1800-(A +B)=750c =b sinC sinB =2sin750sin450=6+22; ②当A =1200时,C =1800-(A +B)=150 c =b sinC sinB =2sin150sin450=6-22.17. 已知关于x 的方程x 2-(b cosA)x +a cosB =0的两根之和等于两根之积,试判断△ABC形状.解:由题意,得:b cosA =a cosB∴ 2RsinBcosA =2RsinAcosB∴ sinAcosB -sinBcosA =0 ∴sin(A -B)=0∵ A -B ∈(-π,π)∴ A -B =0 ∴ A =B ∴ △ABC 为等腰三角形.18. 在△ABC 中,求证:a =b cosC +c cosB ,b=a cosC +ccosA ,c =a cosB +b cosA.提示:方法1:运用正弦定理,方法2:运用余弦定理19. 已知△ABC 中,面积S =3,a =23,b =2,求角A ,B 的正弦值..解:∵ S = 3 ∴ 3=12×23×2sinC ∴ sinC =12, ∴ C =300或1500 ①若C =300,由余弦定理,得:西 ACB北东 南 c 2=a 2+b 2-2ab cosC =4∴ c =2,b =c ,得∠B =300,∠A =1200∴ sinA =32,sinB =12②若C =1500,由余弦定理,得:c =27 再由正弦定理,得sinA =2114,sinB =71420. 为了测量某一电视塔的高度,同学们采用了如图所示的两种测量方法,请依据所给条件,分别求出塔高. 解:(1)如图1,在△ABP 中,∠APB =β-α,∴ PB sinα=ABsin(β-α)∴ PB =a sinαsin(β-α)∴ 在直角△POB 中,PO =PB ·sinβ=a sinα sin(β-α)·sinβ=a sinαsinβsin(β-α)(2)如图2.,设PO =x ,∵ △APO ,△BPO 都是直角三角形,∴ AO =x cotα,BO =x cotβ在△AOB 中,由余弦定理,得AB 2=AO 2+BO 2-2·AO ·BO ·cosθ即 b 2 =(x cot α)2+(x cotβ)2-2x costα·x cotβ·cosθ ∴ x =bcot 2α+cot 2β-2cotα·cotβ·cosθ21. 在气象台A 正西方向300km 的P 处有一台风中心,它以40km/h 的速度向东北方向移动,距台风中心250km 以内的地方都要受到影响,试问:从现在起,大约多长时间后,气象台A 所在地会遭受台风影响,将持续多长时间?. 解:设t 小时后台风中心由P 点移至B 点,则PB =40t ,又PA =300,∠BPA =450,在△APB 中,由余弦定理,得AB 2=3002+1600t 2-120002t ,由AB 2≤2502,得: 3002+1600t 2-120002t ≤2502解之,得:152-57 4≤t ≤152+574 即1.99≤t ≤8.618.61-1.99=6.62 (小时),即约6小时37分 答:大约经过2小时后,气象台受到台风影响,要持续约6小时37分.22. 甲船在A 处观察到乙船在它的北偏东600方向的B 处,两船相距a 海里,乙船向正北方向行驶,若甲船的速度是乙船的3倍,问甲船应取什么方向前进才能尽快追上乙船?相遇时乙船已行驶了多少海里? 解:如图,设两船在C处相遇,并设∠CAB=θ,乙船行驶距离x 海里. 则AC =3x 海里.由正弦定理,得:sin θ=BCsin1200AC =12,∴ θ=300.从而BC =AB ·sin θsin ∠ACB=AB ·sin300sin300=a (海里).答:甲船应取北偏东300-方向前进才能尽快追上乙船,两船相遇时乙船行驶了a 海里.23. 沿着一条小路前进,从A 点到B 点,方位角是150,距离是750m ,从B 点到C 点,方位角是1050,距离是2503m ,从C 点到D 点,方位角是1350,距离是500m ,求A 到D 的方位角和距离.解:如图所示,连结β α B PO图1A aB b A αOβ P 图2 θ ADCBE G FAC,在△ABC中,∵∠EAB=150,∴∠ABF=1650,又∵∠FBC=1050∴∠ABC=900即AB⊥BC又∵AB=750,BC=250 3 ∴AB=3BC∴∠BAC=300,∠ACB=600,AC=500 3在△ACD中,∵∠FBC=1050,∴∠BCG=750又∵∠GCD=1350,∴∠ACD=3600-(600+750+1350)=900∴AC⊥CD又∵CD=500 ∴AC=3CD∴∠CAD=300,AD=1000 (m).∴∠EAD=150+300+300=750故,A到D的方位角是750,距离是1000m.24.给出下列三个命题:①若tanAtanB>1,则△ABC是钝角三角形;②若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形;③若AB=a,AC=b,a·b=-2,则△ABC是钝角三角形,其中正确命题的个数是( C )A.0B.1C.2D.3提示:①∵tanAtanB>1>0,∴tanA与tanB 同号,从而必有tanA>0,tanB>0,∴A,B 为锐角又由tanAtanB>1得tsnA>tsn(900-B),得A>900-B,∴A+B>900,∴C为锐角,∴△ABC为锐角三角形;②由于cos(A -B),cos(B-C),sin(C-A)∈[-1,1],∴只有cos(A-B)=cos(B-C)=sin(C-A)=1,∴A-B=B-C)=C-A)=0,∴A=B=C ∴△ABC是正三角形;③由于a·b=-2<0,即·<0,∴||·||·cos<,><0,∴cos<,><0,∴,AC>900,即∠A>900,∴△ABC是钝角三角形.25.在锐角△ABC中,角A、B、C的对边分别为a,b,c,且A<B<C,B=600,(1+cos2A)(1+2cos2C)=3-12,试比较a+2b与2c的大小,并说明你的结论. 解:∵(1+cos2A)(1+2cos2C)=4cos2Acos2C=3-12,且△ABC是锐角三角形,∴cosAcosC=3-14∵B=600,A+C=1200∴sinA·sinC=-cos(A+C)+cosAcosC=-cos1200+3-14=3+14∴cos(A-C)=cosAcosC+sinAsinC=32又∵A<B<C,∴C-A=300又∵A+C=1200,A=450,C=750由正弦定理,得:a+2b=2RsinA+2·2sinB =2Rsin450+2·2sin600=(2+6)R.又∵2c=4RsinC=4Rsin750=(2+6)R∴a+2b=2c。
余弦定理余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。
