几种电动机正反转星三角启动及能耗制动电路
- 格式:doc
- 大小:4.31 MB
- 文档页数:11
星形-三角形减压起动正反转控制线路详解星形-三角形减压起动正反转控制线路,既能实现电动机正反转,同时每次起动都是减压起动,控制线路实物图、电路原理图、工作原理、元件布置图、布线图、优缺点如下。
1.实物图1、2是熔断器3、4、5、6是交流接触器KM1、KM2、KM△、KM7是时间继电器8是热继电器9是主电路导线10是控制电路导线11、12是接线端子排,13是按钮盒14是停止按钮15是反转减压起动按钮16是正转减压起动按钮17、18是电动机供电导线19是电动机接线盒2.主电路原理图KM1与KM同时闭合,正转减压起动,KM1与KM△同时闭合,正转全压运行,KM2与KM同时闭合,反转减压起动,KM2与KM△同时闭合,反转全压运行。
3.控制电路原理图KM1与KM2常开辅助触头相互联锁,以保证KM1与KM2主触头不同时闭合KM与KM△常开辅助触头相互联锁,以保证KM与KM△主触头不同时闭合。
4.正向减压起动工作原理闭合断路器QS。
按下SB1,1—SB1常闭触头先断开,断开KM2线圈所在电路,联锁。
2—时间继电器KT得电,计时开始;3—KM线圈得电。
由3得,4—KMY主触头闭合;5—KMy常闭辅助触头断开,联锁(KM△线圈所在电路断开);6—KMy常开辅助触头闭合。
由6得,7—KM1线圈得电。
由7得,8—KM1主触头闭合;9—两个KM1常开辅助触头闭合,自锁。
10—KM1常闭辅助触头断开,联锁。
由4、8的共同作用,电动机M以星形联结方式正向起动。
由2得,11—时间继电器KT通电延时断开触头断开。
由11得,12—KMy线圈失电。
由12得,13—KMy主触头断开,电动机暂时失电;14—KMy常闭辅助触头闭合;KM△线圈得电;15—KMy常开辅助触头断开,由于9的存在,15对电路没有影响.。
由14得,16—KM△主触头闭合,电动机以三角形联结正向运行。
15—KM△常闭辅助触头断开,时间继电器KT线圈失电。
KT通电延时断开触头复位(闭合)。
电机控制线路图大全Y-△(星三角)降压启动控制线路-接触器应用接线图Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。
由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。
Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。
OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。
OX3—13型Y-△自动启动器的控制线路如图11—11所示。
()合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I星形—三角形降压起动控制线路星形——三角形降压起动控制线路星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。
Y —△起动只能用于正常运行时为△形接法的电动机。
1.按钮、接触器控制 Y —△降压起动控制线路图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。
线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。
2.时间继电器控制 Y —△降压起动控制线路图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。
图2定子串电阻降压起动控制线路图2是定子串电阻降压起动控制线路。
单相交流电动机正反转
带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。
一般洗衣机用得到这种电机。
这种正反转控制方法简单,不用复杂的转换开关,此主副线圈参数相同,也可视作不分主副。
启动电容使主副绕组磁场相差90度,电容小启动困难,大则易烧电机。
(通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。
一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。
