光纤Michelson干涉仪
- 格式:pdf
- 大小:131.24 KB
- 文档页数:3
迈克尔逊干涉仪实验报告英文回答:This Michelson interferometer experiment report hasbeen an illuminating experience, providing invaluable insights into the principles of interference anddiffraction. As a keen observer, I meticulously followed each step of the experiment, carefully recording data and analyzing results.The Michelson interferometer, an ingenious apparatus, utilizes a semi-silvered mirror to split a coherent light source into two beams. These beams travel perpendicular paths, reflecting off mirrors placed at their ends, and subsequently recombine at the beamsplitter. Based on the optical path lengths of these beams, interference patterns emerge, capturing my attention and stimulating my curiosity.To elucidate the concept of constructive interference,I adjusted the mirrors until the optical paths were equal,leading to the superposition of coherent waves that reinforced one another, resulting in a bright fringe. Conversely, destructive interference occurred when the optical paths differed by half a wavelength, causing the waves to cancel each other out, producing a dark fringe.The significance of this experiment extends beyond its immediate findings. It serves as a cornerstone for understanding numerous optical phenomena, such as the formation of Newton's rings and the behavior of light in thin films. Moreover, it has played a pivotal role in the development of laser technology, enabling precise measurements and applications in fields ranging from telecommunications to medical imaging.中文回答:迈克尔逊干涉仪实验报告让我受益匪浅,对干涉和衍射原理有了更深刻的理解。
迈克尔孙干涉仪的原理与应用1. 引言迈克尔孙干涉仪是一种常见的干涉测量仪器,广泛应用于光学领域和物理实验室中。
它利用干涉现象来测量光的相位差,从而实现对介质折射率的测量、光程差的计算和表面形貌的研究等。
2. 原理迈克尔孙干涉仪的原理基于干涉现象和Michelson干涉仪的设计。
它由一个光源、分束器、样品光路和参考光路组成。
2.1 干涉现象干涉是指两束或多束相干光波相遇时,互相叠加形成干涉条纹的现象。
干涉现象的产生需要符合相干条件,即光源发出的光波具有相干性。
2.2 Michelson干涉仪设计Michelson干涉仪是由一个光源、分束器、样品光路和参考光路组成。
光源发出的光经过分束器分为两束光,一束通过样品光路,另一束通过参考光路。
两束光重新相遇,在干涉仪的输出端口形成干涉条纹。
3. 迈克尔孙干涉仪的构造迈克尔孙干涉仪在Michelson干涉仪的基础上进行了改进,主要是增加了一块玻璃片作为样品。
样品在光路中引入一个附加的光程差,从而改变干涉条纹的特性。
3.1 分束器分束器是将来自光源的光分为两束的装置。
常见的分束器包括玻璃板分束器和波导器。
3.2 样品样品是在样品光路中引入光程差的元件。
常见的样品包括玻璃片、薄膜和涂层等。
3.3 干涉条纹干涉条纹是迈克尔孙干涉仪中观察到的光强分布形式。
它由干涉光波的叠加形成,可通过干涉仪的输出端口观察到。
4. 应用迈克尔孙干涉仪具有广泛的应用领域,如下所示:4.1 介质折射率测量通过调节样品光路中的样品厚度或折射率,可以测量样品的折射率。
4.2 光程差计算利用干涉条纹的变化可计算光程差,从而实现对光路长度的测量。
4.3 表面形貌研究通过观察干涉条纹的变化,可以研究材料的表面形貌和薄膜的厚度分布等。
4.4 光学实验教学迈克尔孙干涉仪作为一种常见的光学实验仪器,广泛用于光学实验教学中,帮助学生理解和掌握光的干涉现象。
5. 结论迈克尔孙干涉仪是一种重要的干涉测量仪器,它利用干涉条纹的形成来测量光学参数和研究材料的表面形貌。
迈克尔逊干涉仪实验原理迈克尔逊干涉仪是一种利用干涉现象测量光波长、长度和折射率的仪器。
它由美国物理学家迈克尔逊于1881年发明,是一种非常重要的光学仪器,被广泛应用于科学研究和工程实践中。
干涉仪的原理是利用光的干涉现象来测量光的性质和测量被测物体的长度,是一种非常精密的测量仪器。
迈克尔逊干涉仪的实验原理主要是基于干涉现象。
当两束光波相遇时,它们会发生干涉现象,即相位差引起的光强的变化。
迈克尔逊干涉仪利用分束镜将一束光分成两束光,经过两条不同的光路,再经过合束镜合成一束光,使得两束光发生干涉。
当两束光的光程差为整数倍的波长时,它们将相干叠加,产生明纹;当光程差为半波长的奇数倍时,它们将发生相消干涉,产生暗纹。
通过观察干涉条纹的位置和数量,可以推导出光的波长、被测物体的长度以及折射率等物理量。
在迈克尔逊干涉仪实验中,需要注意的是保证光源的稳定性和一致性。
光源的稳定性直接影响到实验结果的准确性,因此需要选择稳定的光源,如激光。
同时,光路的稳定性也是非常重要的,需要保证光路的长度和光学元件的位置保持稳定,避免外界因素对实验结果的影响。
除了测量光的波长和长度,迈克尔逊干涉仪还可以用于测量折射率。
当被测物体的折射率发生变化时,光的光程也会发生变化,从而导致干涉条纹的位置发生移动。
通过测量干涉条纹的移动量,可以推导出被测物体的折射率。
这种方法被广泛应用于实验室中测量各种材料的折射率,对材料的研究和应用具有重要意义。
总之,迈克尔逊干涉仪是一种非常重要的光学仪器,它利用光的干涉现象来测量光的波长、长度和折射率,具有非常广泛的应用价值。
在实际应用中,需要注意保证光源和光路的稳定性,以获得准确的实验结果。
迈克尔逊干涉仪的实验原理和方法对于光学研究和工程应用具有重要意义,对于推动光学领域的发展具有重要作用。
一、引言光纤传感由于具有本质安全、电绝缘性好、灵敏度高及便于连网等优点,已在许多物理量的测量中得到应用,特别是基于光纤干涉的传感系统已成为物理量检测中最为精确的系统之一。
光纤干涉仪是一种高精度测量仪器,但存在相位随机漂移及倍频等光学问题。
现有文献报导中,解决的方法是采用相位生成载波技术,调制解调的实现过程复杂,并有可能产生信号波形的失真。
另外,虽有采用压电陶瓷(PZT)的报导,但未见对相位随机漂移及倍频问题的具体解决方法。
为此,本文给出一种简单实用的解决方案,在原理上说明其可行性,并进行了实验验证。
二、Michelson干涉型光纤传感器原理图1所示为Michelson相位调制型光纤干涉仪结构示意图。
