大鼠脑缺血模型
- 格式:pdf
- 大小:228.04 KB
- 文档页数:2
phenol reagent[J].J Boil Chem,1951,193:265.[4] Chandan K S,Lester P.Antioxidant and redoxregulation ofgenetranscription[J].FASE B J,1996,10(2):109-120. [5] Reiter R J,T ang L,G arcia JJ,et al.Pharmacological actionsof melatonin in oxygen radical pharmacology[J].Life Sci, 1997,60(25):2255-2271.[6] Fernando A,Barclay LRC,Ing old K U,et al.On the antiox2idant activity of melatonin[J].Free Rad Bio Med,1999,36(1/2):117-128.[7] S iesjo BK,Zhao Q,Pahlmark K,et al.G lutamate,calcium,and free radicals as mediators of ischemia brain damage[J].Ann Thorac Surg,1995,59(5):1316-1320.[8] K otler M,R odriquez C,Sainz RM,et al.Melatonon increas2es gene expression for antioxidant enzymes in rat brain cortex [J].J Pineal Res,1998,24(2):83-89.[9] Bettahi I,P ozo D,Osuna C,et al.Physiological concentra2tions of melatonin inhibit nitric oxide synthase activity in rat hypothalamus[J].J Pineal Res,1996,20(4):205-210.收稿日期:2000-10-26 修回日期:2001-02-15本文编辑:程春开3种大鼠全脑缺血模型定量脑电图的实验研究Ξ吴克俭,花 放,孙景玲(徐州医学院附属医院神经内科,江苏徐州221002) 摘要:目的 比较正常大鼠不同电极联接方式的脑电图的差异,并以脑电图作为判定指标,评价3种全脑缺血大鼠模型的缺血效果。
大鼠大脑中动脉缺血模型
大鼠大脑中动脉缺血模型是一种用于研究脑血管疾病的实验动物模型。
该模型通过阻塞大鼠大脑中动脉,使特定区域的脑组织缺氧,从而模拟脑卒中等脑血管疾病的病理过程。
该模型的建立常用的方法有两种:颅骨开窗法和线栓法。
颅骨开窗法是通过手术在大鼠头部挖取窗口,暴露出脑表面的动脉,然后用丝线或微疏松的阻塞物将动脉堵塞,造成脑缺血。
线栓法则是将一根细线或者硬化的凝血物插入大鼠颈动脉,将其推进至前大脑动脉分支处,从而阻塞动脉血流。
这种模型可以模拟脑血管疾病引起的脑缺血损伤,包括缺血区域的神经元死亡、神经胶质细胞激活、炎症反应等。
研究人员可以通过该模型观察脑缺血后的病理变化和分子机制,评估各种药物或治疗方法对脑缺血的治疗效果。
需要注意的是,动物实验必须符合伦理规范和相关法律法规,研究人员应尽量减少动物的痛苦和不适。
同时,在进行实验前需要仔细设计实验方案,选择适当的动物模型和操作方法,以确保实验结果的可靠性和准确性。
大鼠脑缺血模型制作大鼠脑缺血是一种神经病理学状态,常用于研究脑缺血和再灌注相关的疾病,如中风和心脑血管疾病。
制作大鼠脑缺血模型可以帮助研究者深入了解脑缺血的机制,并探索治疗方法。
下面将介绍一种常用的大鼠脑缺血模型制作方法。
材料准备:1.正常健康的大鼠(约250-300g)2.异氟醚(用于麻醉大鼠)3.氧化氮(用于麻醉大鼠)4.0.9%氯化钠溶液(生理盐水,用于预先裂解血栓)5.弹簧夹(用于阻断大脑供血)6.血管夹(用于再灌注)7.生理盐水或PBS(用于清洗伤口和冲洗大脑)操作步骤:1.麻醉大鼠-以适当的浓度向氧化氮罩中送气,让大鼠吸入异氟醚麻醉。
-确定大鼠是否处于麻醉状态,如失去帕金森反射。
-为了确保大鼠的安全性和麻醉质量,要定期监测大鼠的许多生理参数,如呼吸频率、血氧饱和度和体温。
2.颅窗手术-将大鼠固定在手术台上,用5%碘伏消毒实验区域的皮肤。
-在头部进行剃发和消毒。
- 用手术刀在头部切开皮肤,在颅骨上切开一个直径约 1 cm的圆洞。
-清除头骨上的组织,暴露出颅骨。
-用电动开骨钻在颅骨上进行微抖动,直到打开一个圆洞。
通过控制速度和钻头的压力来避免损伤脑组织。
-用细钳将头皮撕开,暴露出脑膜。
3.制作脑缺血-用生理盐水或PBS洗涤脑膜,以确保大脑的清洁。
-用弹簧夹仔细阻断大脑的供血。
通常选择大脑的前动脉(MCA)或双侧MCA,使大脑区域发生缺血。
-检查大鼠是否出现神经功能缺陷,如软瘫、不对称性和意识丧失等。
-记录缺血时间,通常在20-30分钟之间。
-选择再灌注时间,通常是60分钟。
