轮胎之振动与噪 声
- 格式:docx
- 大小:54.57 KB
- 文档页数:17
轮胎空腔共振噪声与力传递率的关系概述说明以及解释1. 引言1.1 概述轮胎噪声是车辆运行过程中产生的一种常见噪声源,对车辆驾乘舒适性和城市环境质量有着显著的影响。
近年来,研究人员对于轮胎空腔共振噪声与力传递率之间的关系进行了广泛的探索。
轮胎空腔共振噪声是指在车辆行驶过程中,当空气或气体在轮胎内部空腔不断地振动时产生的特定频率上的噪音。
力传递率被定义为从路面到车辆底盘的力量传递效率,在诸多因素中起到了至关重要的作用。
本文旨在阐述轮胎空腔共振噪声与力传递率之间的关系,并通过实验研究和数据分析来验证这一关系。
1.2 文章结构本文主要分为五个部分进行讨论。
首先,在引言部分我们将对研究内容进行概述说明以及解释。
接下来,在第二部分中,将介绍轮胎空腔共振噪声的基本概念与特点,包括其定义、产生原因与机制以及影响因素。
在第三部分中,将深入探讨力传递率对轮胎空腔共振噪声的影响机制,包括其定义和计算方法,以及与轮胎空腔共振噪声之间的关系解析。
第四部分将介绍实验研究的设计、装置介绍,以及数据收集和处理方法描述,并展示和分析实验结果。
最后,在第五部分中,我们将总结研究结果,并对未来研究提出展望。
1.3 目的本文旨在揭示轮胎空腔共振噪声与力传递率之间的关系,并提供一定程度上的理论支持和数据依据。
通过深入研究这种关系,我们可以更好地了解和控制轮胎噪声问题,为减少车辆噪音、提高驾乘舒适性做出贡献。
同时,本文也为进一步开展相关领域的研究提供了参考和指导意义。
2. 轮胎空腔共振噪声的基本概念与特点:2.1 空腔共振噪声定义:轮胎空腔共振噪声是指在车辆行驶过程中,由于轮胎内部的空气囊体或者其他容积达到一定数值而形成的共振现象产生的噪音。
这种噪音主要由轮胎空腔内部的压缩、减震等动力学因素引起,是车辆运动的必然结果。
2.2 轮胎空腔共振噪声的产生原因与机制:轮胎空腔共振噪声主要是由以下几个方面原因和机制引起的:- 空气囊体弹性变形:当车辆通过一些不平坦路面或者应对急刹车等情况时,轮胎内部的液体和气体受力而发生变形,造成空气囊体共振,并且在其自然频率附近产生噪音。
轮胎性能测试方法概况鉴别一套轮胎的性能主要从以下几个方面来考量,轮胎抓地性、舒适性与胎噪滚动阻力以及耐久性。
1、抓地力的测试方法轮胎最基本的功能就是为车辆提供抓地力。
通常对轮胎抓地力的测试分为“实验室分析测试”和"车辆道路测试"两个阶段。
实验室分析测试中需要用到转鼓、专业试验车辆等特殊设备,属于实验室阶段的模拟道路测试。
这种测试对轮胎的运行环境和状态采取精确的控制,试验中能够获得接近理想状态下的数据。
这个阶段的测试需要相关实验设备的投入以及复杂的计算程序。
1.1纵向抓地力测试测试轮胎纵向抓地力的方法主要是通过测量汽车的制动距离来计算出轮胎与路面的滚动摩擦系数,由这个系数来评价轮胎的纵向抓地力。
如图表所示测试人员在特定路面条件下以设定速度Vo匀速行驶然后进行最强力制动。
使汽车速度从V;降至V2(装备ABS系统的汽车V2的速度不得小于1Okm/h,因为在此速度下ABS工作状态有所变化会影响测量结果)。
然后由测试系统以口五轮仪、VBOX等)测得从V1至V2的制动距离d。
V1和V2是测试过程中已经确定的定量d则通过仪器测得接下来就可以通过公式来计算以林值的大小则可用来衡量纵向抓地力。
简言之,d作为整个计算过程中的唯一变量,是改变μ值直接也是唯一的数据。
所以如果媒体或者一般测试机构在做轮胎比较测试的时候只需测得V,至V2的制动距离d就可以直接进行比较和评价了。
1.2横向抓地力测试产测试横向抓地力有三种模式:湿滑圆形场地测试积水弯道测试以及综合场地道路测试。
①·湿滑圆形场地测试首牛在附着1~2mm水深的圆形湿滑场地测试需要以一定的圆形半径在横向抓地力的极限状态下行驶数圈。
也就是在车辆即将出现侧滑的情况下绕圈行驶。
测量车辆绕行一周的时间,同时将行驶半径进行计算可以得出轮胎的极限横向加速度。
媒体或一般测试机构通过汽车在极限状态下的绕圈时间,就能对几套轮胎的横向抓地力进行评估。
