算符的对易关系
- 格式:ppt
- 大小:1.74 MB
- 文档页数:23
§3.6算符的对易 两力学量同时有确定值的条件 不确定关系 一. 算符的对易关系对易关系(对易式)为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号:[]A B B A B A -=, 对易式 (4-5) []A B B A B A+=+, 反对易式 (4-7)若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。
若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。
若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。
1) ˆˆˆˆ[,][,]AB B A =- (4-6a) 2) ˆˆˆˆˆˆˆ[,][,][,]AB C A B A C +=+ (4-6b) 3) ˆˆˆˆˆˆˆˆˆ[,][,][,]A BC B A C A B C =+ ,ˆˆˆˆˆˆˆˆˆ[,][,][,]AB C A B C A C B =+,]ˆ,ˆ[]ˆ,ˆ[B A k B k A = (4-6c) 4) [][][]B C A C B A C B A,,,+= (4-6d)5)ˆˆˆˆˆˆˆˆˆ[,[,]][,[,]][,[,]]0A B C B C A C A B ++=——称为 Jacobi (雅克比恒等式)。
(4-6e)1.坐标算符和动量算符的对易关系算符x ,和ˆx pi x∂=-∂ 不对易 证明:(1) ˆ()x xpx i x ψψ∂=-∂ i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂ i i x x ψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= (3.7.1) 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 (3.7.2) 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -= , ˆˆz z zpp z i -= (3.7.3) 但是坐标算符与其非共轭动量对易,各动量之间相互对易。
动量算符和角动量算符的对易关系
动量算符和角动量算符的对易关系是量子力学中一个重要的基本原理。
在物理学中,对易关系是指两个算符A和B,它们的对易子是0,即[A,B]=AB-BA=0。
如果两个算符A和B的对易子不等于0,那么它们是不对易的。
在量子力学中,动量算符和角动量算符的对易关系是:
[Px, Lz]=iħYx
[Py, Lz]=iħYy
[Pz, Lz]=iħYz
其中Px、Py和Pz分别表示沿着X、Y和Z方向的动量算符,Lz表示沿着Z方向的角动量算符,ħ是普朗克常数除以2π,而Yx、Yy和Yz 表示一个轨道角动量算符在X、Y和Z方向上的本征值,它们称为
“本征矢”。
这个对易关系告诉我们,在量子力学中,动量算符和角动量算符是互
相影响的。
如果我们测量一个粒子的动量,就会影响其角动量,并且
在测量其角动量时,会影响其动量。
这个关系是量子力学的基本原理
之一,它描述了物理世界的量子性质。
总的来说,动量算符和角动量算符的对易关系是量子力学中一个非常
重要的基本原理,它不仅仅涉及到动量和角动量的测量,还涉及到粒
子的本质结构和量子性质。
因此,对于每一个学习量子力学的人来说,理解动量算符和角动量算符的对易关系是非常必要的。
所有算符的对易关系总结法是一种解决问题的方法,它以某种系统的方式搜集、推理和分类信息,并得出问题的答案。
算法涉及到许多不同的数学概念和表达式,其中包括算符,算符可以用来表示不同的运算功能,如加减法,乘法和除法。
在数学中,算符表示两个数字之间的运算,有时也称为算术算符。
算符也可以用来表示其他种类的运算,比如逻辑算符,如and、or和not。
算符可以用来表示操作的类型或者关系,例如加法、减法、乘法和除法;也可以用来表示比较关系,如大于、小于、等于等。
算符可以用来构建算式,这些算式可以表示不同的数学操作,也可以用来编写程序。
本文将总结所有的算符的对易关系,并讨论它们的用途和实现方法。
1.减法算符减法是最常用的算法之一,它用来表示加法或减法运算。
加法算符的对易关系是加法的逆元,即可以把加法的结果减去两个数,得到原来的结果。
因此,如果有一个数a,它可以用另外一个数b表示为a+b,那么它的逆元b可以表示为a-b。
2. 乘法算符乘法算符用来表示乘法运算,它的对易关系是除法,即可以把乘法的结果除以两个数,得到原来的结果。
因此,如果有一个数a,它可以用另外一个数b表示为a*b,那么它的倒数b可以表示为a/b。
3.法算符法算符用来表示除法运算,它的对易关系是乘法,即可以把除法的结果乘以两个数,得到原来的结果。
因此,如果有一个数a,它可以用另外一个数b表示为a/b,那么它的乘法结果b可以表示为a*b。
4.较算符较算符用来表示不同的比较关系,如大于、小于、等于等。
它们的对易关系是反转,即可以把一个比较关系反转,得到另一个比较关系。
例如,如果有一个关系a>b,那么它的反转关系就是b>a。
5.辑算符辑算符用来表示不同的逻辑关系,如and、or和not。
这些算符的对易关系是反转,即如果一个算符表达的逻辑是真,那么它的反转算符表达的就是假,反之亦然。
例如,如果有一个逻辑表达式a and b,那么它的反转表达式就是not (a and b)。
量子力学中的对易关系量子力学是研究微观粒子行为的重要分支。
在量子力学中,有一个重要的概念就是对易关系。
对易关系是描述两个算符之间的联系的数学表达式,它在量子力学的许多方面起到了关键的作用。
本文将探讨量子力学中的对易关系,并讨论其在实际应用中的意义。
一、对易关系的定义与性质量子力学中,对易关系是通过算符的对易子来定义的。
算符是在量子力学中用来描述测量物理量的数学对象。
对易关系的定义如下:[A, B] = AB - BA其中,A和B分别是两个算符,[A, B]表示A和B的对易子。
对易关系可以有两种情况:对易(commutative)和反对易(anti-commutative)。
如果[A, B] = 0,则称A和B是对易的;如果[A, B] = AB - BA ≠ 0,则称A和B是反对易的。
对易关系具有以下性质:1. 对易关系是线性的。
即对于任意的A, B, C和任意的复数a, b,有[aA + bB, C] = a[A, C] + b[B, C]。
2. 对易关系满足雅可比恒等式。
即对于任意的A, B和C,有[A, [B, C]] + [B, [C,A]] + [C, [A, B]] = 0。
这个恒等式是对易关系的一个重要性质,它保证了对易关系的传递性。
3. 如果A和B是对易的,那么A和B的任何函数也是对易的。
即对于任意的函数f(x)和 g(x),如果[A, B] = 0,则有[f(A), g(B)] = 0。
这个性质说明了对易关系的传递性在函数层面上的推广。
二、对易关系的意义与应用对易关系在量子力学中有着重要的意义和广泛的应用。
下面我们将讨论几个关于对易关系的典型例子。
1. 不确定关系:对易关系在不确定性原理中起到了重要作用。
根据不确定性原理,对于两个物理量A和B,他们的不确定度满足一个基本的限制,即ΔAΔB ≥ħ/2。
这个关系可以通过对易关系得到推导。
考虑到对易关系[A, B] = AB - BA = cħ(其中c是一个常数),我们可以推导出不确定关系的一种形式。