即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边:余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6 B .26 C .36 D .463.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π35.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB→|=4,|AC →|=1,△ABC 的面积为3,则AB→·AC →的值为( ) A .2 B .-2 C .4 D .-47.在△ABC中,b=3,c=3,B=30°,则a为( )A. 3 B.2 3 C.3或2 3 D.28.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________.9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________.11.在△ABC中,a=32,cos C=13,S△ABC=43,则b=________.12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________.13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c24,则角C=________.14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.16.已知△ABC的周长为2+1,且sin A+sin B=2sin C.(1)求边AB的长;(2)若△ABC的面积为16sin C,求角C的度数.17.在△ABC中,BC=5,AC=3,sin C=2sin A.(1)求AB的值;(2)求sin(2A-π4)的值.18.在△ABC中,已知(a+b+c)(a+b-c)=3ab,且2cos A sin B=sin C,确定△ABC的形状.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .36D .46解析:选A.由余弦定理,得AC =AB 2+BC 2-2AB ·BC cos B =42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) A. 3 B.2C.5D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30°=2, ∴c =2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120°D .150°解析:选D.cos∠A =b 2+c 2-a 22bc=-3bc 2bc=-32,∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos Bsin B.显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .bC .cD .以上均不对解析:选C.a ·a 2+c 2-b 22ac+b ·b 2+c 2-a 22bc=2c 22c=c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB→|=4,|AC →|=1,△ABC 的面积为3,则AB→·AC →的值为( )A .2B .-2C .4D .-4解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A=12×4×1×sin A , ∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .2 3C.3或23D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a ,∴a 2-33a +6=0,解得a =3或23.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3.在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12=3.答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),∴c 边最长,即角C 最大.由余弦定理,得 cos C =a 2+b 2-c 22ab=-12,又C ∈(0°,180°),∴C =120°.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61.答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k , cos B =a 2+c 2-b 22ac=k 2+k 2-k22×2k ×4k=1116,同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4) 13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3. 答案:2 314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935, ∴AB→·BC →=|AB →|·|BC →|·cos(π-B ) =7×5×(-1935)=-19. 答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________.解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________.解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧k 2+k -2-k +2<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4, ∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1, ∴cos(π-C )=12,即cos C =-12.又∵a,b是方程x2-23x+2=0的两根,∴a+b=23,ab=2.∴AB2=AC2+BC2-2AC·BC·cos C=a2+b2-2ab(-1 2 )=a2+b2+ab=(a+b)2-ab=(23)2-2=10,∴AB=10.18.已知△ABC的周长为2+1,且sin A+sin B=2sin C.(1)求边AB的长;(2)若△ABC的面积为16sin C,求角C的度数.解:(1)由题意及正弦定理得AB+BC+AC=2+1,BC+AC=2AB,两式相减,得AB=1.(2)由△ABC的面积12BC·AC·sin C=16sin C,得BC·AC=13,由余弦定理得cos C=AC2+BC2-AB22AC·BC=AC+BC2-2AC·BC-AB22AC·BC=12,所以C=60°.19.在△ABC中,BC=5,AC=3,sin C=2sin A.(1)求AB的值;(2)求sin(2A -π4)的值. 解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A, 得AB =sin C sin A BC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b. 由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b. 又根据余弦定理,得cos A=b2+c2-a22bc,所以c2b=b2+c2-a22bc,即c2=b2+c2-a2,所以a=b.又因为(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,所以4b2-c2=3b2,所以b=c,所以a=b=c,因此△ABC为等边三角形.。
