2.2有理数的减法(2)课件ppt(2013年浙教版七年级上)
- 格式:ppt
- 大小:746.50 KB
- 文档页数:17
第一、二章:有理数及其运算知识要求:1、有具体情境中,理解有理数及其运算的意义;2、能用数轴上的点表示有理数,会比较有理数的大小。
3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值。
4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算律解决简单的实际问题。
知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。
知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。
考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。
知识点:一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。
2、有理数的分类:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 3、数轴数轴有三要素:原点、正方向、单位长度。
画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。
4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等。
5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)两个负数比较大小,绝对值大的反而小。