不等式性质与均值不等式教案0911
- 格式:doc
- 大小:700.00 KB
- 文档页数:9
不等式的性质教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,举例说明。
解释不等式中的大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
1.2 不等式的基本性质性质1:如果a > b,a + c > b + c(两边加或减去同一个数,不等号方向不变)。
性质2:如果a > b且c > 0,ac > bc(两边乘以正数,不等号方向不变)。
性质3:如果a > b且c < 0,ac < bc(两边乘以负数,不等号方向改变)。
性质4:如果a > b且c > d,a + c > b + d(两边加或减去不同的数,不等号方向不变)。
第二章:不等式的运算规则2.1 加减法规则介绍不等式加减法的基本规则,举例说明。
强调在运算过程中保持不等号方向不变。
2.2 乘除法规则介绍不等式乘除法的基本规则,举例说明。
强调在运算过程中注意乘除数的正负性对不等号方向的影响。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如a > b,解得x > b/a。
举例说明解简单不等式的步骤。
3.2 一元一次不等式的解法介绍解一元一次不等式的方法,如ax > b,解得x > b/a。
强调解一元一次不等式时要注意系数的正负性对解集的影响。
第四章:不等式的应用4.1 实际问题中的应用举例说明不等式在实际问题中的应用,如速度、距离、温度等问题。
引导学生将实际问题转化为不等式问题,并解决。
4.2 线性不等式组的应用介绍线性不等式组的概念,举例说明。
讲解如何解线性不等式组,并应用到实际问题中。
第五章:不等式的进一步性质5.1 不等式的反转性质介绍不等式的反转性质,如如果a > b,b < a。
举例说明并证明不等式的反转性质。
5.2 不等式的传递性质介绍不等式的传递性质,如如果a > b且b > c,a > c。
均值不等式教案教学设计3.2 均值不等式整体设计教学分析均值不等式也称基本不等式.本节主要目标是使学生了解均值不等式的代数意义,几何的直观解释以及均值不等式的证明和应用.本节教材上一开始就开门见山地给出均值不等式及证明,在思考与讨论过渡下,给出均值不等式的一个几何直观解释,以加深学生对均值不等式的理解.教材用作差配方法证明均值不等式.作差配方法是证明不等式的基本方法,在整个不等式的教学中都要贯彻这一重要方法.在解题中要让学生注意使用均值不等式的条件,并掌握基本技能.一般说来,“见和想积,拆低次,凑积为定值,则和有最小值;见积想和,拆高次,凑和为定值,则积有最大值”.本节的《新课标》要求是:探索并了解均值不等式的证明过程;会用均值不等式解决简单的最大(小)问题.从历年的高考来看,均值不等式是重点考查的内容之一,它的应用范围几乎涉及高中数学的所有章节,且常考常新,大多是大小判断、求最值、求取值范围等.不等式的证明是将来进入大学不可缺少的技能,同时也是高中数学的一个难点,题型广泛,涉及面广,证法灵活,备受命题者的青睐,因而成为历届高考中的热点.几乎所有地区的高考题都能觅到它的踪影.书中练习A、B和习题都是基本题,要求全做.鉴于均值不等式的特殊作用,因此本节设计为2课时完成,但仅限于基本方法和基本技能的掌握,不涉及高难度的技巧.第一课时重在均值不等式的探究,第二课时重在均值不等式的灵活运用.且在教学中,将本节教材中的思考与讨论一起拿到课堂上来,让学生通过思考与讨论建立均值不等式与不等式a2+b2≥2ab的联系.三维目标1.通过本节探究,使学生学会推导并掌握均值不等式,理解这个均值不等式的几何意义,掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等.2.通过对均值不等式的不同形式应用的研究,渗透“转化”的数学思想,提高学生运算能力和逻辑推理能力.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.3.通过本节学习,使学生体会数学来源于生活,帮助学生养成良好的学习习惯,形成积极探索的态度,逐步养成严谨的科学态度及良好的思维习惯.重点难点教学重点:用数形结合的思想理解均值不等式,并从不同角度探索不等式a+b2≥ab的证明过程;用不等式求某些函数的最值及解决一些简单的实际问题.教学难点:用均值不等式求最大值和最小值,均值不等式a+b2≥ab等号成立条件的运用,应用均值不等式解决实际问题.课时安排2课时教学过程第1课时导入新课思路 1.(直接引入)像教材那样,直接给出均值定理,然后引导学生利用上节课的基本性质来探究它的证明方法.因为有了上两节的不等式的探究学习,因此这样引入虽然直白却也是顺其自然.思路2.(情境导入)教师自制风车,让学生把教师自制的风车转起来,这是学生小时候玩过的得意玩具;手持风车把手,来了一个360°的旋转,不但风车转得漂亮,课堂气氛也活跃,学生在紧张的课堂氛围中马上变得自然和谐,情境引入达到高潮,此时教师再提出问题.推进新课新知探究提出问题1均值定理的内容是什么?怎样进行证明?2你能证明a2+b2≥2ab吗?3你能尝试给出均值不等式的一个几何直观解释吗?4均值不等式有哪些变形式?活动:教师引导学生阅读均值定理的内容,或直接用多媒体给出.点拨学生利用上两节课所学知识进行证明,这点学生会很容易做到,只需作差配方即可.接着让学生明确,这个结论就是均值不等式,也叫基本不等式.其中,任意两个正实数a、b的a+b2叫做数a、b的算术平均值,数ab叫做a、b的几何平均值.均值定理可以表述为:两个正数的算术平均值大于或等于它的几何平均值.强调这个结论的重要性,在证明不等式、求函数的最大值最小值时有着广泛的应用,是高考的一个热点.可以通过反例或特例让学生进一步认识这个结论成立的条件,a、b必须是正数,等号成立当且仅当a=b,以加深学生对此结论的理解,为后面求最值时的“一正二定三相等”打下基础.利用不等式的性质对均值不等式两边平方,则很容易得到a2+b2≥2ab.这是一个很重要的结论.一般地,如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”)也可让学生重新证明这个结论:∵a2+b2-2ab=(a-b)2,当a≠b时,有(a-b)2>0.当a=b时,有(a-b)2=0,所以(a-b)2≥0,即a2+b2≥2ab.这个不等式对任意实数a,b恒成立,是一个很重要的不等式,应用非常广泛.请同学们注意公式的结构形式,成立的条件是a、b为实数,等号成立的条件是当且仅当a=b时成立.“当且仅当”即指充要条件.下面我们对均值不等式的几何意义作进一步探究.如图1,AB是圆的直径,点C是AB上一点,AC=a,BC=b.过点C作垂直于AB的弦DD′,连结AD、BD.你能利用这个图形得出均值不等式的几何解释吗?图1(本节课开展到这里,学生从均值不等式的证明过程中已体会到证明不等式的常用方法,对均值不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础) 这个图形是我们在初中非常熟悉的一个重要图形.容易证明△ACD∽△DCB.所以可得CD=ab.或由射影定理也可得到CD=ab.从图中我们可直观地看到ab表示的是半弦长,a+b2表示的是半径长.由于半弦长不大于半径,即CD小于或等于圆的半径,用不等式表示为: a+b2≥ab.显然,上述不等式当且仅当点C与圆心重合,即当a =b时,等号成立.还应让学生熟悉均值不等式的其他变形式.如若a、b∈R+,则ab≤a+b2,当且仅当a=b时,式中等号成立.好多书上就把它称为基本不等式.在同样条件下还可写成:a+b≥2ab或2ab≤a+b等.讨论结果:(1)(2)略.(3)均值不等式的几何解释是:半径不小于半弦长.(4)若a、b∈R+,则ab≤a+b2,当且仅当a=b时,式中等号成立;若a、b∈R+,则a+b≥2ab,当且仅当a=b时,式中等号成立;若a、b∈R,则a2+b2≥2ab,当且仅当a=b时,式中等号成立.应用示例例1(教材本节例1)活动:本例是均值不等式的简单应用,教师点拨学生证明时注意式中成立的条件,本例中的ba和ab相当于均值不等式中的a、b.因此必须有ba,ab∈R+点评:初用均值不等式,学生往往容易忽视不等式成立的条件,点拨学生注意,只要使用均值定理,马上先想到条件,养成良好的解题习惯.变式训练已知a、b、c都是正实数,求证:(a+b)(b+c)(c +a)≥8abc.证明:∵a>0,b>0,c>0,∴a+b≥2ab>0,b+c≥2bc>0,c+a≥2ca>0.∴(a+b)(b+c)(c+a)≥2ab2bc2ac=8abc,即(a+b)(b+c)(c+a)≥8abc.例2已知(a+b)(x+ y)>2(ay+bx),求证:x-ya-b +a-bx-y≥2.活动:教师引导学生探究题目中的条件与结论.本题结论中,注意x-ya-b与a-bx-y互为倒数,它们的积为1,故此题应从已知条件出发,经过变形,说明x-ya-b与a-bx-y为正数开始证题.证明:∵(a+b)(x+y)>2(ay+bx),∴ax+ay+bx+by>2ay+2bx.∴ax-ay+by-bx>0.