移动荷载作用下饱和沥青路面动力响应三维有限元分析
- 格式:pdf
- 大小:843.21 KB
- 文档页数:6
动、静荷载下不同沥青路面结构力学响应分析作者:何基雷罗资清傅松来源:《西部交通科技》2024年第03期作者简介:何基雷(1988—),工程师,主要从事道路工程、路面养护方面的研究工作。
为探究动、静荷载下沥青路面结构的应力响应,获取不同影响因素对路面的实际作用效果,文章利用ABAQUS软件构建了沥青路面结构应力响应模型,分析荷载形式、车辆轴载、行驶速度等因素对力学响应的影响。
研究表明:路面结构的应力应变与车辆轴载存在着一定的线性关系;相较于静荷载,动荷载在相同轴载下所产生的应力应变值较低,且存在最佳行驶速度使荷载对路面产生的力学响应最小。
由此证明,在道路使用时,控制车辆的行驶速度及车辆超载可减缓路面纵向位移及路表弯沉的产生,延长道路的使用寿命。
沥青路面结构;移动荷载;力学响应;使用寿命;应力应变U416.217A1906850引言随着我国机动车保有量及道路交通量的逐年上升,道路重载及超载现象的持续增长,使得已建道路在使用过程中暴露出使用寿命不足[1-2],裂缝、坑槽、松散、剥落、车辙等病害出现频率较高的现象。
道路养护时运营成本增加,而且还影响了交通事业的发展[3]。
因此,为更好地了解路面结构在不同因素下的力学响应,需探究不同影响因素对路面的力学响应。
国内外专家学者针对沥青路面的应力响应从多方面展开了研究。
Assogba、Hu、李江等[4-6]通过建立三维有限元模型,研究了车辆速度、车辆超载对沥青路面的影响,证明较低车速会引起结构受载时间增加,扩大了载荷的冲击效应。
严战友、Ogoubi等[7-12]通过建立车辆模型和有限元道路模型,证明路面结构的动态应变应力峰值受分析点位、行車速度、沥青层厚度、车轴荷载、制动工况和道路粗糙度等因素的影响。
Liu[13]通过提出了一种将全尺度加速路面试验(accelerated pavement test,APT)、室内试验和有限元(finite element,FE)模拟相结合的方法,分析了车轮范围、温度及轴重对于沥青路面的动态响应。
移动荷载作用下路面结构的动力响应摘要现实情况中车辆总是以一定速度行驶在路面上的,因此研究沥青路面在车辆移动荷载作用下的动态响应是掌握路面结构行为的必要条件。
建立刚性基层沥青路面的三维有限元模型,分析移动荷载作用下路面结构的动力响应。
分析得出了荷载正下方不同深度处节点竖向剪应力he各结构层底弯拉应力的时间历程曲线。
结果表明,在移动荷载作用下,路面结构的动力响应具有明显的波动性质,与静荷载作用有明显区别。
绪论目前国内现有的道路设计方法通常将车辆荷载简化为双圆均布荷载静荷载,以双轮单轴BZZ-100(100kN)为标准轴载,以设计弯沉值作为路面整体刚度的控制指标,对沥青混凝土面层和基层、底基层进行层底弯拉应力的验算[1],经过大量的使用实验证明,现有规范设计模型具有很大的局限性。
这是因为现实中车辆都是以一定的速度行驶在路面上,属于是移动荷载,路面结构在移动荷载作用下的力学响应与静力响应明显不同。
因此研究移动荷载作用下路面结构的动力响应更具有实际意义。
大量国内外学者对弹性层状体系在动荷载作用下的力学响应作了理论研究。
Siddharthan[2][3]结合弹性力学原理,建立层状体系动力学模型,研究了材料粘弹性对路面结构动力响应的影响。
Lv[4]采用Green函数、Laplace 积分变换和Fourier变换等方法求解出Kevlin地基上的无限大板在移动荷载作用下动态响应的数值求解。
钟阳、孙林[5]等利用Laplace-Hankel联合积分变换和传递矩阵相结合的方法推导出了轴对称半空间层状弹性体系动态反应的理论解,为进行路面结构的动态反应分析和路面材料参数的动态反算提供了一种行之有效的方法。
