第三章 算符之间的对易关系
- 格式:ppt
- 大小:832.50 KB
- 文档页数:31
§3.6算符的对易 两力学量同时有确定值的条件 不确定关系 一. 算符的对易关系对易关系(对易式)为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号:[]A B B A B A -=, 对易式 (4-5) []A B B A B A+=+, 反对易式 (4-7)若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。
若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。
若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。
1) ˆˆˆˆ[,][,]AB B A =- (4-6a) 2) ˆˆˆˆˆˆˆ[,][,][,]AB C A B A C +=+ (4-6b) 3) ˆˆˆˆˆˆˆˆˆ[,][,][,]A BC B A C A B C =+ ,ˆˆˆˆˆˆˆˆˆ[,][,][,]AB C A B C A C B =+,]ˆ,ˆ[]ˆ,ˆ[B A k B k A = (4-6c) 4) [][][]B C A C B A C B A,,,+= (4-6d)5)ˆˆˆˆˆˆˆˆˆ[,[,]][,[,]][,[,]]0A B C B C A C A B ++=——称为 Jacobi (雅克比恒等式)。
(4-6e)1.坐标算符和动量算符的对易关系算符x ,和ˆx pi x∂=-∂ 不对易 证明:(1) ˆ()x xpx i x ψψ∂=-∂ i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂ i i x x ψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= (3.7.1) 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 (3.7.2) 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -= , ˆˆz z zpp z i -= (3.7.3) 但是坐标算符与其非共轭动量对易,各动量之间相互对易。
第三章 算符和力学量算符3.1 算符概述设某种运算把函数u 变为函数v ,用算符表示为:ˆFuv = (3.1-1) ˆF 称为算符。
u 与v 中的变量可能相同,也可能不同。
例如,11du v dx=,22xu v =3v =,(,)x t ϕ∞-∞,(,)x i p x hx edx C p t -=,则ddx,x dx ∞-∞⎰,x ip x he-⋅都是算符。
1.算符的一般运算(1)算符的相等:对于任意函数u ,若ˆˆFuGu =,则ˆˆG F =。
(2)算符的相加:对于任意函数u ,若ˆˆˆFuGu Mu +=,则ˆˆˆM F G =+。
算符的相加满足交换律。
(3)算符的相乘:对于任意函数u ,若ˆˆˆFFu Mu =,则ˆˆˆM GF =。
算符的相乘一般不满足交换律。
如果ˆˆˆˆFGGF =,则称ˆF 与ˆG 对易。
2.几种特殊算符 (1)单位算符对于任意涵数u ,若ˆIu=u ,则称ˆI 为单位算符。
ˆI 与1是等价的。
(2)线性算符对于任意函数u 与v ,若**1212ˆˆˆ()F C u C v C Fu C Fv +=+,则称ˆF 为反线性算符。
(3)逆算符对于任意函数u ,若ˆˆˆˆFG u G F u u ==则称ˆF 与ˆG 互为逆算符。
即1ˆˆG F -=,111ˆˆˆˆˆˆ,1FG FF F F ---===。
并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。
对于非齐次线性微分方程:ˆ()()Fux af x =,其中ˆF 为ddx与函数构成的线性算符,a 为常数。
其解u 可表示为对应齐次方程的通解u 。
与非齐次方程的特解υ之和,即0u u v =+。
因0ˆ0Fu =,所以不存在1ˆF -使100ˆˆF Fu u -=。