∴(ax-bx)-(ay-by)>0.∴(a-b)(x-y)>0,即a-b与x-y同号.∴x-ya-b与a-bx-y均为正数.∴x-ya-b+a-bx-y≥2x-ya-ba-bx-y=2(当且仅当x-ya-b=a-bx-y时取“=”).∴x-ya-b+a-bx-y≥2.点评:本题通过对已知条件变形,恰当地因式分解,从讨论因式乘积的符号来判断x-ya-b与a-bx-y是正还是负,是我们今后解题中常用的方法.例3若a>b>1,P=lgalgb,Q=12(lga+lgb),R=lga+b2,则( )A.R<P<Q B.P<Q<RC.Q<P<R D.P<R<Q活动:这是均值不等式及其变形式的典型应用.根据P、Q、R三个式子的结构特点,应考虑利用均值不等式,再运用函数y=lgx的单调性.答案:B解析:∵a>b>1,∴lga>lgb>0.∴12(lga+lgb)>122lgalgb,即Q>P.又∵a+b2>ab,∴lga+b2>lgab=12(lga+lgb).∴R>Q.故P<Q<R.点评:应准确理解均值不等式成立的条件,创造性地应用均值不等式.例4(教材本节例2)活动:这是一个实际问题.教师引导学生分析,根据题意在(1)中,矩形的长与宽的积是一个常数,求长与宽的和的两倍的最小值;在(2)中,矩形的长与宽的和的两倍是一个常数,求长与宽的积的最大值.联想到均值不等式的两边恰是两个正数的和与积,因此建立均值不等式的数学模型.点评:本例也可用函数模型解决,课后可让学生试一试.这里用均值不等式来解,一是说明利用均值不等式求最值的方法,二是说明这种方法的快捷.解完本例后,让学生领悟到:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.简单地说就是:在应用这个结论求最值时应把握“一正、二定、三相等”.正是正数,定是定值,相等是能取到等号.知能训练1.“a=18”是“对任意的正数x,2x+ax≥1”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.若正数a、b满足ab=a+b+3,则ab的取值范围是________.答案:1.A 解析:一方面,当a=18时,对任意的正数x,有2x+ax=2x+18x≥1;另一方面,对任意正数x,都有2x+ax≥1,只要2x+ax≥22a≥1,即得a≥2.[9,+∞)解法一:令ab=t(t>0),由ab=a+b+3≥2ab+3,得t2≥2t+3,解得t≥3,即ab≥3,故ab≥9.解法二:由已知得ab-b=a+3,b(a-1)=a+3,∴b=a+3a-1(a>1).∴ab=aa+3a-1=[(a-1)+1]a+3a-1=a+3+a +3a-1=a-1+4+a-1+4a-1=a-1+4a-1+5≥2a-14a-1+5=9.当且仅当a-1=4a-1时取等号,即a=b=3时,ab 的最小值为9.∴ab的取值范围是[9,+∞).点评:此题较全面地考查了均值不等式的应用及不等式的解法与运算能力.通过思考a+b与ab的关系联想到均值不等式,或建立在函数思想上,求函数的值域.由于视角的不同,有多种方法,以上仅是其中的两种解法.课堂小结1.由学生自己理顺整合本节都学到了哪些知识方法?有哪些收获?2.教师强调,本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数(a+b2),几何平均数(ab)及它们的关系(a+b2≥ab).两关系式成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具.作业习题3—2A组,4,5,6.习题3—2B组,1,2.设计感想1.本节设计突出重点.均值不等式的功能在于求最值,这是本节的重点,要牢牢地抓住.但使用均值不等式求函数最值时要注意:①x,y都是正数;②积xy(或和x+y)为定值;③x与y必须能够相等.2.本节课我们探究了均值不等式,拓展了我们的视野;证明不等式是高中数学的重点,也是难点,在设计中加强了证明不等式的题量,但难度并不大,重在让学生体会方法.将解题思路转化为解题过程,往往不是一帆风顺的,谈思路可能头头是道,具体求解却可能会处处碰壁,消除思路与求解的差异,要靠探究,在探究中不断更新,在探究中逐步完善.(设计者:郑吉星)第2课时导入新课思路1.(复习导入)让学生回忆上节课我们探究的重要结果:一是如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”);二是均值不等式:如果a,b是正数,那么a+b2≥ab(当且仅当a=b时取“=”).在这个不等式中,a+b2为a,b的算术平均数,ab为a,b 的几何平均数,这样均值不等式就有了几何意义:半弦长不大于半径.a2+b2≥2ab与a+b2≥ab成立的条件是不同的,前者只要求a,b都是实数,而后者要求a,b 都是正数.本节课我们进一步探究均值不等式的应用.由此展开新课.思路2.(直接导入)通过上节课a2+b2≥2ab(a、b∈R)与a+b2≥ab(a>0,b>0)的探究证明,我们熟悉了不等式的一些证明方法.本节课我们进一步领悟不等式的证明思路、方法,进一步熟悉利用均值不等式解决函数的最值问题的思路.教师打开多媒体课件,从而展开新课.推进新课新知探究提出问题1回忆上节课探究的均值不等式,怎样理解均值不等式的意义?都有哪些变形?2均值不等式都有哪些方面的应用?3在应用均值不等式求最值时,应注意什么问题?活动:教师引导学生回忆上节课我们共同探究的均值不等式,以及均值不等式与a2+b2≥2ab的联系.给出了均值不等式的一个几何直观解释.均值不等式与a2+b2≥2ab都有着广泛的应用.对这两个重要不等式,要明确它们成立的条件是不同的.后者成立的条件是a与b都为实数,并且a与b都为实数是不等式成立的充分必要条件;而前者成立的条件是a与b都为正实数,并且a与b都为正数是不等式成立的充分不必要条件,如a=0,b=0,仍然能使a+b2≥ab成立.两个不等式中等号成立的条件都是a=b,故a=b是不等式中等号成立的充要条件.在使用“和为常数,积有最大值”和“积为常数,和有最小值”这两个结论时,应把握“一正、二定、三相等”.当条件不完全具备时,应创造条件.本节课我们将进一步探究均值不等式的应用.讨论结果:(1)(2)略.(3)应注意不等式成立的条件,即把握好“一正,二定,三相等”.应用示例例1(教材本节例3)活动:本例是求函数的最值.教师引导学生将f(x)变形,注意观察代数式中可否出现和或积的定值.本例可放手让学生自己探究,教师给予适当点拨.点评:解完本例后,让学生反思并领悟在求函数最值时,如何使用均值不等式的条件,并掌握基本技能.变式训练函数y=loga(x+3)-1(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则1m+2n的最小值为________.答案:8解析:∵y=loga(x+3)-1恒过点(-2,-1),∴A(-2,-1).又∵A在直线上,∴-2m-n+1=0,即2m+n=1.又∵mn>0,∴m>0,n>0.而1m+2n=2m+nm+4m+2nn=2+nm+2+4mn≥4+2×2=8,当n=12,m=14时取“=”.∴1m+2n的最小值为例2(1)已知x<54,求函数y =4x-2+14x-5的最大值;(2)已知a、b为实数,求函数y=(x-a)2+(x-b)2的最小值.活动:(1)因为4x-5<0,所以首先要“调整”符号.又(4x-2)14x-5不是常数,所以应对4x-2进行拆(添)项“配凑”.(2)从函数解析式的特点看,本题可化为关于x的二次函数,再通过配方法求其最小值.但若注意到(x-a)+(b-x)为定值,则用变形不等式m2+n22≥(m+n2)2更简捷.解:(1)∵x<54,∴5-4x>0.∴y=4x-2+14x-5=-(5-4x+15-4x)+3 ≤-2+3=1.当且仅当5-4x=15-4x,即x=1时,上式等号成立.∴当x=1时,ymax=1.(2)∵y=(x-a)2+(x-b)2=(x-a)2+(b-x)2≥2[x-a+b-x2]2=a-b22,当且仅当x-a=b-x,即x=a+b2时,上式等号成立.∴当x=a+b2时,ymin=a-b22.点评:若x、y∈R+,x+y=s,xy=p.若p为定值,则当且仅当x=y时,s的值最小;如果s为定值,则当且仅当x=y时,p的值最大.简称“和定积最大,积定和最小”.从本例的解答可以看出,求最值时往往需要拆(添)项,其目的是创设应用均值不等式的情境和使等号成立的条件,即满足“一正,二定,三相等”的要求.变式训练已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是AB上的点,则点P到AC、BC的距离乘积的最大值是__________.答案:3解析:方法一:以CA、CB所在直线为坐标轴建立平面直角坐标系,则直线AB方程为x4+y3=1,设P(a,b),则a4+b3=1(a>0,b>0).∴ab=12a4b3≤12(a4+b32)2=3,当且仅当“a=4b3”时等号成立.方法二:设P到BC的距离为a,到AC的距离为b.由相似三角形易得a4=PB5,b3=PA5,∴a4+b3=PB+PA5=1.以下解法同一.例3当x>-1时,求函数f(x)=x2-3x+1x+1的值域.