由激光器发出的相干光经光隔离器和耦合器后一分为二分别送入2根长度基本相同的单模光纤(即干涉仪的两臂,其一为信号臂,另一参考臂),而后被反射膜反射,在耦合器的输出端发生干涉。
显然,这是一种双光束干涉仪,干涉光的幅度与信号光及参考光的幅度有关,其相位为两臂光相位之差,干涉场光强分布为I=I1+I2+2I1I2cos(Φ)=A+Bcos(Φ)(1)Φ=2nπl/λ(2)式(1)右端是光电转换的信号,I1、I2分别为干涉仪两臂单独存在时的光强,在检测时通常以直流项对待;2I1I2cos(Φ)表示干涉效应,当Φ=2mπ时,为干涉场的极大值,其中m为干涉级次。
式(2)中,Φ为干涉仪两臂光波的相位差,它可以表示为因为环境波动引起的随机漂移信号S和待测信号N之和,由光波波长λ、光纤折射率n以及光纤两臂长度差l共同决定。
在波长一定的情况下,两臂光程差改变nl,就改变了干涉信号的相位差,从而实现传感功能。
干涉光信号由光电转换器(PD)转换为电信号。
通过检测电信号的变化,就得到相应的干涉光信号的相位变化。
三、相位漂移及倍频原因简析由式(1)可见,I随Φ呈余弦变化规律,I~Φ关系曲线如图2所示。
在Φ=2nπ处为最大值(n=0,±1,±2,⋯⋯),而在Φ=(2n+1π处取值最小,而在Φ=nπ+π/2处变化最快,I变化最快即表示此时干涉仪具有最高灵敏度。
迈克尔逊干涉仪实验报告英文回答:Introduction。
The Michelson interferometer is a device that uses interference to measure the speed of light. It was invented by Albert Michelson in 1881, and it has since been used to make many important measurements in physics.Principle of Operation。
The Michelson interferometer works by splitting a beam of light into two beams, which are then recombined. The two beams travel different paths, and they are reflected back to the interferometer by mirrors. If the two beams travel the same distance, they will interfere constructively, and a bright spot will be seen on a screen. If the two beams travel different distances, they will interfere destructively, and a dark spot will be seen on the screen.Applications。
The Michelson interferometer has been used to make many important measurements in physics. Some of these measurements include:The speed of light。
OpticsInterferometerMichelson Interferometer IIDETERMINE THE REFRACTIVE INDEX OF GLASS.UE403041101/17 JS/ALFBASIC PRINCIPLESThe Michelson interferometer can be used for interferometric measurements of various quantities, such as changes of distance, the thickness of layers, or refractive indices, because the observations are sensitive to very small changes in the optical path length of a partial beam. If the geometrical beam path is kept constant, it is possible to determine refractive indices and variations therein from changes in pressure, temperature, or density.Depending on whether the optical path length is shortened or increased, interference fringes are formed or disappear at the centre of the circular interference pattern. The relationship between the change ∆s in the optical path length, the light wavelength λ, and the number m (positive or negative) of interference fringes that appear or disappear on the screen is described by the equation:(1) λ⋅=∆⋅m s 2.If a glass plate is placed obliquely in the path of one of the partial beams, the optical path length is changed by the amount ∆s (α) given by Equation (2). (2)()()()β-α-⋅β=α∆cos cos n dsd : thickness of the glass plate, n : refractive index of the glass, α: angle of incidence on the plate, β: angle of refraction into the plate.According to Snell’s law of refraction, α and β are connected by the relationship:(3) β⋅=αsin si n nIf the glass plate is first placed exactly perpendicular to the beam and is then turned from that position through the angle α the resulting change in the optical path length is:(4)()()()()()1cos cos 0-⋅-β-α-⋅β=∆-α∆=∆n d n ds s sBy making a slight modification, the Michelson interferometer can be converted into a Twyman-Green interferometer, an instrument for measuring the surface qualityof optical components. A Twyman-Green interferometer is normally understood to mean an instrument in which the (laser) light beam is expanded and formed into a parallel beam. However, for the qualitative understanding of the principle, a beam that is divergent rather than parallel can be used.Fig.1: Experiment set-up for determining the refractive index of glass using a Michelson interferometerLIST OF APPARATUS1 Interferometer 1002651 (U10350) 1 Accessory Set for the Interferometer 1002652 (U10351) 1 He-Ne Laser 1003165 (U21840)SET-UPNote: The height of the light beam above the baseplate must be 60 – 62 mm.