平面问题有限单元法《弹性力学》
- 格式:ppt
- 大小:2.48 MB
- 文档页数:109
《弹性力学问题的有限单元法》弹性力学问题的有限单元法(FiniteElementMethod,简称FEM)是一种经典的多学科跨领域的计算方法,它用于估算连续体结构中非线性材料力学性能,如强度、刚度和破坏。
有限单元法已成为工程和材料科学中最重要的数值计算方法,可用于解决各种复杂多学科优化和设计问题。
有限单元法的基本思想是把复杂的连续体结构划分成许多小的、较容易处理的有限元素,而不是像一般的解析方法那样求取整体的解析解。
基于有限元素重要的性质,即小元素经过一系列的连接后就可以构成整个结构的模型,有限单元法的本质是数值分析,也就是根据模型的物理知识,选择有效的数值化方法,用数值计算的方法求解所要求的结果,从而使这些数值计算结果符合实际结构物理知识。
有限单元法是一种有效计算弹性力学问题的方法,它可以用来求解任意形状的结构问题,无论是有边界条件还是无边界条件,无论是线性或者非线性的形状变化,有限单元法都能够有效地应用。
其优势在于以节省计算时间和消耗的成本,在特殊的材料条件下,它可以比较快速地获得弹性力学问题的有效精确解。
其精度依赖于计算模型元素的类型、形状和几何尺寸等,因此通常需要调节元素的类型、形状和尺寸,以满足计算需要。
在计算机技术的发展下,有限单元法的计算能力越来越强大,可以对更多的复杂问题进行分析,可以更有效地解决工程设计中的实际问题。
由于计算机可以模拟各种变形和应力的变化,因此有限单元法可以为工程设计和材料研究提供更可靠的结果。
有限单元法在工程应用中的实际作用是显而易见的。
它不仅可以用来计算弹性结构中的材料力学特性,还可以分析复杂结构的动态响应。
此外,有限单元法还可以用来计算弹性结构中的表面张力、刚度,以及各种材料的裂缝扩展。
通过有限单元法的应用,可以获得有效的数值结果,从而提高设计效果和工程安全性。
因此,有限单元法对于材料科学和工程设计都具有重要价值,今后还将发挥更多的功能。
有限单元法是多学科跨学科的计算方法,它可以用来有效地分析复杂形状结构的力学特性,计算出精确的结果,从而提高工程设计的效果和安全性。
2.3 平面问题有限元程序设计一、程序设计方法与结构分析程序的特点1.程序设计方法论简述借助计算机来完成某项工作,通常都要先编写相应的计算机程序,或叫程序设计。
完成一个结构分析或结构CAD系统也必然要经过程序设计才能实现。
程序设计要使用专门的程序语言。
我国结构程序设计中所采用的语言,在60年代和70年代初以ALGOL语言为主。
此后逐步广泛使用的主要是BASIC语言和FORTRAN语言,随着CAD 和人工智能技术的发展,PASCAL、 C、LISP、 PROLOG等有着各自特长的程序语言也逐步进入土木工程领域的计算机程序设计中。
过去人们通常认为,程序设计的中心问题就是学会使用一种程序语言,用以编写程序。
然而学会用程序语言编程只是整个程序设计中的一部分。
据有关资料介绍,编写程序在整个系统的研制过程中仅占15%的工作量。
在一个大型程序系统的整个存在阶段的工作量中,在系统投入使用后的维护工作量为原来研制工作量总和的两倍(这一点在作者所从事的软件开发工作中也得到充分的证明)。
维护工作量是如此之高,这就使我们必须注意到,在程序研制阶段便即应当考虑为以后的维护工作提供方便,哪怕是为此要增加一些额外的工作量也是值得的。
要编制一个好的程序系统并没有一种绝对的规则,就象是工程设计没有一种绝对规则一样。
但对于程序设计的好坏现在已逐渐形成了一套评价的客观标准。
这些标准大致分为以下几个主要方面:(1) 程序的可读性;(2) 正确性与可靠性;(3) 使用方便且效率高;(4) 软件的可移置性;(5) 易于调试与维护。
直到1970年代中期人们才认识到软件的维护是软件研究的一个关键领域。
造成软件维护工作量大的原因之一是与程序研制过程中所采用的设计方法不够科学化有关。
为了解决这一问题,人们开展了对于程序设计方法论的研究与实践,其目标是使软件正确、可靠和降低整个软件研制活动的费用。
总的来说,程序设计已从强调灵活的技巧和局部效率向着强调程序结构化和整体功能的方向发展。
第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。
一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。
在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。
即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。
构造位移函数的方法是:以结点(i,j,m)为定点。
以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。
在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。
将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。