活动:教师引导学生观察函数f(x)的分子、分母特点,可作如下变形:f(x)=x2-3x+1x+1=x+12-5x+1+5x+1=x+1+5x+1-5.这样就可以应用均值不等式了.解:∵x>-1,∴x+1>0.∴f(x)=x2-3x+1x+1=x+12-5x+1+5x+1=x+1+5x+1-5≥2x+15x+1-5=25-5,当且仅当(x+1)2=5时,即x=5-1时取“=”.另一解x=-5-1<-1(舍去),故函数值域为[25-5,+∞).点评:本题解法具有典型性,解后教师引导学生领悟反思.这种求值域的题目,在“函数”一章中我们接触较多,其常用方法有单调性、图象法,还有判别式法.利用判别式法不仅计算量大,而且极易因忽视某些条件而出错.本例给出了用均值不等式法求值域的方法,既简单又不易出错.但提醒学生一定要注意必须满足的三个条件:①各项均为正数;②和或积有一个为定值;③等号一定取到,这三个条件缺一不可.变式训练已知x1x2x3…x2 006=1,且x1、x2、x3、…、x2 006都是正数,则(1+x1)(1+x2)…(1+x2 006)的最小值是__________.答案:22 006解析:∵x1>0,则1+x1≥2x1,同理,1+x2≥2x2,……1+x2 006≥2x2 006,各式相乘,得(1+x1)(1+x2)...(1+x2 006)≥22 006x1x2x3 (x2)006=22 006.取“=”的条件为x1=x2=x3=…=x2 006=1,∴所求最小值为22 006.例4设0<x<2,求函数f(x)=3x8-3x的最大值,并求相应的x值.试问0<x<43时,原函数f(x)有没有最大值?0<x≤1时,f(x)有没有最大值?若有,请你求出来;若没有,请你说明理由.活动:对本例中的函数可变形为f(x)=24x-9x2,根号内是我们熟悉的二次函数,完全可以用二次函数的知识方法解决,这种方法学生很熟悉.教师可引导学生利用均值不等式求解,让学生自己探究,教师可适时地点拨.解:∵0<x<2,∴8-3x>0.∴f(x)=3x8-3x≤3x+8-3x22=4,当且仅当3x=8-3x,即x=43时取“=”.∴函数f(x)的最大值为4,此时x=又f(x)=-9x2+24x=-3x-42+16,∴当0<x<43时,f(x)递增;当x>43时,f(x)递减.∴当0<x<43时,原函数f(x)没有最大值.当0<x≤1时,有最大值f(1),即f(1)=点评:通过本例再次加深对均值不等式条件的理解.体会不等式的功能在于“和与积”的互化,构造均值不等式,解题的技巧是拆(添)项或配凑因式.知能训练1.函数f(x)=xx+1的最大值为( )A.25B.12C.22 D.12.求函数y=x+1x(x>0)的最小值,以及此时x的值.3.已知x、y∈R+,且2x+8y-xy=0,求x+y的最小值.答案:1.B 解析:当x=0时,f(x)=0;当x>0时,f(x)=xx+1=1x+1x≤12,当且仅当x=1x,即x=1时取等号.2.解:∵x>0,∴x+1x≥2x1x=2,当且仅当x=1x,即x=1时取等号.∴当x=1时,x+1x的值最小,最小值是2.3.解:由2x+8y-xy=0得y(x-8)=2x.∵x>0,y>0,∴x-8>0.∴x+y=2xx-8+x=x-8+16x-8+10≥2x-816x-8+10=18,当且仅当x-8=16x-8,即x=12时,x+y取最小值堂小结1.由学生归纳整合本节课所用到的知识、思想方法,回顾本节课解决了哪些问题?应注意些什么?2.教师点拨,本节课我们用均值不等式解决了函数的一些最值问题,在用均值不等式求函数的最值时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值.即用均值不等式求某些函数的最值时,应具备三个条件:一正、二定、三相等.在利用均值不等式证明一些不等式时,也应注意均值不等式成立的条件及构建均值不等式结构.作业习题3—2A组2、3、7、8、9;习题3—2B组3、4.设计感想1.本节设计意在体现均值不等式的应用,因此用不等式求解函数的最值与证明不等式是穿插进行的,且强调一题多解的训练.2.本节设计关注了教学进程的和谐发展.整个设计给人自然流畅的感觉,没有教师过分自我展示的味道,能使学生的思维得到充分的锻炼,能力得到很大的提高. 3.本节设计重视了学生的主体地位,从例题到变式训练,从新课导入到课堂小结,都注意了学生的主动思维活动,充分让学生占据思维的时空,这是提高学生思维能力的有效良方.备课资料一、算术平均数不小于几何平均数的一种证明方法(局部调整法)(1)设a1,a2,a3,…,an为正实数,这n个数的算术平均值记为A,几何平均值记为G,即A=a1+a2+…+ ann,G=na1a2…an,即A≥G ,当且仅当a1=a2=…=an时,A=G.特别地,当n=2时,a+b2≥ab;当n=3时,a+b+c3≥3abc.(2)用局部调整法证明均值不等式A≥G.设这n个正数不全相等.不失一般性,设0<a1≤a2≤…≤an,易证a1<A<an,且a1<G<an.在这n个数中去掉一个最小数a1,将a1换成A,再去掉一个最大数an,将an换成a1+an-A,其余各数不变,于是得到第二组正数:A,a2,a3,…,an-1,a1+an-A.这一代换具有下列性质:①两组数的算术平均值不变,设第二组数的算术平均值为A1,那么A1=A+a2+a3+…+an-1+a1+an-An=A,②第二组数的几何平均值最大.设第二组数的几何平均值为G1,则G1=nAa2a3…an-1a1+an-A,∵A(a1+an-A)-a1an=(A-a1)(an-A),由a1<A<an,得(A-a1)(an-A)>0,则A(a1+an-A)>a1an.∴Aa2a3…an-1(a1+an-A)>a1a2…an-1an,即G1>G.二、备用习题1.已知a≥0,b≥0,且a+b=2,则( )A.ab≤12 B.ab≥12 C.a2+b2≥2 D.a2+b2≤3 2.若a、b、c、d、x、y是正实数,且P=ab+cd,Q=ax+cybx+dy,则( )A.P=Q B.P<Q C.P≤Q D.P≥Q3.若函数y=f(x)的值域是[12,3],则函数F(x)=f(x)+1fx的值域是( )A.[12,3] B.[2,103]C.[52,103] D.[3,103]4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=__________吨.5.直线l过点M(2,1)且分别交x轴,y轴正半轴于点A,B,O为坐标原点,求△AOB面积最小时l的方程. 6.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量y(千辆/时)与汽车的平均速度v(千米/时)之间的函数关系为y=920vv2+3v+1 600(v>0). (1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时) (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?参考答案:1.C 解析:对于选项C:a2+b2=a2+b2+a2+b22≥a2+b2+2ab2=a+b22=2.故C 正确.2.C 解析:∵a、b、c、d、x、y是正实数,∴Q=ax+cybx+dy=ab+cd+adxy+bcyx≥ab+cd+2abcd=ab+cd=P.3.B 解析:令t=f(x ),则t∈[12,3].∴F(x)=G(t)=t+1t.该函数在t=1处取得最小值2,在t=3处取得最大值103.故选B.4.20 解析:设一年总费用为y万元,则y=4400x +4x=1 600x+4x≥21 600x4x=160,当且仅当1 600x =4x,即x=20时,等号成立.5.解:设直线l的方程为y-1=k(x-2),即y=kx +1-2k(k<0).令x=0,得y=1-2k;令y=0,得x=2k-1k=2-∴S△AOB=12(1-2k)(2-1k)=2+1-2k+(-2k).∵k<0,∴-2k>0.∴S△AOB≥2+2=4,当且仅当-12k=-2k,即k =-12时取等号.此时l的方程为y=-12x+2.6.解: (1)依题意,得y=9203+v+1 600v≤9203+21 600=92083,当且仅当v=1 600v,即v=40时,上式等号成立,所以ymax=92083≈11.1(千辆/时).(2)由条件得920vv2+3v+1 600>10,整理,得v2-89v+1 600<0,即(v-25)(v-64)<0,解得25<v<答:当v=40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.。