∙Place the interferometer on a stable and firm table with its base as accurately horizontal as possible.∙Mount the laser on the laser support using the hexagonal adjusting screw and position it facing as directly as possible into the beam-diverging lens.∙Remove the fixed mirror and the beam splitter.∙Loosen the knurled screw of the diverging lens and swing the lens out of the path of the beam.∙Adjust the position of the laser so that its beam falls on the centre of the moveable mirror and the reflected beam falls centrally on the laser.∙Swing the diverging lens back into the beam path and correct the beam path so that it also falls on the centre of the lens.∙Swing the diverging lens out of the path of the beam again.∙Mount the fixed mirror and, using the adjusting screws, set it so that the distance between the mirror mounting plate and the actual mirror support is about 5-6 mm and is uniform all around.∙Mount the beam splitter with its half-silvered side (marked with a triangle) towards the near left corner (between the laser and the fixed mirror), and adjust it so that the two brightest points that are visible on the observation screen lie as nearly as possible on a vertical line.∙Adjust the fixed mirror so that these two brightest points on the screen are made to coincide exactly.∙Swing the diverging lens back into the beam, adjust it so that the brightest part of the image is at the centre of the screen, and fix it in position with the screw.∙Tilt the screen slightly from the vertical position so that the observer sees a bright and clear image.∙Readjust the fixed mirror so as to obtain interference rings centred at the middle of the screen. EXPERIMENT PROCEDUREDetermine the refractive index of glass:∙Place the glass plate with the rotatable holder in the front partial beam.∙Make a slight adjustment to the moveable mirror so that the interference rings remain at the middle of the screen.∙Rotate the glass plate back and forth slightly about the 0° mark to determine the angle α0 at which new interference rings cease to form and they start to disappear instead.∙Readjust the beam splitter so that the angle α0 is as close as possible to the 0° mark.∙Starting from the angle α0, slowly rotate the glass plate and carefully count the number of rings that disappear, m. Application of Twyman-Green interferometer to evaluate the surface quality of a strip of adhesive tape:∙Place the glass plate with the rotatable holder in the front partial beam in such a position that the beam also falls on the adhesive tape on the glass.∙Make a slight adjustment to the moveable mirror so that the interference rings remain at the middle of the screen. SAMPLE MEASUREMENTS AND EVALUATIONDetermine the refractive index of glass:Table 1: The number m of interference rings that disappear and the calculated change in path length.3B Scientific GmbH, Rudorffweg 8, 21031 Hamburg, Germany, 1015αm λ / μmFig. 