4.再灌注-在再灌注前,用生理盐水或PBS冲洗大脑。
通过防止缺血时间和再灌注时间的太长,以减少实验操作引起的伤害。
-用血管夹将阻断的血管解除,实现再灌注。
-观察大鼠是否恢复神经功能,例如排尿、动作和体位等。
-保持大鼠体温适宜,定期监测大鼠身体参数。
5.实验后处理-在实验结束后,用生理盐水或PBS冲洗伤口。
-给大鼠提供足够的水和食物,让其恢复。
全脑缺血再灌注动物模型建立方法引言全脑缺血再灌注是一种临床上常见的危重症,常见于心脏骤停、溺水等情况下,出现全脑缺血缺氧,随后通过复苏措施进行再灌注。
建立全脑缺血再灌注动物模型对于深入研究相关疾病的发病机制,评估治疗方法具有重要意义。
本文将介绍一种常用的全脑缺血再灌注动物模型的建立方法。
动物模型选择建立全脑缺血再灌注模型时,主要选择小鼠或大鼠作为实验动物。
一般情况下,小鼠更为常用,因其易于操作、成本较低,且其脑血管结构与人类相似,因此具有较高的可比性。
对于大鼠,其相对较大的体积能够更好地模拟人体情况,但操作相对较为复杂。
手术操作准备在进行全脑缺血再灌注动物模型的建立前,需要进行手术操作的准备工作。
首先需要进行动物的麻醉和固定,确保手术操作的安全性。
其次需要准备全脑缺血再灌注模型所需的仪器和设备,包括导管、监测仪器等。
在手术操作前,还需要对实验动物进行术前处理,包括禁食、定时给予抗生素等。
手术操作步骤1. 麻醉和固定:将实验动物置于麻醉箱内,使用合适的麻醉药物使其达到麻醉状态。
随后将其固定在手术台上,以确保手术操作的稳定性。
2. 手术部位暴露:在麻醉状态下,对实验动物进行皮肤消毒,随后进行手术部位的切开,暴露出颅骨表面。
3. 血管结扎:通过显微外科手术操作,对实验动物的颅骨表面的动脉和静脉进行结扎,以模拟全脑缺血的状态。
4. 缺血时间控制:根据实验设计的需要,控制全脑缺血的时间,一般为15至20分钟。
5. 再灌注:在全脑缺血一定时间后,通过解开血管结扎,使血液重新灌注至大脑。
6. 术后处理:对实验动物进行术后处理,包括给予液体、保暖、饲养等。
检测指标和评价方法建立全脑缺血再灌注模型后,需要对实验动物进行一系列的检测和评价,以评估其神经功能恢复情况。
常用的评价指标包括神经行为学评分、脑组织病理学检测、神经元凋亡检测、脑组织炎症因子检测等。
通过对这些指标的检测和评价,可以全面地评估全脑缺血再灌注模型的建立效果,为后续的实验研究提供可靠的依据。
线栓法制备大鼠脑缺血再灌注模型的方法研究马贤德1孙宏伟1 柴纪严1 赵金茹1(1 辽宁中医药大学,辽宁沈阳 110032;)摘要①目的建立一种比较系统,操作简单,成功率高的大鼠大脑中动脉缺血(MCAO)再灌注动物模型,达到只要读者根据本文所述的方法操作就能制作出MCAO再灌注模型的目的。
②方法成年健康雄性 SD大鼠40只,参照Longa法并适当改进建立MCAO模型20只,假手术组20只。
本文将详细叙述手术过程以及再灌注时间点的合理选择。
最后利用行为学测试、四氮唑(TTC)染色对模型成功与否进行判定。
③结论线栓法是一种操作简单的制备MCAO 再灌注动物模型的方法,并且此方法的再灌注效果较为明显。
关键词动物模型;脑缺血;再灌注;线栓法Establishment a model of rat ischemia-reperfusion injury with intraluminal sutureMa Xian-de1 Sun Hong-wei1 Chai Ji-yan1 Zhao Jin-ru1(1.Liaoning University of Chinese Traditional Medicine, Shenyang, 110032) Abstract: Objective To establish a model of rat ischemia-reperfusion injury, in terms of the model, the operation will be simple, and the achievement ratio will be high. Methods: 40 Male Sprague-Dawley ( SD ) rats were separated into two groups randomly: 20 were model of rat ischemia-reperfusion injury based on Longa method, and the other 20 were sham-operated group. The process of the operation and the selection of different time point following ischemic-reperfusion were discussed in the paper. What’s more , the model was appraised by behavioral test and Triphenyl Tetrazolium Choloride(TTC)Staining. Conclusion: The operation of intraluminal suture method is very simple for the establishment of model of rat ischemia-reperfusion, what’s more, the effect of reperfusion is very obvious.Key words: Animal Model, ischemia, reperfusion, intraluminal suture脑缺血再灌注动物模型是研究缺血性脑血管病的一条重要途径,因为脑缺血再灌注动物模型具有很好的重复性并能最大程度模拟人类缺血性卒中的发生。