均值不等式及其应用【第1课时】【教学过程】一、新知初探1.算术平均值与几何平均值对于正数a ,b ,常把a +b2叫做a ,b 的算术平均值,把ab 叫做a ,b 的几何平均值. 2.均值不等式(1)当a >0,b >0a =b 时,等号成立; (2)均值不等式的常见变形 ①当a >0,b >0,则a +b ≥2ab ;②若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22. 二、初试身手1.不等式a 2+1≥2a 中等号成立的条件是( ) A .a =±1 B .a =1 C .a =-1 D .a =0答案:B解析:当a 2+1=2a ,即(a -1)2=0,即a =1时“=”成立. 2.已知a ,b ∈(0,1),且a ≠b ,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b 答案:D解析:∵a ,b ∈(0,1),∴a 2<a ,b 2<b , ∴a 2+b 2<a +b ,又a 2+b 2>2ab (a ≠b ), ∴2ab <a 2+b 2<a +b .又∵a +b >2ab (a ≠b ),∴a +b 最大.3.已知ab =1,a >0,b >0,则a +b 的最小值为( ) A .1 B .2 C .4 D .8 答案:B解析:∵a >0,b >0,∴a +b ≥2ab =2,当且仅当a =b =1时取等号,故a +b 的最小值为2.4.当a ,b ∈R 时,下列不等关系成立的是________. ①a +b2≥ab ;②a -b ≥2ab ;③a 2+b 2≥2ab ;④a 2-b 2≥2ab . 答案:③解析:根据a 2+b 22≥ab ,a +b2≥ab 成立的条件判断,知①②④错,只有③正确. 三、合作探究类型1:对均值不等式的理解例1:给出下面三个推导过程:①∵a ,b 为正实数,∴b a +a b ≥2b a ·ab =2;②∵a ∈R ,a ≠0,∴4a +a ≥24a ·a =4;③∵x ,y ∈R ,xy <0,∴x y +y x =--x y +-yx ≤-2⎝ ⎛⎭⎪⎫-x y ⎝ ⎛⎭⎪⎫-y x =-2. 其中正确的推导为( ) A .①② B .①③ C .②③ D .①②③答案:B解析:①∵a ,b 为正实数,∴b a ,ab 为正实数,符合均值不等式的条件,故①的推导正确. ②∵a ∈R ,a ≠0,不符合均值不等式的条件, ∴4a +a ≥24a ·a =4是错误的.③由xy <0,得x y ,y x 均为负数,但在推导过程中将整体x y +y x 提出负号后,⎝ ⎛⎭⎪⎫-x y ,⎝ ⎛⎭⎪⎫-y x 均变为正数,符合均值不等式的条件,故③正确.规律方法1.均值不等式ab ≤a +b2 (a >0,b >0)反映了两个正数的和与积之间的关系. 2.对均值不等式的准确掌握要抓住以下两个方面: (1)定理成立的条件是a ,b 都是正数.(2)“当且仅当”的含义:当a =b 时,ab ≤a +b 2的等号成立,即a =b ⇒a +b2=ab ;仅当a =b 时,a +b 2≥ab 的等号成立,即a +b2=ab ⇒a =b .跟踪训练1.下列不等式的推导过程正确的是________.①若x >1,则x +1x ≥2x ·1x =2;②若x <0,则x +4x =-⎣⎢⎡⎦⎥⎤-x +⎝ ⎛⎭⎪⎫-4x ≤-2-x ·⎝ ⎛⎭⎪⎫-4x =-4;③若a ,b ∈R ,则b a +a b ≥2b a ·ab =2. 答案:②解析:①中忽视了均值不等式等号成立的条件,当x =1x 时,即x =1时,x +1x ≥2等号成立,因为x >1,所以x +1x >2,③中忽视了利用均值不等式时每一项必须为正数这一条件.类型2:利用均值不等式比较大小例2:(1)已知a ,b ∈(0,+∞),则下列各式中不一定成立的是( )A .a +b ≥2abB .b a +ab ≥2C .a 2+b 2ab≥2ab D .2ab a +b ≥ab(2)已知a ,b ,c 是两两不等的实数,则p =a 2+b 2+c 2与q =ab +bc +ca 的大小关系是________.答案:(1)D(2)a 2+b 2+c 2>ab +bc +ac解析:(1)由a +b2≥ab 得a +b =2ab , ∴A 成立;∵b a +a b ≥2b a ·ab =2,∴B 成立;∵a 2+b 2ab ≥2ab ab =2ab ,∴C 成立;∵2ab a +b ≤2ab 2ab =ab ,∴D 不一定成立. (2)∵a ,b ,c 互不相等,∴a 2+b 2>2ab ,b 2+c 2>2bc ,a 2+c 2>2ac . ∴2(a 2+b 2+c 2)>2(ab +bc +ac ). 即a 2+b 2+c 2>ab +bc +ac . 规律方法1.在理解均值不等式时,要从形式到内含中理解,特别要关注条件.2.运用均值不等式比较大小时应注意成立的条件,即a +b ≥2ab 成立的条件是a >0,b >0,等号成立的条件是a =b ;a 2+b 2≥2ab 成立的条件是a ,b ∈R ,等号成立的条件是a =b .跟踪训练2.如果0<a <b <1,P =a +b 2,Q =ab ,M =a +b ,那么P ,Q ,M 的大小顺序是( ) A .P >Q >M B .M >P >Q C .Q >M >P D .M >Q >P答案:B解析:显然a +b 2>ab ,又因为a +b 2<a +b ⎝⎛⎭⎪⎫由a +b >a +b 24也就是a +b 4<1可得,所a +b >a +b2>ab .故M >P >Q .类型3:利用均值不等式证明不等式例3:已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c >9.思路点拨:看到1a +1b +1c >9,想到将“1”换成“a +b +c ”,裂项构造均值不等式的形式,用均值不等式证明.证明:∵a ,b ,c ∈R +,且a +b +c =1, ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2b a ·a b +2c a ·a c +2c b ·bc=3+2+2+2 =9.当且仅当a =b =c 时取等号, ∴1a +1b +1c >9. 母题探究本例条件不变,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1>8.证明:∵a ,b ,c ∈R +,且a +b +c =1,∴1a -1=b +c a >0,1b -1=a +c b >0,1c -1=a +b c >0, ∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1 =b +c a ·a +c b ·a +b c ≥2bc ·2ac ·2ab abc =8,当且仅当a =b =c 时取等号, ∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1>8. 规律方法1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用均值不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用均值不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用均值不等式时的一种重要技能,也是证明不等式时的一种常用方法.跟踪训练3.已知a ,b ,c ∈R ,求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 证明:由均值不等式可得 a 4+b 4=(a 2)2+(b 2)2≥2a 2b 2, 同理,b 4+c 4≥2b 2c 2, c 4+a 4≥2a 2c 2,∴(a 4+b 4)+(b 4+c 4)+(c 4+a 4)≥2a 2b 2+2b 2c 2+2a 2c 2, 从而a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.4.已知a >1,b >0,1a +3b =1,求证:a +2b ≥26+7.证明:由1a +3b =1,得b =3aa -1(a >1),则a +2b =a +6aa -1=a +6a -1+6a -1=a +6a -1+6=(a -1)+6a -1+7≥26+7, 当且仅当a -1=6a -1时,即a =1+6时,取等号. 四、课堂小结1.应用均值不等式时要时刻注意其成立的条件,只有当a >0,b >0时,才会有ab ≤a +b 2.对于“当且仅当……时,‘=’成立…”这句话要从两个方面理解:一方面,当a =b 时,a +b2ab ;另一方面:当a +b2=ab 时,也有a =b .2.应用均值不等式证明不等式的关键在于进行“拼”“凑”“拆”“合”“放缩”等变形,构造出符合均值不等式的条件结构. 五、当堂达标1.思考辨析(1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( )(2)若a ≠0,则a +1a ≥2a ·1a =2.( )(3)若a >0,b >0,则ab ≤⎝ ⎛⎭⎪⎫a +b 22.( ) 提示:(1)任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)只有当a >0时,根据均值不等式,才有不等式a +1a ≥2a ·1a =2成立.(3)因为ab ≤a +b 2,所以ab ≤⎝⎛⎭⎪⎫a +b 22. 答案:(1)×(2)×(3)√2.