2: Change in path length calculated from the number m ofinterference rings that disappear when a glass plate is rotated through the angle αFigure 2 shows, as a function of α, the change in path length calculated from the number m of interference rings that disappear when a glass plate in the beam is rotated through the angle α from the position perpendicular to the beam. The wavelength used in the calculation was λ = 632.8 nm, the wavelength of the He-Ne laser.The theoretical curve in Figure 2 was calculated from Equation 4, with the values d = 4 mm for the thickness of the plate and n = 1.5 for the refractive index of glass.Application of Twyman-Green interferometer to evaluate the surface quality of a strip of adhesive tape:On the right-hand side of the screen the interference rings are regular and well-defined. On the left-hand side, however, they are distorted and blurred, and sometimes there are bright dots in regions that should be dark and vice versa.Since even very small differences in the thickness of a film can shift the interference rings, it is reasonable to conclude that the distortion of the rings is caused by the irregular and undulating surface of the adhesive tape.。
迈克尔逊干涉仪实验报告## 英文回答:Michelson Interferometer Experiment Report。
Introduction:The Michelson interferometer is a highly sensitive optical instrument used to measure extremely small distances or refractive index changes. It is based on the principle of interference of light waves, where two coherent beams of light are recombined to produce a pattern of bright and dark fringes. The distance between these fringes is directly related to the path length difference between the two beams.Experimental Setup:The Michelson interferometer consists of two mirrors and a beam splitter that divides a beam of light into twocoherent beams. One beam is reflected by Mirror 1 and the other by Mirror 2. The beams are then recombined at the beam splitter and observed on a screen.Data Acquisition:The distance between the fringes is measured using a ruler or a calibrated scale. The path length difference between the two beams is determined by multiplying the distance between the fringes by the wavelength of the light source.Analysis:The path length difference can be used to determine various physical quantities, such as:Distance: By measuring the path length difference, the distance between Mirror 1 and Mirror 2 can be determined.Refractive Index: By introducing a sample into one of the beams, the change in path length difference can be usedto calculate the refractive index of the sample.Error Analysis:The accuracy of the Michelson interferometer depends on several factors, including:Precision of Measurement: The accuracy of the distance measurement between the fringes is crucial.Stability of the Interferometer: The interferometer should be stable during the experiment to avoid any drifts in the fringe pattern.Wavelength Calibration: The wavelength of the light source should be accurately calibrated.Applications:The Michelson interferometer has numerous applications in various fields, such as:Metrology: Precision measurement of distances and refractive indices.Material Characterization: Determination of optical properties of materials.Gravitational Wave Detection: Detection of gravitational waves from astronomical events.Conclusion:The Michelson interferometer is a versatile and sensitive instrument used for accurate measurements of distances and refractive indices. Its applications span various fields, from fundamental physics to industrial metrology.## 中文回答:迈克尔逊干涉仪实验报告。
迈克尔逊干涉仪实验报告英文回答:Introduction。