正弦定理和余弦定理一、题型归纳<一>利用正余弦定理解三角形【例1】在△ABC 中,已知a =3,b =2,B=45°,求A 、C 和c .【例2】设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c ,且32b +32c -32a =42b c .(Ⅰ) 求sinA 的值; (Ⅱ)求2sin()sin()441cos 2A B C A ππ+++-的值.【练习1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.【练习2】在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos Bcos C=-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.<二>利用正余弦定理判断三角形的形状【例3】1、在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC的形状.2、在△ABC 中,在ABC ∆中,a,b,c 分别是角A 、B 、C 所对的边,bcosA =a cosB ,则ABC ∆三角形的形状为__________________3、在△ABC 中,在ABC ∆中,a,b,c 分别是角A 、B 、C 所对的边,若cosAcosB=b a, 则ABC ∆三角形的形状为___________________【练习】1、在△ABC 中,2cos22A b cc+=(,,a b c 分别为角,,A B C 的对边),则△ABC 的形状为( )A 、正三角形B 、直角三角形C 、等腰三角形或直角三角形D 、等腰直角三角形2、已知关于x 的方程22cos cos 2sin 02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是( )A 、直角三角形B 、钝角三角形C 、等腰三角形D 、等边三角形3、在△ABC 中,2222()sin()()sin()a b A B a b A B +-=-+,则△ABC 的形状为__________4、在△ABC 中,若a cos A =b cos B =ccos C ;则△ABC 是( ).A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形<三>正余弦定理与三角形的面积【例4】△ABC 中,,,a b c 分别为,,A B C ∠∠∠的对边.如果c a b +=2,B ∠=30°,△ABC 的面积为23,那么b=( )A 、132+B 、31+C 、232+D 、32+【练习】已知ABC △的周长为21+,且sin sin 2sin A B C +=. (1)求边AB 的长; (2)若ABC △的面积为1sin 6C ,求角C 的度数.【例5】设O 是锐角ABC ∆的外心,若75=∠C ,且C O AB OC A OB ∆∆∆,,的面积满足关系:CO A BOC AO B S S S ∆∆∆=+3,求A ∠【练习】已知O 是锐角三角形ABC 的外心,△BOC ,△COA ,△AOB 的面积满足关系:COA BOC AOB S S S ∆∆∆=+2(1)推算tanAtanC 是否为定值?说明理由;(2)求证:tanA ,tanB ,tanC 也满足关系:B C A tan 2tan tan =+<四>利用正余弦定理解决最值问题【例6】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足()22243c b a S -+=(1)求角C 的大小; (2)求sinA+sinB 的最大值.【练习】1、已知锐角ABC △中,角,,A B C 的对边分别为c b a ,,,且2223t an b c a acB -+=;()1求B∠;()2求函数()s in f x x B x =+0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值2、设ABC ∆的内角C B A ,,所对的边分别为,,,c b a 且b c C a =+21cos .(1)求角A 的大小;(2)若1=a ,求ABC ∆的周长l 的取值范围.<五>正余弦定理与向量的运算【例7】已知向量1(sin ,1),(3cos ,)2a xb x =-=-,函数()()f x a b a =+⋅-. (1)求函数()f x 的最小正周期T ;(2)已知a 、b 、c 分别为ABC ∆内角A 、B 、C 的对边, 其中A 为锐角,23,4a c ==,且()1f A =,求,A b 和ABC ∆的面积S .【练习】1、在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =; (2)若5cos 5C =,求A 的值.2、在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若1c =,求a 的值.二、课后作业:1、在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.2、在△ABC 中,C B C B A sin sin 2sin sin sin 222++=,则A 等于( ) A 、60B 、45C 、120D 、135°3、若(c b a ++)(a c b —+)=bc 3,且C B A cos sin 2sin =, 那么ΔABC 是_____________.4、在锐角△ABC 中,BC =1,B =2A ,则ACcos A的值等于______,AC 的取值范围为________5、在ABC ∆中,若135cos ,53sin ==B A ,则C co s 的值为_________ABC ∆的形状为_____6、ABC ∆的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =。
正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。
正余弦定理1.定理内容:(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。