设a >b >0,则下列不等式中一定成立的是( )A .a -b <0B .0<ab <1C .ab <a +b2 D .ab >a +b 答案:C解析:∵a >b >0,由均值不等式知ab <a +b2一定成立.3.不等式9x -2+(x -2)≥6(其中x >2)中等号成立的条件是( )A .x =3B .x =-3C .x =5D .x =-5答案:C解析:由均值不等式知等号成立的条件为9x -2=x -2,即x =5(x =-1舍去). 4.设a >0,b >0,证明:b 2a +a 2b ≥a +b . 证明:∵a >0,b >0, ∴b 2a +a ≥2b ,a 2b +b ≥2a , ∴b 2a +a 2b ≥a +b .【第2课时】【教学过程】一、新知初探已知x ,y 都是正数.(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24. (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 上述命题可归纳为口诀:积定和最小,和定积最大. 二、初试身手1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )A .72B .4C .92D .5 答案:C解析:∵a +b =2,∴a +b2=1. ∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a ≥52+22a b ·b 2a =92 ⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.2.若x >0,则x +2x 的最小值是________. 答案:22解析:x +2x ≥2x ·2x =22,当且仅当x =2时,等号成立.3.设x ,y ∈N *满足x +y =20,则xy 的最大值为________. 答案:100解析:∵x ,y ∈N *, ∴20=x +y ≥2xy , ∴xy ≤100. 三、合作探究类型1:利用均值不等式求最值例1:(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12x (1-2x )的最大值.思路点拨:(1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y =12x (1-2x )的最值,需要出现和为定值.解:(1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1, 当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x <12,∴1-2x >0,∴y =14×2x (1-2x )≤14×⎝⎛⎭⎪⎫2x +1-2x 22=14×14=116. ∴当且仅当2x =1-2x ⎝ ⎛⎭⎪⎫0<x <12,即x =14时,y max =116. 规律方法利用均值不等式求最值的关键是获得满足均值不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用均值不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定,应凑出定和或定积;若不等,一般用后面第三章函数的基本性质的知识解决.跟踪训练1.(1)已知x >0,求函数y =x 2+5x +4x的最小值;(2)已知0<x <13,求函数y =x (1-3x )的最大值.解:(1)∵y =x 2+5x +4x =x +4x +5≥24+5=9,当且仅当x =4x ,即x =2时等号成立.故y =x 2+5x +4x(x >0)的最小值为9.(2)法一:∵0<x <13,∴1-3x >0.∴y =x (1-3x )=13·3x (1-3x )≤13⎣⎢⎡⎦⎥⎤3x +1-3x 22=112. 当且仅当3x =1-3x ,即x =16时,等号成立.∴当x =16时,函数取得最大值112.法二:∵0<x <13,∴13-x >0.∴y =x (1-3x )=3·x ⎝ ⎛⎭⎪⎫13-x ≤3·⎝⎛⎭⎪⎪⎫x +13-x 22 =112,当且仅当x =13-x ,即x =16时,等号成立.∴当x =16时,函数取得最大值112. 类型2:利用均值不等式求条件最值例2:已知x >0,y >0,且满足8x +1y =1.求x +2y 的最小值. 解:∵x >0,y >0,8x +1y =1,∴x +2y =⎝ ⎛⎭⎪⎫8x +1y (x +2y )=10+x y +16y x≥10+2x y ·16yx =18,当且仅当⎩⎪⎨⎪⎧8x +1y =1,x y =16y x,即⎩⎨⎧x =12,y =3时,等号成立,故当x =12,y =3时,(x +2y )min =18.母题探究 若把“8x +1y =1”改为“x +2y =1”,其他条件不变,求8x +1y 的最小值. 解:∵x ,y ∈R +, ∴8x +1y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y=8+16y x +x y +2=10+16y x +xy ≥10+216=18.当且仅当16y x =xy 时取等号,结合x +2y =1,得x =23,y =16,∴当x =23,y =16时,8x +1y 取到最小值18. 规律方法1.本题给出的方法,用到了均值不等式,并且对式子进行了变形,配凑出满足均值不等式的条件,这是经常使用的方法,要学会观察、学会变形.2.常见的变形技巧有:(1)配凑系数;(2)变符号;(3)拆补项.常见形式有y =ax +bx 型和y =ax (b -ax )型.跟踪训练2.已知a >0,b >0,a +2b =1,求1a +1b 的最小值. 解:法一:1a +1b =⎝ ⎛⎭⎪⎫1a +1b ·1=⎝ ⎛⎭⎪⎫1a +1b ·(a +2b ) =1+2b a +a b +2=3+2b a +ab ≥3+22b a ·a b=3+22,当且仅当⎩⎪⎨⎪⎧2b a =a b,a +2b =1,即⎩⎨⎧ a =2-1,b =1-22时等号成立. ∴1a +1b 的最小值为3+22. 法二:1a +1b =a +2b a +a +2b b =1+2b a +a b +2=3+2b a +a b ≥3+22,当且仅当⎩⎪⎨⎪⎧ 2b a =a b,a +2b =1,即⎩⎨⎧ a =2-1,b =1-22时等号成立, ∴1a +1b 的最小值为3+22.类型3:利用均值不等式解决实际问题例3:如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?解:设每间虎笼长x m ,宽y m ,则由条件知,4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy , 所以26xy ≤18,得xy ≤272,即S max =272,当且仅当2x =3y 时,等号成立.由⎩⎨⎧ 2x +3y =18,2x =3y ,解得⎩⎨⎧x =4.5,y =3. 故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =y ⎝ ⎛⎭⎪⎫9-32y =32y (6-y ). ∵0<y <6,∴6-y >0.∴S ≤32⎣⎢⎡⎦⎥⎤6-y +y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.规律方法在应用均值不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.跟踪训练3.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积解:设将楼房建为x 层,则每平方米的平均购地费用为2 160×1042 000x =10 800x .∴每平方米的平均综合费用y =560+48x +10 800x =560+48⎝ ⎛⎭⎪⎫x +225x . 当x +225x 取最小值时,y 有最小值.∵x >0,∴x +225x ≥2x ·225x =30.当且仅当x =225x ,即x =15时,上式等号成立.∴当x =15时,y 有最小值2000元.因此该楼房建为15层时,每平方米的平均综合费用最少.四、课堂小结1.利用均值不等式求最值,要注意使用的条件“一正、二定、三相等”,三个条件缺一不可,解题时,有时为了达到使用均值不等式的三个条件,需要通过配凑、裂项、转化、分离常数等变形手段,创设一个适合应用均值不等式的情境.2.不等式的应用题大都与函数相关联,在求最值时,均值不等式是经常使用的工具,但若对自变量有限制,一定要注意等号能否取到.五、当堂达标1.思考辨析(1)两个正数的积为定值,一定存在两数相等时,它们的和有最小值.( )(2)若a >0,b >0且a +b =4,则ab ≤4.( )(3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2x x -1.( ) 提示:(1)由a +b ≥2ab 可知正确.(2)由ab ≤⎝ ⎛⎭⎪⎫a +b 22=4可知正确.(3)xx -1不是常数,故错误.答案:(1)√(2)√(3)×2.若实数a ,b 满足a +b =2,则ab 的最大值为() A .1B .22C .2D .4答案:A解析:由均值不等式得,ab ≤⎝ ⎛⎭⎪⎫a +b 22=1. 3.已知0<x <1,则x (3-3x )取最大值时x 的值为() A .12 B .34C .23D .25答案:A解析:∵0<x <1,∴1-x >0,则x (3-3x )=3[x (1-x )]≤3×⎝ ⎛⎭⎪⎫x +1-x 22=34,当且仅当x =1-x ,即x =12时取等号. 4.已知x >0,求y =2xx 2+1的最大值.解:y =2x x 2+1=2x +1x.∵x >0,∴x +1x ≥2x ·1x =2,∴y ≤22=1,当且仅当x =1x ,即x =1时等号成立.。