The Michelson interferometer is a device that uses interference to measure the velocity of light, use in a certain direction. It was invented by Albert A. Michelsonin 1881. The interferometer consists of two mirrors that are placed at a distance of several meters apart. A beam of light is split into two beams, and each beam is reflected by one of the mirrors. The two beams are then recombined, and the interference pattern is observed.Procedure。
In my experiment, I used a Michelson interferometer to measure the velocity of light. I first set up the interferometer by placing the two mirrors on a table. I measured the distance between the mirrors to be 20 meters.I then used a helium-neon laser to produce a beam of light.I split the beam of light into two beams using a beam splitter. I directed one beam of light to each mirror. The two beams of light were reflected by the mirrors and recombined at the beam splitter. I observed theinterference pattern on a screen.Results。
迈克尔逊干涉仪测量光波的波长实验报告英文回答:The Michelson Interferometer is a highly sensitive and precise measuring instrument invented by Albert A. Michelson in the late 19th century. It utilizes the principle of interference to accurately determine the wavelength of light. The interferometer is an invaluable tool for physicists as it aids in unraveling the mysteries of the universe's fundamental structure and the nature of light itself.Principle of Operation:The Michelson Interferometer consists of two perpendicular arms, each containing a mirror. Light from a coherent source is split into two beams using a beam splitter, with each beam traveling down one arm of the interferometer. The beams are then reflected back by the mirrors and recombined at the beam splitter, where theyinterfere with each other. Depending on the path length difference between the two arms, the interference can be either constructive or destructive.Measurement of Wavelength:To measure the wavelength of light, one arm of the interferometer is adjusted, causing a shift in the interference pattern. By carefully measuring the distance moved by the mirror, one can calculate the path length difference between the two arms. The wavelength of the light is then determined using the following formula:```。
第23卷 第1期2005年3月 广西师范大学学报(自然科学版)JOU R NA L OF GU A N GX I NO RM A L U N IVER SI T Y
V ol.23 N o.1M arch 2005收稿日期:2004-09-25
基金项目:国家自然科学基金资助项目(60277015)
作者简介:江天府(1969—),男,四川宜宾人,中国民用航空飞行学院副教授,博士.
光纤光栅M ichelson 干涉仪
江天府1,郝邦元1,江 毅2
(1.中国民用航空飞行学院计算机与信息工程系,四川广汉618307;2.北京理工大学光电工程系,北京100081)
摘 要:提出了一种基于光纤布拉格光栅(光纤光栅)的光纤M ichelso n 干涉仪.它使用光纤光栅作为干涉仪
的反射器,宽带光代替激光作为光源,是一种可以波分复用的M ichelson 干涉仪.用3×3耦合器作为分光器,
并结合软件解调技术从干涉仪的输出信号中解调出了外部振动信号.
关键词:M ichelson 干涉仪;光纤光栅;3×3耦合器
中图分类号:T N 929.11 文献标识码:A 文章编号:1001-6600(2005)01-0099-03
传统的光学干涉仪主要有M ichelson,Mach-Zehnder,Pabry-Perot 和Sagnac 4种基本形式.随着光纤的出现,也出现了对应的4种光纤干涉仪.相对于传统的光学干涉仪,全光纤干涉仪没有光路对准的要求,结构稳定,可以随意搬动.在光纤干涉仪中,一般用耦合器代替传统的半反半透镜,并在光纤端面镀膜来作为反射器.
本文提出了一种用光纤布拉格光栅(光纤光栅,FBG )来作为反射镜的光纤M ichelson 干涉仪.光纤光栅是用紫外光照射光敏光纤,使光纤纤芯的折射率产生周期性变化而形成的一种芯内体光栅[1].它能够反射某一特定波长的光( =2n ,其中n 是纤芯折射率, 是光栅栅距).这种光纤光栅干涉仪与普通的M i-chelson 干涉仪不同之处在于由于反射器具有波长选择特性,因此可以用宽带光作为光源,另外也可以用波分复用技术在2个光臂上复用多个Michelson 干涉仪.
1 实验
这一光纤光栅Michelson 干涉仪的结构如图1所示.它包括了光纤光栅干涉仪和干涉信号的解调系图1 光纤光栅M ichelson 干涉仪系统F ig .1 F iber gr ating M ichelson interferometer 统.在这里,用2只光纤光栅作为反射器,它们的波
长相同 1= 2.光源也不必使用激光器,可用宽带
光源,这里使用超辐射光纤光源(ASE),其光谱如
图2所示.ASE 使用980nm 的泵浦激光,掺铒光纤
12m 长,掺杂浓度 (Er )=0.04%.在驱动电流70
mA 时,光源出光功率为370!W.为了从干涉仪输
出信号中直接解调出外部调制信号,使用3×3耦
合器代替了通常的2×2耦合器作为分光器.
光纤光栅1的中心波长 1=1551.166nm,线
宽∀ 1=0.247nm,光纤光栅2的中心波长 2=1
551.142nm ,线宽∀ 2=0.215nm .两光栅中心波
长相距∀ =0.024nm.我们知道,激光的相干长
度由这个公式确定:L = 2/∀ .