全脑缺血动物模型制作步骤及方法1两动脉阻断法(occlusion of bilaterial carotis communis artery) (1)复制方法 SD大鼠,雌雄不拘,体重为250~300g。
经腹腔注射水合氯醛(350~400mg/kg体重的剂量)或戊丨巴丨比丨妥丨钠(50~60mg/kg体重的剂量)麻醉后,仰卧位固定,剃除颈部毛发,手术区域皮肤常规消毒。
颈前正中切口,分离双侧颈总动脉(carotis communis artery, OCA),夹闭双侧CCA,同时合并低血压以减少脑血流量,造成急性脑缺血。
由于啮齿动物(沙土鼠除外)脑血液循环有较人类丰富的侧支循环,仅结扎双侧CCA不足以明显降低脑血流量(CBF),因此结合降压药三丨甲噻吩、酚妥拉明或静脉放血等方法使动脉血压降低至50mmHg(6.7kPa),使CBF降低至正常的5%~15%。
放血方法:由颈静脉插管至右心房,供放血并连续记录EEG。
采用抽血的方法放血,失血达80mmHg(10.7kPa)时结扎双侧颈动脉,再继续抽血,使血压降至6.7kPa。
(2)模型特点此方法的优点是操作简便,用一次性手术即可完成,阻断可逆,可人为控制动物呼吸。
采用这种方法复制的模型,能进行缺血再灌流损伤的研究,模拟了临床上休克、心功能不全、脑血管严重狭窄或阻塞合并血液低灌流引起的脑循环障碍,造成不同程度的脑组织缺血损伤。
因而,对于探讨人类缺血性脑损伤的发病规律,评价抗脑缺血药物的疗效等有价值。
缺点是:①模型不能在清醒动物上复制,无法研究血管狭窄后行为学的变化。
②常因存在侧支循环而造成缺血不,部位不宜确定。
③脑缺血时限长,有时导致脑缺血后抽搐、癫癎等并发症的发生。
且由于低血压状态,可干扰其他器官、组织的供血和实验结果。
此方法除可用于大鼠外,也可用于兔、猫和猴的性脑缺血。
2四动脉阻断法(occlusion of four blood vessels)(1)复制方法 SD大鼠,雌雄不拘,体重为250~300g。
眼针对脑缺血再灌注损伤模型大鼠脑皮层组织IKK β/NF-κB 表达的影响赵丹玉王艳杰苗兰英曹阳王德山(辽宁中医药大学基础医学院,辽宁沈阳110847)〔摘要〕目的观察眼针对脑缺血再灌注损伤(CIRI )模型大鼠脑皮层组织中I κB 激酶β(IKK β)及核因子-κB (NF-κB )表达,探讨眼针治疗脑损伤的作用机制。
方法健康雄性SPF 级Wistar 雄性大鼠60只,随机分为正常组、假手术组、CIRI 模型组和眼针组。
CIRI 模型组和眼针组采用改良的线栓法建立大鼠大脑中动脉缺血(MACO )再灌注动物模型。
Western blot 检测大鼠缺血侧脑皮层IKK β、NF-κB 蛋白表达的变化。
结果与正常组及假手术组比较,模型组大鼠缺血侧脑皮层组织IKK β及NF-κB 蛋白水平均显示出高表达(P <0.01),眼针组同模型组相比,IKK β及NF-κB 蛋白表达则下调(P <0.01)。
结论眼针抑制脑皮层组织中IKK β及NF-κB 的表达,可能是眼针治疗CIRI 的主要作用机制之一。
〔关键词〕眼针;脑缺血再灌注;IKK β;NF-κB〔中图分类号〕R285.16〔文献标识码〕A〔文章编号〕1005-9202(2012)20-4419-03;doi :10.3969/j.issn.1005-9202.2012.20.030Influences of eye acupuncture on the expressions of IKK βand NF-κB in rat brain after acute cerebral ischemia /reperfusionZHAO Dan-Yu ,WANG Yan-Jie ,MIAO Lan-Ying ,et al .College of Basic Medical ,Liaoning University of Traditional Chinese Medicine ,Shenyang 110847,Liaoning ,China【Abstract 】Objective To evaluate the expressions of IKK βand NF-κB in cerebral ischemia-reperfusion injury (CIRI )in rat brain cortex and eye acupuncture therapy on it.Methods Healthy male Wistar rats were randomly divided