不等式的性质教学教案第一章:不等式的引入1.1 不等式的概念:介绍不等式的定义,理解不等号(>,<,≥,≤)的含义。
1.2 实例解析:通过实际问题引入不等式,让学生感受不等式的应用。
1.3 解不等式:讲解如何解简单的不等式,如2x > 6。
第二章:不等式的基本性质2.1 性质1:不等式两边加(减)同一个数(式子),不等号方向不变。
2.2 性质2:不等式两边乘以(除以)同一个正数,不等号方向不变。
2.3 性质3:不等式两边乘以(除以)同一个负数,不等号方向改变。
第三章:不等式的运算3.1 加减法运算:讲解不等式中加减法的运算规则,举例说明。
3.2 乘除法运算:讲解不等式中乘除法的运算规则,举例说明。
3.3 复合不等式:介绍含有多个不等式的复合不等式,讲解求解方法。
第四章:不等式的应用4.1 最大值和最小值问题:利用不等式的性质求解最大值和最小值问题。
4.2 范围问题:利用不等式表示范围,求解实际问题。
4.3 线性规划:简单介绍线性规划问题,利用不等式求解最优解。
第五章:不等式的进一步性质5.1 不等式的传递性:讲解不等式的传递性质,即如果a > b且b > c,a > c。
5.2 不等式的比较:介绍如何比较两个不等式的大小,讲解不等式的排序。
5.3 不等式的恒等变形:讲解如何通过对不等式进行恒等变形,得到新的不等式。
第六章:不等式的绝对值性质6.1 绝对值不等式:介绍绝对值不等式的概念,如|x| > 5。
6.2 绝对值性质:讲解绝对值不等式的性质,如|a| ≥0,|a| = a 当a ≥0,|a| = -a 当a < 0。
6.3 绝对值不等式的解法:讲解如何解绝对值不等式,举例说明。
第七章:不等式的分式性质7.1 分式不等式:介绍分式不等式的概念,如1/(x-1) > 0。
7.2 分式性质:讲解分式不等式的性质,如当分子分母同号时,分式不等式的符号与分子分母的符号相同。
《不等式的性质》教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认识。
二、教学内容:1. 不等式的定义与性质2. 不等式的运算规则3. 不等式在实际问题中的应用三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的运算规则。
2. 教学难点:不等式在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究不等式的性质。
2. 运用案例分析法,让学生学会将不等式应用于实际问题。
3. 利用小组讨论法,培养学生的合作与交流能力。
五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。
2. 新课导入:讲解不等式的定义与性质,引导学生理解不等式的基本概念。
3. 案例分析:分析实际问题,让学生掌握不等式在解决问题中的应用。
4. 课堂练习:布置练习题,巩固所学的不等式性质与运算规则。
5. 小组讨论:分组讨论不等式在实际问题中的应用,培养学生的合作与交流能力。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评价:1. 课堂参与度:观察学生在课堂上的参与情况,是否积极回答问题,参与小组讨论。
2. 练习题的正确率:检查学生完成练习题的正确率,以评估他们对不等式性质的理解和运用能力。
3. 课后作业:评估学生课后作业的质量,包括解题思路的清晰性和答案的准确性。
4. 小组讨论报告:评估学生在小组讨论中的表现,包括他们的思考深度和与他人合作的有效性。
七、教学资源:1. 教学PPT:制作包含不等式性质的图表、示例和练习题的PPT,以便进行多媒体教学。
2. 练习题库:准备一系列不等式练习题,包括填空题、选择题和解答题,以供课堂练习和课后作业使用。
3. 小组讨论模板:提供小组讨论的报告模板,包括讨论问题、成员贡献和结论等部分。
八、教学进度安排:1. 第1周:介绍不等式的定义和基本性质。
2. 第2周:讲解不等式的运算规则和性质。
《不等式的性质》教案一、教学目标:1. 理解不等式的概念,掌握不等式的基本性质。
2. 能够运用不等式的性质解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 不等式的定义和基本性质。
2. 不等式的运算规则。
3. 不等式在实际问题中的应用。
三、教学重点:1. 不等式的基本性质。
2. 不等式的运算规则。
四、教学难点:1. 不等式的性质在实际问题中的应用。
五、教学方法:1. 讲授法:讲解不等式的定义、性质和运算规则。
2. 案例分析法:通过实际问题引导学生运用不等式的性质解决问题。
3. 小组讨论法:分组讨论不等式问题,培养学生的合作能力。
教学过程:一、导入:1. 引入不等式的概念,引导学生回顾已学过的不等式知识。
2. 提问:不等式有什么特点?如何表示不等式?二、讲解不等式的基本性质:1. 性质1:不等式两边加(减)同一个数(或式子),不等号方向不变。
2. 性质2:不等式两边乘(除)同一个正数,不等号方向不变。
3. 性质3:不等式两边乘(除)同一个负数,不等号方向改变。
三、讲解不等式的运算规则:1. 不等式的加减法规则。
2. 不等式的乘除法规则。
四、案例分析:1. 举例说明不等式的性质在实际问题中的应用。
2. 引导学生运用不等式的性质解决问题。
五、小组讨论:1. 分成小组,让学生讨论不等式问题。
2. 鼓励学生提出自己的解题思路和答案。
六、总结:1. 回顾本节课所学的不等式的性质和运算规则。
2. 强调不等式在实际问题中的应用。
教学评价:1. 课后作业:布置有关不等式的练习题,检验学生对知识的掌握程度。
2. 课堂问答:通过提问了解学生对不等式的理解和运用情况。
3. 小组讨论:评价学生在讨论中的表现,包括思考问题、合作能力等。
六、教学反馈与评价:1. 课后收集学生作业,分析其掌握不等式性质的情况。
2. 在课堂中随机提问,了解学生对不等式性质的理解程度。
3. 观察小组讨论,评估学生在团队合作中的表现以及解决实际问题的能力。
不等式的性质(教案)教学设计一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 不等式的定义及表示方法。
2. 不等式的基本性质。
3. 不等式的应用。
三、教学重点与难点1. 教学重点:不等式的概念、表示方法及基本性质。
2. 教学难点:不等式的应用。
四、教学方法1. 采用问题驱动法,引导学生探究不等式的性质。
2. 运用案例分析法,让学生解决实际问题。
3. 利用小组讨论法,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式在实际生活中的应用。
2. 讲解不等式的表示方法,引导学生掌握不等式的基本写法。
3. 探究不等式的基本性质,引导学生发现并证明不等式的性质。
4. 运用案例分析,让学生解决实际问题,巩固不等式的应用。
5. 课堂小结,总结本节课的主要内容和知识点。
6. 布置作业,巩固所学知识。
附:教学反思在教学过程中,要注意关注学生的学习情况,针对不同学生的特点进行针对性指导。
要注重培养学生的动手操作能力和思维能力,让学生在学习过程中体验到数学的乐趣。
在案例分析环节,要选取具有代表性的实例,引导学生运用所学知识解决实际问题,提高学生的应用能力。
六、教学评价1. 评价内容:学生对不等式概念的理解、不等式表示方法的掌握、不等式性质的应用。
2. 评价方式:课堂问答、作业批改、小组讨论、课后访谈。
3. 评价标准:a. 对不等式概念的理解:能正确表述不等式的定义,区分不等式与等式。
b. 对不等式表示方法的掌握:能熟练运用不等号表示大小关系,正确书写不等式。
c. 对不等式性质的应用:能运用不等式性质解决实际问题,正确进行不等式变形。
七、教学拓展1. 对比等式与不等式的异同,让学生深入理解不等式的概念。
2. 介绍不等式的起源和发展历程,激发学生学习兴趣。
3. 引导学生探究不等式与其他数学知识的关系,如代数、几何等。
不等式的基本性质教学设计-教案第一章:不等式的概念1.1 不等式的定义介绍不等式的概念,举例说明。
解释不等式中的“大于”、“小于”、“大于等于”、“小于等于”等符号的含义。
1.2 不等式的表示方法介绍不等式的标准形式和斜线形式。
演示如何书写不等式,并强调箭头和斜线的区别。
1.3 不等式的解集解释不等式的解集的概念。