即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-(3)面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: (1)已知一边和两角:(2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .26.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )或5π6 或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )B .2 3 或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .26解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6解析:选=45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .2解析:选=180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A , sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或32解析:选=AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3. 答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°则a +b +csin A +sin B +sin C =________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C=a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C ,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B ,∴b =215. 当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .46 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选∠A =b 2+c 2-a 22bc =-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) 或5π6 或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选△ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .23 或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得 AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值; (2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC=255, 于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。
余弦定理一、知识梳理1.余弦定理三角形任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的2倍.即a2=b2+c2-2bccos A,b2=c2+a2-2cacos B,c2=a2+b2-2abcos C。
.2.余弦定理的变式cos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab.想一想:已知三角形的三边,如何判断三角形的形状?提示在△ABC中,若三边a,b,c中,边a最大,则∠A最大;若a2<b2+c2,则0°<A<90°,则三角形是锐角三角形;若a2=b2+c2,则A=90°,则三角形是直角三角形,若a2>b2+c2,则90°<A<180°,则三角形是钝角三角形.名师点睛1.余弦定理(1)余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理适用于任意三角形,揭示了三角形中边角间的关系.在应用余弦定理时,因为已知三边(求角)或已知两边及夹角(求第三边)时,三角形是唯一确定的,即此时的解是唯一的.(3)在余弦定理中,每一个等式中都包含四个不同的量.即三角形的三边和一边的对角这四个元素,可利用方程的思想,知三求一.2.余弦定理变形及应用(1)已知三角形的三边求角时,常用余弦定理的变形式.(2)若A为锐角,则cos A>0,即b2+c2-a2>0,即b2+c2>a2;若A为直角,则cos A=0,即b2+c2-a2=0,即b2+c2=a2;若A为钝角,则cos A<0,即b2+c2-a2<0,即b2+c2<a2.反之,也成立.(3)在解三角形时,正弦定理和余弦定理是相通的.如:已知两边和其中一边的对角,解三角形时,用正弦定理可求解,但需判别解的情况;也可用余弦定理求解.若已知a 、b 和A ,可先由余弦定理求出c ,列式为a 2=b 2+c 2-2bc ·cos A ,则关于c 的方程的解的个数对应三角形解的个数.二、典例精析题型一 余弦定理解三角形【例1】 (1)在△ABC 中,如果a ∶b ∶c =2∶6∶(3+1),求这个三角形的最小角.(2)在△ABC 中,已知a =2,b =22,∠C =15°,求角A 、B 和边c 的值. 解 (1)在三角形中,大边对大角,小边对小角,根据已知条件判断最小边应为a .∵a ∶b ∶c =2∶6∶(3+1),可设a =2k ,b =6k ,c =(3+1)k (k >0),最小角为角A ,由余弦定理得cos A =b 2+c 2-a 22bc =6k 2+(3+1)2k 2-4k 22(3+1)×6k 2=22,故∠A =45°. (2)cos 15°=cos(45°-30°)=6+24.由余弦定理知c 2=a 2+b 2-2ab cos C =4+8-22×(6+2)=8-43, ∴c =8-43=(6-2)2=6- 2.由正弦定理得a sin A =c sin C ,sin A =a sin C c =a sin 15°c =2×6-246-2=12, ∵b >a ,sin A =12,∴∠A =30°.∴∠B =180°-∠A -∠C =135°.【变式1】 在△ABC 中,设∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且cos A =14.若a =4,b +c =6,且b <c ,求b 、c 的值.解 由余弦定理a 2=b 2+c 2-2bc cos A ,即a 2=(b +c )2-2bc -2bc cos A ,∴16=36-52bc ,∴bc =8.由⎩⎨⎧ b +c =6,bc =8,b <c ,可求得⎩⎨⎧b =2,c =4.. 题型二 判断三角形的形状【例2】 在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cos A·sin B =sin C ,试确定△ABC 的形状.解 法一 (角化边)由正弦定理,得sin C sin B =c b ,由2cos A ·sin B =sin C ,得cos A =sin C 2sin B =c 2b .又由余弦定理,得cos A =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc,即c 2=b 2+c 2-a 2,∴a =b .又∵(a +b +c )(a +b -c )=3ab , ∴(a +b )2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c .∴a =b =c ,∴△ABC 为等边三角形.法二 (边化角)∵∠A +∠B +∠C =180°,∴sin C =sin(A +B ).又∵2cos A ·sin B =sin C ,∴2cos A ·sin B =sin A ·cos B +cos A ·sin B ,∴sin(A -B )=0.