因此可以得到在这种光纤光栅Michelson 干涉仪中,两干涉臂允许的最大光程差为:
D =n × 1+ 222
∀ 12+∀ 22+∀ =n ( 1+ 2)22(∀ 1+∀ 2+2∀ ).(1)其中n
是纤芯折射率.将相关参数代入(1)式,得D =13.7mm .因此为了获得干涉条纹,两光纤光栅距离耦合器的距离之差应小于13.7mm ,否则不能获得干涉条纹.图2 超辐射光纤光源A SE 光谱图 图3 干涉仪的2路输出 图4 干涉仪输出相位成120°
F ig .2 T he spectrum of A SE Fig .3 T he 2o utputs of F ig .4 T he phase relationship o f
interferometer the interfero met er out puts
实验中,将Michelson 干涉仪的一个臂保持静止,另一个臂上20cm 的光纤粘贴到100mm ×35m m ×0.3mm 的铜片上.铜片一端固定5g 的质量块,另一端固定到振动台上.当振动信号加到干涉仪的这个臂上时,从3×3耦合器就可以得到干涉仪的2路输出信号,图3所示是振动频率为220Hz 时干涉仪的2路输出信号.
由于是3×3耦合器作为分光器,2输出成120°相位差,相位关系如图4所示.2路成120°相位差的输出信号使我们能够立刻简单的解调出外部的振动信号.
图5
加到振动台的信号 图6 干涉仪的解调输出
F ig.5 T he v ibr ation signal Fig.6 T he demodulation output
图7 复用光纤光栅M ichelson 干涉仪
F ig .7 M ultiplex fiber g rating M ichelson interfer ometer 信号解调原理如图1所示[2].本文中使用了软件解
调技术[3],即将2路干涉输出信号放大后A/D 转换,送
入计算机,用软件来实现图1所示的计算.图5是振动台
的输入波形,图6是干涉仪的解调输出.此方法从干涉
仪的输出中将外部的振动信号很好地解调了出来.
这一光纤M ichelson 干涉仪也可以复用,原理如图
7所示,这里复用了3个Michelson 光纤光栅干涉仪.将
波长相等的光纤光栅成对连接到耦合器的2个臂上,每一对光纤光栅到耦合器等距离,在输出端用密集型波
分复用器(DWDM)将每个波长上的光取出,再作与前
面相同的计算即可得到每一个干涉仪的输出.100 广西师范大学学报(自然科学版) 第23卷
2 小结
本文提出了一种基于光纤光栅的Michelson 光纤干涉仪.它使用光纤光栅作为反射器代替了传统的光纤反射镜,因此使用宽带光作光源.与通常的光纤M ichelson 干涉仪类似的是,两干涉仪的光程差受光纤光栅线宽所确定的相干长度的限制.这种M ichelson 干涉仪还可以用波分复用技术来复用多个干涉仪.参 考 文 献:
[1] M eltz G ,M o rey W W ,G lenn W H.F or mation of Brag g g ratings in optical fibers by a t ransver se ho log raphic method[J].
O pt L ett,1989,14(15):823—825.
[2] K oo K P ,T v et en A B,Dandr idge A.P assive stabilization scheme for fiber interfero meter s using (3×3)fiber directional
coupler [J ].A ppl Phy s L ett ,1982,41(7):616—618.
[3] 江 毅,娄英明,王惠文.基于对称3×3耦合器的全光纤干涉仪的软件解调技术[J].光子学报,1998,27(2):152—155.
FIBER GRA T IN G BA SED MICHELSON IN T ERFEROM ET ER
JIANG Tian -fu 1,HAO Bang -yuan 1,JIANG Yi
2(1.D epartment of Computer and Communicatio n Engineering ,Civ il A viation Flight U niv ersity of China,
Guang han 618307,China ;2.Opt ical and Electrical D epartm ent,Beijing Institute of T echnolog y ,Beijing 100081,China)Abstract :A M ichelson interferometer based on fiber Brag g grating (fiber g rating)is demonstrated.Tw o fiber grating s are used as reflectors and the laser is replaced by wide band source as light source .These m ethods make the interferom eter wavelength-m ultiplexed.Outer vibration signals can be obtained from the output of the interferometer when a 3×3coupler com bined w ith softw are demodulation is used as the splitter.Key words :Michelson interferometer ;fiber grating ;3×3coupler
(责任编辑 黄 勇)101第1期 江天府等:光纤光栅M ichelson 干涉仪 。