演示如何表示不等式的解集,包括用数轴表示解集的方法。
第二章:不等式的基本性质2.1 不等式的传递性质介绍不等式的传递性质,即如果a < b且b < c,则a < c。
通过示例解释传递性质的应用。
2.2 不等式的同向加减性质介绍不等式的同向加减性质,即如果a < b,则a + c < b + c(c为正数)和a c > b c(c为负数)。
通过示例解释同向加减性质的应用。
2.3 不等式的反向乘除性质介绍不等式的反向乘除性质,即如果a < b,且c为正数,则ac < bc和a/c > b/c (c不为零)。
通过示例解释反向乘除性质的应用。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如直接解不等式、同向加减、反向乘除等。
通过示例演示如何解简单不等式。
3.2 复合不等式的解法介绍解复合不等式的方法,如先解不等式组、利用不等式的传递性质等。
通过示例演示如何解复合不等式。
3.3 不等式的应用介绍不等式的应用,如解决实际问题、求解最值等。
通过示例演示不等式在实际问题中的应用。
第四章:不等式的性质练习4.1 简单不等式的性质练习提供一些简单不等式,让学生练习解题,并解释解题过程。
强调解题中的关键步骤和常见错误。
4.2 复合不等式的性质练习提供一些复合不等式,让学生练习解题,并解释解题过程。
强调解题中的关键步骤和常见错误。
第五章:不等式的综合应用5.1 不等式的综合应用问题提供一些不等式的综合应用问题,让学生解决问题,并解释解题过程。
《不等式的性质》教案第一章:不等式的概念与基本性质1.1 不等式的定义与表示方法介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
学习使用“>”、“<”、“≥”、“≤”等符号表示不等式。
1.2 不等式的基本性质学习不等式的传递性质、反射性质和封闭性质。
掌握不等式的同向相加、反向相减、同向乘除等基本变换方法。
第二章:不等式的解法2.1 简单不等式的解法学习解一元一次不等式,例如:3x 7 > 2。
掌握不等式的解法步骤,包括移项、合并同类项、系数化等。
2.2 不等式的组解法学习解不等式组,例如:{3x 7 > 2, 2x + 5 ≤15}。
掌握解不等式组的步骤,包括画数轴、找出解集、合并解集等。
第三章:不等式的应用3.1 最大值与最小值的求解学习使用不等式求解函数的最大值和最小值问题。
掌握利用不等式转化为等式求解极值的方法。
3.2 不等式在实际问题中的应用学习将实际问题转化为不等式问题,并求解。
举例说明不等式在实际问题中的应用,如利润最大化、成本最小化等。
第四章:不等式的证明4.1 直接证明学习使用直接证明法证明不等式,例如:证明a+b ≥2√(ab)。
4.2 综合证明学习使用综合证明法证明不等式,例如:证明a²+ b²≥2ab。
4.3 反证法学习使用反证法证明不等式,例如:证明不等式a+b ≤2√(ab) 是错误的。
第五章:不等式的进一步性质5.1 不等式的恒等变形学习使用恒等变形法,如替换、移项、合并同类项等,保持不等式的恒等成立。
5.2 不等式的比例性质学习不等式的比例性质,例如:若a > b,且c > d,则ac > bd。
5.3 不等式的均值不等式学习使用均值不等式,如算术平均数不等式、几何平均数不等式等,求解不等式问题。
第六章:不等式的应用举例6.1 线性规划问题学习如何将线性规划问题转化为不等式问题。
(1),__(2),__(3)0,0__;(4)0,__(5)0,n na b b c a c a b c d a c b d a b c d ac bd a b n R a b a b n R ++>>⇒>>⇒++>>>>⇒>>∈⇒>>∈⇒; (1)(2),0__(0)(3),0__(0)(4),__a b b a a b c ac bc c a b c ac bc c a b c R a c b c >⇔<>>⇔>><⇔>>∈⇔++; ; 不等式性质与均值不等式知识梳理:1、_____0, _____0,____0a b a b a b ⇔->⇔-=⇔-<2、单向性:双向性:3、均值不等式:如果22,R,__2("")a b a b ab a b ∈+==那么当且仅当时取号 如果a,b是正数,那么___"").a b a b +==当且仅当时取号 运用它求最值要求条件: 。
22a b aba b+≥≥+ 4、不等式的证明方法:比较法:(1) 比差法:要证a>b, 只须证 a-b>0. 步骤:①作差 ;② 变形;③ 判断差式的正负;④结论(2) 比商法:要证a>b,b>0,只须证 a/b>1. 步骤:①作商;②变形;③判断商式与1的大小; ④结论 分析法:从要证的不等式出发,分析使这个不等式成立的充分条件,把证明这个不等式的问题转化这些条件具备的问题.如果能肯定这些条件都具备,那么就可以判定所证的不等式成立.这种证明方法叫做分析法. 即:执果索因。
注意书写格式。
综合法:利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所要求的不等式.这种证明方法叫做综合法. 即:由因导果。
典型示例:例1:判断下列各命题的真假,并说明理由.(1)若22bc ac >,则.b a > (2)若b a >,则.11b a < (3)若0,<<c b a ,则.bc a c < (4)若d c b a >>,,则.d b c a ->- (5)若,a b m N +>∈,则.mmb a > (6)若c a b a >>>,0,则.2bc a >解:(1)⇒≠⇒>0222c bc ac .b a >,是真命题.(2)可用赋值法:2,3-==b a ,有ba 11>,是假命题.(3)是假命题. (4)取特殊值:.3,2,1,5-====d c b a 有d b c a -<-,∴ 是假命题. (5)2,4,3=-==m b a ,则有.mmb a <假命题(6)bc a bc ab b c a ab a a b a >⎪⎪⎭⎪⎪⎬⎫>⎭⎬⎫>>>⇒⎭⎬⎫>>>22000, ∴是真命题.变式:1、实数d c b a 、、、满足条件:①d c b a <<,;②()()0>--c b c a ;③()()0<--d b d a ,则有( D )A .b d c a <<<B .d b a c <<<C .d b c a <<<D .b d a c <<<解:在数轴上表示出各数 ∵()()0>--c b c a ,∴b a 、在c 的同侧 ∵()()0<--d b d a ,∴b a 、在d 的异侧∵d c b a <<,∴把d c b a 、、、标在数轴上,只有如图一种情况 2、若d c b a >>,,则下面不等式中成立的一个是( D )(A )c b d a +>+ (B )bd ac > (C )dbc a > (D )b c ad -<- 3、若11<β<α<-,则下面各式中恒成立的是( A ).(A )02<β-α<- (B )12-<β-α<- (C )01<β-α<- (D )11<β-α<- 4、若c b a >>,则一定成立的不等式是( C )A .c b c a >B .ac ab >C .c b c a ->-D .cb a 111<< 【例2】1(06年安徽卷)设,a R ∈b ,已知命题:p a b =;命题222:22a b a bq ++⎛⎫≤⎪⎝⎭,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解:命题:p a b =是命题222:22a b a bq ++⎛⎫≤⎪⎝⎭等号成立的条件,故选B 。
2、(06年江苏卷)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 解:因为()()||||||a b a c b c a c b c -=---≤-+-,所以(A )恒成立;在(B )两侧同时乘以2,a 得()()()()43433110110a a a a a a a a a +≥+⇐-+-≥⇐---≥()()22110a a a ⇐-++≥,所以(B )恒成立;(C )中,当a>b 时,恒成立,a<b 时,不成立;(D≤恒成立,故选(C ) 【变式】1、(08江苏卷11)已知,,x y z R +∈,230x y z -+=,则2y xz的最小值 .32、(07上海理科13)已知,a b 为非零实数,且a b <,则下列命题成立的是(C)A 、22a b < B 、22a b ab < C 、2211ab a b< D 、b a a b < 3、(08陕西卷6)“18a =”是“对任意的正数x ,21ax x+≥”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例3】 设R x ∈,比较x+11与x -1的大小. 解:作差xx x x +=--+1)1(112, 1)当0=x 时,有x x -=+111; 2)当01<+x ,即1-<x 时,有x x-<+111; 3)当01>+x 但0≠x ,即01<<-x 或0>x 时,有∴x x->+111. 【变式】1、比较16+x 与24x x +的大小,其中R x ∈解:)()1(246x x x +-+1246+--=x x x )1()1(224---=x x x )1)(1(42--=x x ,)1)(1)(1(222+--=x x x )1()1(222+-=x x ,∴ 当1±=x 时,2461x x x +=+;当1±≠x 时,.1246x x x +>+2、设0,0>>b a ,且b a ≠,比较:b a b a ⋅与ab b a 的大小。