董泽蛟、曹丽萍[6]等采用ADINA建立了移动荷载作用下多层线弹性的三维沥青路面有限元分析模型,模拟分析了移动荷载作用下路面结构的三向应变动力响应。
鉴于理论解都涉及到较复杂的积分变换和无穷积分,最终只能采用数值方法求解。
移动荷载作用下渗流-应力耦合沥青路面动力响应司春棣;陈恩利;杨绍普;王扬;郁圣维【期刊名称】《振动与冲击》【年(卷),期】2014(000)015【摘要】水与荷载的耦合作用是沥青路面早期破坏的主要原因之一。
采用有限元数值分析方法,在弹塑性假设下利用 ABAQUS 软件,建立降雨入渗条件下的渗流-应力耦合沥青路面三维有限元模型,给出了材料参数、边界条件和荷载作用形式,实现了均布竖向移动荷载作用下的数值模拟,得到了耦合作用下沥青路面三向应力、竖向沉降、孔隙水压力等的空间分布情况,并与无水状态下应力场模型进行了对比分析,结果表明,渗流-应力耦合作用下,沥青路面各结构层内三向应力动力响应特性较无水状态时不同,使得沥青路面受力状态不利从而更易产生结构性损坏。
【总页数】6页(P92-97)【作者】司春棣;陈恩利;杨绍普;王扬;郁圣维【作者单位】石家庄铁道大学交通环境与安全工程研究所,石家庄 050043; 河北省交通安全与控制重点实验室,石家庄 050043;石家庄铁道大学交通环境与安全工程研究所,石家庄 050043;石家庄铁道大学交通环境与安全工程研究所,石家庄 050043;石家庄铁道大学交通环境与安全工程研究所,石家庄 050043;石家庄铁道大学交通环境与安全工程研究所,石家庄 050043【正文语种】中文【中图分类】U416.2【相关文献】1.非均布移动荷载作用下黏弹性沥青路面动力响应分析 [J], 黄志义;陈雅雯;颜可珍2.移动荷载作用下结构参数对沥青路面的动力响应分析 [J], 王强;刘运丹;李志勇3.移动非均布荷载作用下的沥青路面动力响应分析 [J], 杨春风;王雷4.多轴移动荷载作用下长大上坡沥青路面动力响应研究 [J], 张扬;韩延波;韩蕊5.移动非均布荷载作用下的沥青路面动力响应分析 [J], 翟忠伟因版权原因,仅展示原文概要,查看原文内容请购买。
FWD荷载作用下沥青路面动力响应有限元分析论文
本文旨在探讨FWD(falling weight deflectometer)荷载作用下
沥青路面的动力响应情况,通过有限元分析的方式,分析其结构响应特性以及受力行为。
利用实验数据优化有限元模型,并将其应用于汽车对沥青路面进行路面质量评定。
针对FWD荷载作用下沥青路面,开展有限元分析。
根据有限
元理论,建立一个均匀的有限元模型,并运用经典的梁单元进行模拟,如Young-Von Karman模型。
同时,根据实验数据,
优化模型,使其最大程度反映真实情况。
此外,考虑地面材料的拉伸模量、剪切模量和泊松比,以及基础土的应力应变。
最后,基于不同的FWD荷载作用,计算路面的响应力,以及每
一段路面的形变,其中包括剪切变形、水平和纵向变形等。
结果表明,FWD荷载作用下沥青路面的动力响应随荷载的增
大而增大,荷载强度与响应之间呈线性关系,最终得出路面承载能力的最佳估计值。
此外,FWD荷载作用下沥青路面的形
变情况也随着荷载的增大而增大,且与不同部位的位移及形变有关。
经过有限元分析的研究,我们不仅可以更好地了解沥青路面的动力响应行为,而且还可以将最优预测值应用于汽车对路面进行质量评估中。
然而,路面在实际情况下还存在一些复杂情况,也需要进一步的研究和实验支持,更好地预测路面的响应性能。
总而言之,本文通过有限元分析的方式,研究FWD荷载作用
下沥青路面的动力响应现象,并优化有限元模型,更好地预测沥青路面的响应性能。