又∵A 与B 均为△ABC 的内角,∴∠A =∠B .又由(a +b +c )(a +b -c )=3ab ,得(a +b )2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab ,即a 2+b 2-c 2=ab .由余弦定理,得cos C =12,而0°<∠C <180°,∴∠C =60°.又∵∠A =∠B ,∴△ABC 为等边三角形.【变式2】 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bccos Bcos C ,试判断三角形的形状.解 法一 由a sin A =b sin B =c sin C =2R ,则条件转化为4R 2·sin 2C ·sin 2B +4R 2·sin 2C ·sin 2B =8R 2·sin B ·sin C ·cos B ·cos C , 又sin B ·sin C ≠0,∴sin B ·sin C =cos B ·cos C ,即cos (B +C )=0.又0°<∠B +∠C <180°,∴∠B +∠C =90°,∴∠A =90°,故△ABC 为直角三角形.法二 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C ,即有b 2+c 2-b 2·(a 2+b 2-c 22ab )2-c 2·(a 2+c 2-b 22ac )2=2bc ·a 2+c 2-b 22ac ·a 2+b 2-c 22ab , 即b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2,即b 2+c 2=a 2, ∴△ABC 为直角三角形.题型三 正、余弦定理的综合应用【例3】 在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A-π4)的值.【变式3】△ABC中,a、b、c分别为角A、B、C的对边,且满足b2+c2-a2=bc,(1)求角A的值;(2)若a=3,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.解(1)在△ABC中,由b2+c2-a2=bc及余弦定理知:cos A=b2+c2-a22bc=12,而0<A<π,∴A=π3.(2)由a=3,A=π3,及正弦定理得:bsin B=csin C=asin A=3sinπ3=2,∵B=x,C=2π3-x∴b=2sin x,c=2sin(23π-x),0<x<2π3∴y=a+b+c=3+2sin x+2sin(2π3-x)误区警示忽略三角形的隐含条件【示例】设2a+1,a,2a-1为钝角三角形的三边,求实数a的取值范围.[错解]∵2a+1,a,2a-1是三角形的三边,∴⎩⎨⎧ 2a +1>0,a >0,2a -1>0,解得a >12,∴2a +1是三边长的最大值,设其所对角为θ,∵2a +1,a,2a -1是钝角三角形的三边,∴cos θ<0,即a 2+(2a -1)2-(2a +1)22a (2a -1)=a (a -8)2a (2a -1)<0,解得12<a <8, 又∵a >12,∴a 的取值范围是12<a <8.[正解] ∵2a +1,a,2a -1是三角形的三边,∵⎩⎨⎧ 2a +1>0,a >0,2a -1>0,解得a >12,此时2a +1最大, ∴要使2a +1,a,2a -1表示三角形的三边,还需a +(2a -1)>2a +1,解得a >2. 设最长边2a +1所对的角为θ,则cos θ=a 2+(2a -1)2-(2a +1)22a (2a -1)=a (a -8)2a (2a -1)<0,解得12<a <8. ∴a 的取值范围是2<a <8.求三线段能构成钝角三角形三边的充要条件,除了要保证三边长均为正数外,还要使最大角为钝角,注意两边之和大于第三边这一隐含条件.三、课后检测1.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ). A.π3 B.π6 C.π4 D.π12解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32.∴C =π6.答案 B 2.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ). A .1 B. 2 C .2 D .4解析 b cos C +c cos B=b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2.答案 C 3.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为 ( ).A.π3B.π6C.2π3D.π3或2π3解析 由于b 2+c 2-a 2=-bc =2bc ·cos A∴cos A =-12,又A ∈(0,π),∴A =2π3.答案 C 4.在△ABC 中,若b =1,c =3,∠C =23π,则a = . 解析 ∵c 2=a 2+b 2-2ab cos C ,∴(3)2=a 2+12-2a ·1·cos 23π,∴a 2+a -2=0, ∴(a +2)(a -1)=0,∴a =-2(舍去)或a =1.答案 15.在△ABC 中,sin 2A 2=c -b 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状是 .解析 ∵sin 2A 2=1-cos A 2=c -b 2c ,∴cos A =b c =b 2+c 2-a 22bc ⇒a 2+b 2=c 2⇒△ABC 为直角三角形.答案 直角三角形6.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数;(2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0,π),∴C =2π3. (2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =12×2×sin 2π3=32.7.在△ABC 中,下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形;②若a 2=b 2+c 2+bc ,则∠A 为60°;③若a 2+b 2>c 2,则△ABC 为锐角三角形;④若∠A ∶∠B ∶∠C =1∶2∶3,则a ∶b ∶c =1∶2∶3,其中正确的个数为( ).A .1B .2C .3D .4解析 ①cos A =b 2+c 2-a 22bc <0,∴∠A 为钝角,正确;②cos A =b 2+c 2-a 22bc =-12,∴∠A =120°,错误;③cos C =a 2+b 2-c 22ab>0,∠C 为锐角,但∠A 或∠B 不一定为锐角,错误;④∠A =30°,∠B =60°,∠C =90°,a ∶b ∶c =1∶3∶2,错误,故选A.答案 A8.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为 ( ). A .135° B .45° C .60° D .120°解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C . 