)
三相电动机正反转
根据三相电动机磁场的变换
方向,将任意两相对换即可使电机
反转。
由正转切换为反转不能直接
切换,须先停止后才能反转,磁力
设有连锁保护,KM1、KM2不能
同时带电。
控制回路电源此例采用
380V,使用220V应另接零线。
带时间控制的Y—△
降压启动
电动机绕组端子全部抽出,
绕组二次结成星角类型,启动后根
据时间继电器设定值改变运行方
式
SB1 停止
SB2 启动
按下SB2后,KM、KT、KM1
线圈得电,开始星型运行,同时启
动时间继电器,当时间继电器达整
定值KM1线圈失电,KM2线圈得
电,开始角形运行。
三相异步电动机星三角降压起动单相全波整流能耗制动实训报告实训目的:通过实际操作,了解三相异步电动机星三角降压起动和单相全波整流能耗制动的原理,掌握实施这两种控制方法的步骤和要点。
实训步骤:一、三相异步电动机星三角降压起动1.搭建实验电路:将三相异步电动机连接到电源上,接上电流表和电压表,并将三个电压表的相线连接到电源的三相线。
2.确保电源和电动机开关都处于关闭状态。
3.将电源开关连接到电动机的Y/Δ切换器上,将电动机的连线连接到电源开关的输出端。
4.打开电源开关,调节电源的电压为额定电压,并观察电动机的运行情况。
5.观察电动机在起动时的电流波形和电压波形,验证降压起动的效果。
6.测试电动机的额定转速和电动机的额定电流,记录测试结果。
二、单相全波整流能耗制动1.搭建实验电路:将电源连接到单相全波整流电路的输入端,然后将电路的输出端与电动机的两个相线连接。
2.调节电源的电压为额定电压,并观察电动机的运行情况。
3.观察电动机在制动时的电流波形和电压波形,验证能耗制动的效果。
4.测试电动机在制动时的电流和转速变化情况,记录测试结果。
实训要点:1.在进行三相异步电动机星三角降压起动前,需要确保电源和电动机开关都处于关闭状态,以免发生安全事故。
2.在进行单相全波整流能耗制动前,需要调节电源的电压为额定电压,以保证实验的准确性。
3.在观察电动机在起动和制动时的电流波形和电压波形时,要注意观察波形的稳定性和正常性,以判断控制方法的有效性。
4.在测试电动机的额定转速和电流时,要使用专业的仪器进行测量,并将测试结果记录下来。
结论:通过本次实训,我对三相异步电动机星三角降压起动和单相全波整流能耗制动的原理和操作步骤有了更深入的了解。
这两种控制方法具有一定的实际应用价值,可以在工程实践中发挥重要作用。
在以后的学习和实践中,我将更加注重动手实操,提高对电动机控制技术的熟练度和应用水平。
几种电动机正反转星三角启动及能耗制动电路
————————————————————————————————作者:————————————————————————————————日期:
2
断电/通电延时带直流能耗制动的星—三角起动控制线路
3
4
5
图1原理如下
大功率电动机双向星三角启动及能耗制动电路
大功率的电动机一般使用星三角启动的控制方式,以减少对电网及设备的冲击;为了提高工效,停车时采用能耗制动的方式以利于设备的利用率;本电路的控制要求如下:
1、双向启动均采用星三角减压方式;
2、正、反转均设有点动控制功能;
3、停车设有能耗制动;
4、停车时先将电动机绕组首尾串联,然后进行制动,制动时间由时间继电器控制;
5、点动操作时电动机只能作星接运行,能耗制动不起作用。
6
7
8
9
10
11
正反转星三角启动带能耗制动电路图:。
电机与拖动综合实践小型三相异步电动机电力拖动系统设计指导教师:时间:2018 年01 月05 日目录一、设计任务与要求 (1)二、方案比较 (1)三、电路图和电路原理说明 (1)四、调试问题分析和结果记录 (1)五、电气控制柜电气接线 (1)六、收获体会 (1)七、小组分工 (1)一、设计要求1、用PLC对异步电动机拖动系统进行控制。
实现星三角降压启动、调速、正反转换向、能耗制动——整个工作流程的设计。
拖动系统除了能完成以上基本功能外,还要有短路保护、过载保护设计。
2、选用额定电压为220V,额定电流为0.5A的交流异步电动机作为控制对象。
要求带一直流发电机负载进行实验。
二、方案比较本课程设计中,设计要求中已限定了采用星三角降压启动方式启动电机,正反转方案可以采用交换三相中两相接线来实现,而制动方案题中要求采用能耗制动,结合实验室所有设备,采用220V交流电经过变压器降压至26V后通过整流桥转换为直流电源,串制动电阻作为能耗制动的电路设计。