解:b a ab b a a b b a b a ba b a b a ---==)( ; 当0>>b a 时,0,1>>b a b a -,1)(>b a b a -∴ 当0>>a b 时,0,10<<<b a ba-1)(>ba ba -∴1)(>b a b a -∴即1>a b ba ba b a ,又0>a b b a ,a b a a b a b a >∴【例4】已知函数c ax x f -=2)(满足:.5)2(1,1)1(4≤≤--≤≤-f f 求)3(f 的取值范围解:∵,4)2(,)1(c a f c a f -=-= ∴)]1(4)2([31)],1()2([31f f c f f a -=-=故)]1(4)2([31)]1()2([39)3(f f f f c a f ---=-=)1(35)2(38f f -=由不等式的基本性质,得.20)3(13040)2(38385)2(1320)1(35351)1(4≤≤-⇒⎪⎪⎭⎪⎪⎬⎫≤≤-⇒≤≤-≤-≤⇒-≤≤-f f f f f【变式】已知①11≤+≤-b a ;②31≤-≤b a ,求:b a -3的取值范围.分析:此题是给代数式的字母的范围,求另外代数式的范围.分为两步来进行:(1)利用待定系数法将代数式b a -3用b a +和b a -表示.(2)利用不等式性质及题目条件确定b a -3的范围.解:设:b y x a y x b a y b a x b a )()()()(3-++=-++=-⎩⎨⎧==∴⎩⎨⎧-=-=+∴2113y x y x y x 由①+②×2得:231)(2)(21⨯+≤-++≤+-b a b a , 即:731≤-≤b a . 【例5】证明下列不等式:(1)已知c b a 、、是互不相等的正数,求证:abc b a c c a b c b a 6)()()(222222>+++++ 证明:∵0222>>+a bc c b ,, ∴abc c b a 2)(22>+ 同理可得:abc b a c abc c a b 2)(2)(2222>+>+,.三个同向不等式相加,得 a b c b a c c a b c b a 6)()()(222222>+++++ (2)求证)(2222222c b a a c c b b a ++≥+++++.证明:∵ab b a 222≥+,两边同加22b a +得222)()(2b a b a +≥+.即2)(222b a b a +≥+.∴)(222122b a b a b a +≥+≥+.同理可得:)(2222c b c b +≥+, )(2222a c a c +≥+. 三式相加即得)(2222222c b a a c c b b a ++≥+++++【变式】1、已知R c b a ∈,,,求证444222222().a b c a b b c c a abc a b c ++≥++≥++证明:∵ 44222a b a b +≥,44222b c b c +≥,44222c a c a +≥,三式相加,得:4442222222()2()a b c a b b c c a ++≥++,即444222222.a b c a b b c c a ++≥++同理有:222222a b b c a b c +≥;222222a b a c a bc +≥;222222b c a c abc +≥三式相加得:222222().a b b c c a abc a b c ++≥++2、已知:+∈R c b a ,,,求证:c b a cab b ac a bc ++≥++. 证明:.2,222c b aca bc c ab abc b ac a bc ≥+=≥+即 同理:a c ab b ac b c ab a bc 2,2≥+≥+).(22c b a c ab b ac abc ++≥⎪⎭⎫⎝⎛++∴ .c b a c ab b ac a bc ++≥++∴ 【例6】求下列函数的最值:(1)求221y x x=+的最小值解:2212y x x =+≥=,当且仅当221x x =即1x =±时取等号,故min 2y = (2)求22sin cos y x x =的最大值解:22222sin cos 1sin cos ()24x x y x x +=≤=,当且仅当22sin cos 4x x x k ππ=⇒=±+时取等号, 故1max 4y =(3)求函数xx y 321--=的最值. 解:当0>x 时,03,02>>x x,又32x x +≥=,当且仅当x x 32=,即26=x 时,函数xx 32+有最小值.62 ∴ .621max -=y 当0<x 时,03,02>->-x x ,又32()x x -+-≥=,当且仅当x x 32-=-,即x =时,函数)32(xx +-最小值.62 ∴ .621min +=y变式:(1)求41622++=x x y 的最大值. 解:(1)41622++=x x y 13163)1(162222+++=+++=x x x x .3326=≤当且仅当13122+=+x x 时,即22=x 2±=x 时,取得此最大值为.3(2)求函数1422++=x x y 的最小值,并求出取得最小值时的x 值. 解:1141142222-+++=++=x x x x y 3142=-⋅≥ 当且仅当11422+=+x x ,即1±=x 时取得此最小值为3 (3)若0,0>>y x ,且2=+y x ,求22y x +的最小值.解:xy y x 222≥+ ∴222)()(2y x y x +≥+即2)(222y x y x +≥+∵2=+y x ∴222≥+y x 即22y x +的最小值为2.当且仅当1==y x 时取得此最小值. 【例7】函数4522++=x x y 的最小值.分析:2414452222≥+++=++=x x x x y .要知道,41422+=+x x 无实数解,即2≠y ,所以原函数的最小值不是2.错误原因是忽视了等号成立的条件.故用换元法解:设242≥+=x t ,故).2(14522≥+=++=t t t x x y对号函数)2(1≥+=t tt y 为增函数,从而25212=+≥y . 【变式】求函数91022++=x x y 的最值.解:设392≥+=x t ,∴t t x x y 191022+=++=.当3≥t 时,函数t t y 1+=递增.故原函数的最小值为310313=+,无最大值. 【例8】求函数)1(2x x y -=的最大值)10(<<x解:∵10<<x ∴01>-x ∴当x x -=12即32=x 时 274)3122(4)1(2243=-++⋅≤-⋅⋅=xxx x x x y 即32=x 时274max =y 【变式】求函数)1(2x x y -=的最大值)10(<<x∵10<<x ∴1102<-<x ∴)1)(1(221)1(2222222x x x x x y --⋅⋅=-=274)3)1()1(2(213222=-+-+≤x x x ∴当33,1222=-=x x x 时274max 2=y 932max =y练习:1、(08江西卷9)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是A A .1122a b a b + B .1212a a bb + C .1221a b a b + D .122、(08浙江卷3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的D(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件3、(2009山东卷理)设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x , 若目标函数z=ax+by (a>0,b>0)的值是最大值为12,则23a b+的最小值为( ). A.625 B.38 C. 311 D. 4【解析】:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z (a>0,b>0) 过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时, 目标函数z=ax+by (a>0,b>0)取得最大12, 即4a+6b=12,即2a+3b=6, 而23a b +=2323131325()()26666a b b a a b a b ++=++≥+=,故选A. 4、(2009安徽卷文)“”是“且”的A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件【解析】易得a b c d >>且时必有a c b d +>+.若a c b d +>+时,则可能有a d c b >>且,选A 。