由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45°答案 B9.已知△ABC 三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为 .解析 由余弦定理可求得cos B =1935,∴AB →·BC →=|AB |·|BC |·cos(π-B )=-|AB |·|BC |·cos B =-19.答案 -1910.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 .解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22, ∴sin C =22.∴AD =AC ·sin C = 3. 答案 311.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cos B =35,且AB →·BC →=-21. (1)求△ABC 的面积;(2)若a =7,求角C .解 (1)∵AB →·BC →=-21,∴BA →·BC →=21.∴BA →·BC →=|BA →|·|BC →|·cos B =ac cos B =21.∴ac =35,∵cos B =35,∴sin B =45. ∴S △ABC =12ac sin B =12×35×45=14. (2)ac =35,a =7,∴c =5.由余弦定理b 2=a 2+c 2-2ac cos B =32,∴b =4 2.∴cos C =a 2+b 2-c 22ab =49+32-252×7×42=22,又∵C ∈(0,π) ∴C =45°.12.(创新拓展)△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34. (1)求1tan A +1tan C的值;(2)设BA →·BC →=32,求a +c 的值. 解 (1)由cos B =34得sin B = 1-⎝⎛⎭⎫342=74, 由b 2=ac 及正弦定理得sin 2B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2B =sin B sin 2B =1sin B =477. (2)由BA →·BC →=32得ca ·cos B =32, 由cos B =34,可得ca =2,即b 2=2. 由余弦定理b 2=a 2+c 2-2ac ·cos B , 得a 2+c 2=b 2+2ac ·cos B =5,∴(a +c )2=a 2+c 2+2ac =5+4=9, ∴a +c =3.。
正弦定理余弦定理题型总结一、利用正弦定理求解三角形(已知两角和一边)1. 题目。
在△ ABC中,已知A = 30^∘,B = 45^∘,a = 2,求b的值。
2. 解析。
根据正弦定理(a)/(sin A)=(b)/(sin B)。
已知A = 30^∘,sin A=sin30^∘=(1)/(2);B = 45^∘,sin B=sin45^∘=(√(2))/(2),a = 2。
代入正弦定理可得b=(asin B)/(sin A)=(2×frac{√(2))/(2)}{(1)/(2)} = 2√(2)。
二、利用正弦定理求解三角形(已知两边和其中一边的对角)1. 题目。
在△ ABC中,a = 3,b = 4,A = 30^∘,求B的值。
2. 解析。
由正弦定理(a)/(sin A)=(b)/(sin B)。
已知a = 3,b = 4,A = 30^∘,sin A=sin30^∘=(1)/(2)。
则sin B=(bsin A)/(a)=(4×frac{1)/(2)}{3}=(2)/(3)。
因为b > a,所以B有两解,B=arcsin(2)/(3)或B = π-arcsin(2)/(3)。
三、利用余弦定理求解三角形(已知三边求角)1. 题目。
在△ ABC中,a = 3,b = 4,c = 5,求C的值。
2. 解析。
根据余弦定理cos C=frac{a^2+b^2-c^2}{2ab}。
把a = 3,b = 4,c = 5代入可得:cos C=frac{3^2+4^2-5^2}{2×3×4}=(9 + 16-25)/(24)=0。
因为0^∘,所以C = 90^∘。
四、利用余弦定理求解三角形(已知两边和夹角求第三边)1. 题目。
在△ ABC中,a = 2,b = 3,C = 60^∘,求c的值。
2. 解析。
根据余弦定理c^2=a^2+b^2-2abcos C。
已知a = 2,b = 3,C = 60^∘,cos C=cos60^∘=(1)/(2)。
三角函数五——正、余弦定理一、知识点 (一)正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C ===a b c3sin B C4(((解可 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一)三、正、余弦定理的应用射影定理:cos cos ,cos cos ,cos cos .a b C c B b a C c A c a B b A =+=+=+有关三角形内角的几个常用公式 解三角形常见的四种类型(1)已知两角,A B 与一边a :由180A B C ++=︒及正弦定理sin sin sin a b cA B B==,可 求出C ∠,再求,b c 。
(2)已知两边,b c 与其夹角A ,由2222cos a b c bc A =+-,求出a ,再由余弦定理, 求出角,B C 。
(3)已知三边a b c 、、,由余弦定理可求出A B C ∠∠∠、、。
(4讲解 (知∆A ∠,A .由a c ==,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2a b B A =⋅==,故选A(2013·新课标Ⅰ高考文科·T10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,02cos cos 232=+A A ,7=a ,c=6,则=b ( ) A.10B.9C.8D.5【解题指南】由02cos cos 232=+A A ,利用倍角公式求出A cos 的值,然后利用正弦定理或余弦定理求得b 的值.【解析】选D.因为02cos cos 232=+A A ,所以01cos 2cos 2322=-+A A ,解得251cos 2=A , 方法一:因为△ABC 为锐角三角形,所以51cos =A ,562sin =A . 由正弦定理C cA a sin sin =得,C sin 65627=.6sin =C 所以sin =B5.方法二5∴sin 9、()0C =,求边又1+即12cos 0A -=,2,又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B =得sin 2sin 2b A B a ===, 又∵b a <,所以B <A ,B =45°,C =75°,∴BC 边上的高AD 752sin(4530)=+在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c ,且 b.(1)求角A 的大小.(2)若a=6,b+c=8,求△ABC 的面积.