故本设计中,需解决解决的为调速方案的选取,方案比对和选取如下。
方案一:调压调速。
这种方式为通过异步电动机的定子三相交流电压大小来调节转子转速。
实验室中主要有两种电机,一种为鼠笼式异步电动机,一种为绕线式异步电动机。
不同于绕线式电动机,鼠笼式异步电动机应采用此种调速方案。
方案二:转子串电阻调速。
实验室中绕线式电机可采用此方案。
转子上串入电阻越大,转速越低,转差率就越大,机械功率在电磁功率中所占比率就越低,效率越低。
本实验中可采用的电阻为100Ω左右。
方案三:交流变频调速。
实验室中提供了变频器供变频调速使用。
变频调速具有如下优点:1调速范围宽,可以使普通异步电机实现无极调速;2启动电流小,启动转矩大;3起动平稳,清楚机械的冲击力,保护机械设备;4对电动机具有保护功能,降低电动机的维修费用;5具有显著的节电效果;6通过调节电压和频率的关系方便地实现恒转矩或者恒功率调速。
电机-星三角启动图及原理
当变压器容量不够,为了降低起动电流,电动机就得降压起动。
电动机降压起动的方法不一,如自耦变压器降压起动、星——三角降压起动、延边三角形降压起动、定子回路串电阻(或串电抗器)降压起动以及电动机的软启动等。
相对于其他起动方法中,定子电压只能按一定倍数降低,电动机的软启动可以通过控制晶闸管的导通角来控制定子的电压,使得定子电压从零开始逐渐升高至额定电压。
然而,我今天要讲的不是电动机的软启动,而是电动机的星形(三角形降压起动)。
7种正反转控制线路图,双手奉上,不求别的,好不好你要说个话1.按钮连锁的正反转控制线路线路如图所示,它采用了复合按钮,按钮互锁连接。
当电动机正做正向运行时,按下反转按钮SB3,首先是使接在正转控制线路中的SB3的常闭触点断开,于是,正转接触器KM1的线圈断电释放,触点全部复原,电动机断电但做惯性运行,紧接着SB3的常开触点闭合,使反转接触器KM2的线圈获电动作,电动机立即反转启动。
这既保证了正反转接触器KM1和KM2不会同时通电,又可不按停止按钮而直接按反转按钮进行反转启动。
同样,由反转运行转换成正转运行,也只需直接按正转按钮。
这种线路的优点是操作方便,缺点是如正转接触器主触点发生熔焊分断不开时,直接按反转按钮进行换向,会产生短路事故。
按钮互锁2.接触器连锁的正反转控制线路下图所示为接触器连锁正反转控制线路。
图中果用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2.由于接触器的主触点接线的相序不同,所以当两个接触器分别工作时,电动机的旋转方向相反线路要求接触器不能同时通电。
为此,在正转与反转控制线路中分别串联了KM2 和KM1的常闭触点,以保证KM1 和KM2不会同时通电。
接触器连锁正反转控制线路3.按钮、接触器复合连锁的正反转控制线路下图所示是按钮、接触器复合连锁的正反转控制线路,它集中了按钮连锁、接触器连锁的优点,即当正转时,不用按停止按钮即可反转,还可避免接触器主触点发生熔焊分断不开时,造成短路事故。
按钮、接触器复合连锁的正反转控制线路4,具有三重互锁保护的正反转控制线路通常正反转启动线路均采用双重互锁保护,即,按钮互锁,交流接触器常闭触点互锁。
本线路具有三重互锁保护,即:按钮互锁,交流接触器常团触点互锁,失电延时时间继电器街电延时闭合的常团触点互锁。
该线路互锁程度极高,具三有重互锁保护作用,如图所示。
正转启动时,按下正转启动按钮SB2,此时SB2常闭触点断开反转交流接触器KM2线圈回路,起到互锁保护作用,同时SB2常开触点闭合,交流接触器KMI失电延时时间络电器KT1线圈同时得电吸台。
几种电动机正反转星三角启动及能耗制动电路
图1原理如下
大功率电动机双向星三角启动及能耗制动电路
大功率的电动机一般使用星三角启动的控制方式,以减少对电网及设备的冲击;为了提高工效,停车时采用能耗制动的方式以利于设备的利用率;本电路的控制要求如下:
1、双向启动均采用星三角减压方式;
2、正、反转均设有点动控制功能;
3、停车设有能耗制动;
4、停车时先将电动机绕组首尾串联,然后进行制动,制动时间由时间继电器控制;
5、点动操作时电动机只能作星接运行,能耗制动不起作用。
正反转星三角启动带能耗制动电路图:。