into normal ,sham ,CIRI model andeye acupuncture groups.Model of middle cerebral artery occlusion (MACO )was established by improved suture method.Western blot meth-ods was performed to examine the protein expressions of IKK βand NF-κB in the ischemic brain cortex.Results Expressions of IKK βandNF-κB in CIRI model group were increased significantly (P <0.01)compared with those of normal group and sham group ,and which were decreased significantly (P <0.01)in eye acupuncture group.Conclusions Eye acupuncture therapy could reduce the expressions of IKK βand NF-κB in CIRI ,which may be one of mechanisms of eye acupuncture therapy for CIRI.【Key words 】Eye acupuncture ;Cerebral ischemia and reperfusion ;IKK β;NF-κB基金项目:国家重点基础研究发展计划(973计划)(No.2007CB512700);辽宁省教育厅课题(No.L2010349)通讯作者:王德山(1951-),男,硕士,教授,主要从事中医药对消化道神经内分泌影响机制的研究。
大鼠脑缺血模型
大脑中动脉阻塞 (middle cerebral artery occlusion,MCAO) 是目前最常用的局灶性脑缺血模型,MCAO 模型先阻断颈外动脉(ECA)及其分支,且阻断翼腭动脉(PPA),以切断颅外来源的侧副循环血流。
从ECA插入尼龙线,经颈内动脉(ICA)到大脑前动脉(ACA),机械性阻断大脑中动脉(MCA)发出处的血供来建立大脑中动脉缺血模型。
此模型可在无麻醉状态下拔出尼龙线,恢复血流,实现再灌注。
线栓法具有不开颅、效果肯定、可准确控制缺血及再灌注时间的优点,用于研究神经元对缺血的敏感性、耐受性,药物疗效观察以及再灌注损害和治疗时间窗较为理想,同时也具有对全身影响小、动物存活时间长的特点,适于慢性脑损伤的研究。
控制好易变因素,可避免实验结果的不稳定性。
1.实验动物
SPF级Wistar大鼠,健康,雄性,体重为250g-300g。
2.实验分组
实验分六组:正常对照组、模型组、阳性药组、受试药组三个剂量组,每组15只动物。
3.主要试剂
2,3,5-Triphenyltetrazolium chloride(sigma)
4.建模方法
1.15%水合氯醛麻醉大鼠,颈部备皮,消毒,插入肛温探头,保持体温在37±0.5℃。
2.颈部正中切口,暴露右侧颈总动脉,颈内动脉和颈外动脉。
使用6-0丝线在距离颈总动脉分叉4mm 处结扎颈外动脉远心端,在颈外动脉穿入另一根6-0丝线,在靠近颈总动脉分叉处打一个活结。
3.使用动脉夹夹闭颈总动脉。
在距离颈总动脉分叉处3mm处的颈外动脉上剪一个小口,将一根头端处理过的0.33mm直径的尼龙线从小口中插入,进入颈内动脉,并向内插入大脑中动脉,尼龙线的插入深度距离颈总动脉分叉处约16±1mm。
4.缺血后90min拔掉线栓,用6-0丝线结扎外动脉近心端,用3-0丝线缝合颈部伤口,活力碘消毒伤口,将大鼠放在加热垫上,待清醒后放入恒温抚养箱饲养。
5.术后24h,对小鼠进行神经功能评分,然后腹腔注射15%水合氯醛麻醉大鼠,取大脑进行TTC染色和病理染色
5.模型的评价
1.神经功能缺失体征评分
参考Longa及Bederson的5分制法在动物麻醉清醒后24h进行评分,分值越高,说明动物行为障碍越严重。
0分:无神经损伤症状
1分:不能完全伸展对侧前爪
2分:向对侧转圈
3分:向对侧倾倒
4分:不能自发行走,意识丧失
2.TTC染色
麻醉大鼠后,取大鼠脑组织,放入-20℃冰箱冷冻30min。
用PBS配置1% TTC(W/V),37℃水浴至TTC溶解,将冻好的脑组织切片,置于10ml TTC溶液中,37℃恒温孵育10min。
不时翻动脑片,使组织均匀染色。
正常脑组织染色后呈鲜红色,而梗死区呈苍白色。
3.病理学评价
取脑后用4%多聚甲醛溶液固定,蔗糖溶液脱水后,经OCT包埋做冰冻切片,切片10um,做尼氏染色,可做梗死面积的评价。
尼氏体(Nissl body):是胞质内的一种嗜碱性物质,广泛见于各种神经元,但其形状大小和数量则各有差异。
在生理情况下,尼氏体大而数量多,反映神经细胞合成蛋白质的功能较强,在神经元受损时,尼氏体的数量可减少甚至消失。
图1. TTC染色图(白色表示梗死组织,红色表示正常组织)
武汉云克隆诊断试剂研究所。