【解题指南】(1)由正弦定理易求角A 的大小;(2)根据余弦定理,借助三角形的面积公式求解.【解析】(1)由及正弦定理sin sin a bA B=,得, 因为(2)b 2+c 26、(3,则c =.4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=,则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = .【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==1、在△ABC 中,角,,A B C 的对边分别为,,abc ,3A π=,1a b ==,则c =( )A 、1B 、2 C1 D 、32、在△ABC 中,分别为的对边.如果成等差数列,30°,△ABC 的面 A 、3)75213 C D 4B π=,则___________________.3,=60°AB 的长度等于13(20132012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =()A .725B .725-C .725±D .2425【答案】A【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B B C B B ≠∴===-=(2013·湖南高考文科·T5)在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2asinB=3b ,则角A 等于( ) A.3π B.4π C.6π D.12π【解题指南】本题先利用正弦定理B bA a sin sin =化简条件等式,注意条件“锐角三角形” .【解析】选A.由2asinB=3b 得2sinAsinB=3sinB,得sinA=23,所以锐角A=3π. (2013·湖南高考理科·T3)在锐角ABC ∆中,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .12π(2013 A . 3 5,=在△B 0=. (1)(2)若a 【解题指南】(1)借助三角形内角和为π,结合三角恒等变换将条件中的等式转化为只含B 的方程,求出B 的三角函数值,进而可求出角B.(2)根据(1)求出的B 与a c 1+=,由余弦定理可得b 2关于a 的函数,注意到a c 1+=可知0a 1<<,进而可求出b 的范围.【解析】(1)由已知得cos(A B)cos A cos B A cos B 0-++-=,即sin Asin B A cos B 0=.因为sin A 0≠,所以sin B B 0=,又cosB 0≠,所以tan B =,又0B <<π,所以B 3π=.(2)由余弦定理,有222b a c 2accos B =+-,因为a c 1+=,1cos B 2=,所以2211b 3(a )24=-+,又因为0a 1<<,所以21b 14≤<,即1b 12≤<.1sin BAM ∠=∠(2013·上海高考文科·T5)已知∆ABC 的内角A 、B 、C 所对的边分别是a 、b 、c.若a +ab+b 2-c 2=0,则角C 的大小是 .【解析】π32212- cos 0- 222222=⇒-=+=⇒=++C ab c b a C c b ab a 【答案】π32设ABC ∆的内角A ,B ,C 的对边分别为c b a ,,,ac c b a c b a =+-++))(((I )求B ; (II )若413sin sin -=C A ,求C . 【解题指南】(I )由条件ac c b a c b a =+-++))((确定求B 应采用余弦定理. (II )应用三角恒等变换求出C A +及C A -的值,列出方程组确定C 的值. 【解析】(I )因为ac c b a c b a -=+-++))((.所以ac b c a -=-+222.222(II 221+=故-C A10、((I c = 所以A (2012(1(2【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3BC B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩ 则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理2222291cos 2123b c a b c A bc +-+-===则2213b c +=②, ①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩ 7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=.(I )求B ; (Ⅱ)若75,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=2222cos b a c ac B =+-cos 2B =45B =(II sin30=故6a +=60645c b ==1、∆C 的对边分别为 )2 A A 、30° B 、30°或150° C 、60° D 、60°或120° 8、已知在△ABC 中,sin :sin :sin 3:2:4A B C =,那么cos C 的值为( )A 、14-B 、14C 、23- D 、2310、若△ABC 的内角,,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =A B .34C D .111611、在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=A .-12 B .12C . -1D .112、已知在△ABC 中,10,a b A ===45°,则B = 。
余弦定理一、考点、热点回顾(一)余弦定理及推论1、余弦定理:a 2=________________,b 2=________________,c 2=________________.2、余弦定理的推论:cos A =________________,cos B =_____ ______,cos C =____ ______.(二)利用余弦定理解三角形(1) 已知三角形的两边及其夹角解三角形基本思路:1)利用余弦定理求出第三边;2)利用余弦定理的推论求出一个未知角;3)利用三角形内角和定理求出第三个角;(2) 已知三边解三角形基本思路:1)利用余弦定理的推论求出一个角;2)利用余弦定理的推论求出第二个角;3)利用三角形内角和定理求出第三个角;(3) 已知两边及其中一边的对角解三角形基本思路:1)根据余弦定理列关于第三边的方程;2)方程的正解就是第三边的边长,正解的个数就是三角形的解的个数。
二、典型例题考点一、基本概念例1、(1)在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39 B .8 3 C .10 2 D .7 3(2)在ABC ∆中,13,34,7===c b a ,则ABC ∆的最小角为( )A 、3πB 、6πC 、4πD 、12π变式训练1、(1)在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( )A .4B .8C .4或8D .无解(2)在ABC ∆中,若ac c a b ++=222,则B ∠为( )A 、60°B 、45°或135°C 、120°D 、30°考点二、已知三角形的两边及其夹角解三角形例2、在△ABC 中,已知a =2,b =,C =15°,求角A 。