·②积水弯道测试积水弯道测试则是在圆形场地中设置一道20m圆弧长7mm水深的积水带。
车辆噪声与振动控制研究在现代社会,车辆已经成为人们生活中不可或缺的一部分。
然而,随着车辆数量的不断增加以及人们对驾驶和乘坐舒适性要求的提高,车辆噪声与振动问题日益受到关注。
车辆的噪声和振动不仅会影响车内人员的舒适性和健康,还可能对车辆的性能和耐久性产生不利影响。
因此,对车辆噪声与振动的控制研究具有重要的现实意义。
车辆噪声的来源多种多样,主要包括发动机噪声、进排气噪声、轮胎噪声、风噪以及传动系统噪声等。
发动机作为车辆的动力源,其运转过程中产生的燃烧噪声、机械噪声和进排气噪声是车辆噪声的主要组成部分。
进排气系统中的气流脉动和压力波动会产生强烈的噪声。
轮胎与路面的摩擦和冲击会产生轮胎噪声,特别是在高速行驶时,轮胎噪声尤为明显。
车辆在行驶过程中,空气与车身表面的摩擦和气流分离会产生风噪。
传动系统中的齿轮啮合、轴系转动等也会产生噪声。
车辆振动主要来源于发动机的往复运动、路面不平度引起的激励以及车辆自身的不平衡等。
发动机的运转会产生周期性的激振力,通过悬置系统传递到车身。
路面的凹凸不平会使车轮产生垂直方向的振动,进而传递到车身和座椅。
车辆在制造和装配过程中的不平衡也会导致振动的产生。
车辆噪声与振动的控制方法可以从多个方面入手。
首先是源头控制,即通过优化设计来降低噪声和振动的产生。
例如,在发动机设计方面,可以采用先进的燃烧技术、优化气门正时和升程、改进缸体结构等措施来降低燃烧噪声和机械噪声。
对于进排气系统,可以采用合理的管道设计、消声器和滤清器等降低气流噪声。
在轮胎设计上,选择合适的花纹和材料可以减少轮胎噪声。
优化车身的外形和结构,降低风阻,能够有效控制风噪。
在传播路径控制方面,可以采用隔振和吸声、隔声等技术。
隔振是通过安装弹性元件,如橡胶衬套、液压悬置等,来减少振动的传递。
吸声材料可以吸收车内的声音能量,降低噪声水平。
隔声则是通过设置隔音屏障,阻止噪声的传播。
例如,在发动机舱和车内使用隔音棉、在底盘安装隔音板等。
轮胎噪声影响因素及低噪声轮胎设计方法以轮胎噪声影响因素及低噪声轮胎设计方法为标题,本文将探讨轮胎噪声的影响因素,并介绍一些低噪声轮胎的设计方法。
一、轮胎噪声的影响因素1. 轮胎花纹设计:轮胎的花纹设计会直接影响噪声的产生。
一般来说,花纹越粗糙,噪声也会相应增加。
因此,低噪声轮胎通常采用较为平滑的花纹设计,以减少轮胎与地面的摩擦声。
2. 轮胎材料:轮胎的材料也是影响噪声的重要因素之一。
硬度较高的轮胎材料会导致更大的振动和噪声。
因此,低噪声轮胎通常采用较为柔软的材料,以减少振动和噪声的产生。
3. 轮胎结构:轮胎的结构设计也会对噪声产生影响。
例如,轮胎的胎内结构、胎侧设计等都会对噪声产生一定的影响。
低噪声轮胎通常采用一些降噪措施,如增加胎内隔音层、优化胎侧结构等,以降低噪声的产生。
4. 轮胎的使用状态:轮胎的使用状态也会对噪声产生影响。
例如,轮胎的磨损程度、气压的调整等都会对噪声产生一定的影响。
低噪声轮胎需要经过精确的设计和合理的使用来确保其低噪声的效果。
二、低噪声轮胎的设计方法1. 优化花纹设计:低噪声轮胎的花纹设计应尽量减少花纹块之间的共振效应和空气流动噪声。
通过减少花纹块的尺寸和间距,可以降低轮胎与地面的摩擦声。
此外,还可以采用不规则花纹、交错花纹等设计方式,进一步减少噪声的产生。
2. 采用降噪材料:在轮胎的内部和侧壁中加入降噪材料,如隔音材料、吸音材料等,可以有效降低振动和噪声的产生。
这些材料可以吸收振动能量,减少噪声的传播。
3. 优化轮胎结构:通过优化轮胎的胎内结构和胎侧设计,可以降低轮胎的振动和噪声。
例如,增加胎内隔音层的厚度,可以减少振动的传递;优化胎侧结构,可以减少胎侧的共振效应。
4. 合理使用和保养轮胎:合理调整轮胎的气压,保持轮胎的良好状态,可以减少噪声的产生。
过高或过低的气压都会增加轮胎的振动和噪声。
此外,定期检查轮胎的磨损情况,及时更换磨损严重的轮胎,也是降低噪声的有效方法。
总结:轮胎噪声是车辆行驶中常见的噪声源之一,其影响因素包括花纹设计、材料、结构和使用状态等。