一般说来,在特解υ中应允许含有对应齐次方程的通解成分,但如果当a=0时,υ=0,则υ中将不含对应齐次方程的通解成分,这时存在1ˆF-使11ˆˆˆˆFFv FF v v --==,从而由ˆFvaf =得:1ˆF af υ-=。
算符对易关系李代数「算符、对易关系与李代数」序在数学和物理学领域中,算符、对易关系和李代数是非常重要的概念。
它们在量子力学、场论、几何学等诸多领域都有广泛的应用。
本文将从简单到复杂,由浅入深地介绍这些概念,帮助读者更全面、深刻地理解与应用它们。
本文将首先介绍算符的基本概念与性质,然后探讨对易关系及其在量子力学中的应用,最后引入李代数与其在几何学与场论中的重要性。
一、算符1.1 算符的定义与基本性质算符是指对一个数学对象进行运算或操作的符号。
在数学中,我们常常用算符来表示数学运算,如加法算符、乘法算符等。
在物理学中,算符用来描述物理量的演化和性质。
我们常常用算符来表示位置、动量、自旋等物理量。
算符具有许多重要性质。
其中最基本的性质是线性性,即对于任意常数a和b,以及两个算符A和B,有以下等式成立:(1) A(a|ψ⟩+b|φ⟩) = aA|ψ⟩+bA|φ⟩(2) (aA+bB)|ψ⟩= aA|ψ⟩+bB|ψ⟩其中|ψ⟩和|φ⟩表示任意的态矢量,例如在量子力学中可以是波函数。
算符还具有封闭性、可逆性等重要性质。
封闭性指的是对于同一种类型的算符,其运算结果仍然是同一类型的算符。
例如两个位置算符的运算结果仍然是一个位置算符。
可逆性指的是对于某个算符,存在其逆算符,使得两者相乘等于单位算符。
1.2 算符的代数结构算符可以构成各种代数结构,如线性空间、李代数等。
其中最基本的代数结构是线性空间。
线性空间中的元素可以进行加法和数乘运算。
定义一个算符的线性空间需要满足以下条件:- 封闭性:对于两个算符A和B,其和A+B仍然是一个算符。
- 可加性:对于任意的两个常数a和b,以及两个算符A和B,满足a(A+B) = aA+aB及(A+B)b = aB+bB。
- 结合性:对于任意的三个算符A、B和C,满足(A+B)+C =A+(B+C)。
- 存在零元素:存在一个算符0,对于任意的算符A,有A+0 = A和0+A = A成立。
第三章 算符和力学量算符3.1 算符概述设某种运算把函数u 变为函数v ,用算符表示为:ˆFuv =(3.1-1)ˆF 称为算符。
u与v 中的变量可能相同,也可能不同。
例如,11du v dx =,22xu v =3v =,(,)x t ϕ∞-∞,(,)x i p x hx edx C p t -=,则ddx dx ∞-∞⎰,x ip x he-⋅都是算符。
1.算符的一般运算(1)算符的相等:对于任意函数u ,若ˆˆFuGu =,则ˆˆG F =。
(2)算符的相加:对于任意函数u,若ˆˆˆFuGu Mu +=,则ˆˆˆM F G =+。
算符的相加满足交换律。
(3)算符的相乘:对于任意函数u ,若ˆˆˆFFu Mu =,则ˆˆˆM GF =。
算符的相乘一般不满足交换律。
如果ˆˆˆˆFGGF =,则称ˆF 与ˆG 对易。
2.几种特殊算符 (1)单位算符对于任意涵数u,若ˆIu=u ,则称ˆI 为单位算符。
ˆI 与1是等价的。
(2)线性算符对于任意函数u与v ,若**1212ˆˆˆ()F C u C v C Fu C Fv +=+,则称ˆF 为反线性算符。
(3)逆算符对于任意函数u ,若ˆˆˆˆFGu GFu u ==则称ˆF 与ˆG 互为逆算符。
即1ˆˆGF -=,111ˆˆˆˆˆˆ,1FG FF F F ---===。
并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。
对于非齐次线性微分方程:ˆ()()Fu x af x =,其中ˆF为ddx与函数构成的线性算符,a 为常数。
其解u 可表示为对应齐次方程的通解u 。
与非齐次方程的特解υ之和,即0u u v =+。
因0ˆ0Fu =,所以不存在1ˆF -使100ˆˆF Fu u -=。
一般说来,在特解υ中应允许含有对应齐次方程的通解成分,但如果当a=0时,υ=0,则υ中将不含对应齐次方程的通解成分,这时存在1ˆF-使11ˆˆˆˆFFv FF v v --==,从而由ˆFvaf =得:1ˆF af υ-=。