变式训练2、在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ = ( )A. 1010B. 105 C. 31010 D. 55考点三、已知三角形的三边解三角形例3、在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C .变式训练3、在△ABC 中,若a =23,b =22,c =6+2,求A ,B ,C考点四、已知两边及其中一边的对角解三角形例4、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=()A. B. C. 2 D. 3变式训练4、在△ABC 中,若b =3,c =33,B =30°,求A ,C 和a .考点五、判断三角形的形状例5、在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.变式训练5、(1)在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.(2)已知(a+b+c)(a+b-c)=3ab 且2cos A sin B =sin C ,判断此三角形的形状考点六、正余弦定理的综合应用例6、(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C = b sin B.1)求角B 的大小;2)若A =75°,b =2,求a ,c .(2)在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C .变式训练6、在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状.三、课后练习1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .4 6解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )A. 3B. 2C. 5 D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C=22+(3-1)2-2×2×(3-1)cos30°=2,∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150° 解析:选D.cos ∠A =b 2+c 2-a 22bc =-3bc 2bc =-32,∵0°<∠A <180°,∴∠A =150°.4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为() A.π6 B.π3C.π6或5π6 D.π3或2π3 解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos Bsin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2.设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2,∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 解析:选A.S △ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A , ∴sin A =32,又∵△ABC 为锐角三角形, ∴cos A =12, ∴AB →·AC →=4×1×12=2. 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )A. 3 B .2 3 C.3或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案: 310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°. ∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C , ∴c 2=21或61,∴c =21或61.答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4,设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k =1116, 同理可得:cos A =78,cos C =-14, ∴cos A ∶cos B ∶cos C =14∶11∶(-4).答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________. 解析:∵cos C =13,∴sin C =223. 又S △ABC =12ab sin C =43,即12·b ·32·223=43, ∴b =2 3.答案:2 314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935) =-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2=12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°. 答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ), 则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4, ∴最小角的余弦值为32+42-222×3×4=78. 答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2.∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12) =a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数. 解:(1)由题意及正弦定理得AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC =12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值. 解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A, 得AB =sin C sin ABC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b. 由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b. 又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc, 即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。