《自动控制原理》习题及解答03E.
- 格式:doc
- 大小:5.53 MB
- 文档页数:30
自动控制原理题目(含答案)自动控制原理题目(含答案)《自动控制原理》复习参考资料一、基本知识11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。
2、闭环控制系统又称为反馈控制系统。
3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。
4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。
5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。
6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。
7、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。
8、系统前向通道传递函数为G(s),其正反馈的传递函数为H (s),则其闭环传递函数为G(s)/(1- G(s)H(s))。
9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。
10、典型二阶系统中,ξ=0.707时,称该系统处于二阶工程最佳状态,此时超调量为4.3%。
11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。
12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。
13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。
14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。
15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。
16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。
17、对于典型二阶系统,惯性时间常数T愈大则系统的快速性愈差。
18、应用频域分析法,穿越频率越大,则对应时域指标t越小,即快速性越好s19最小相位系统是指S右半平面不存在系统的开环极点及开环零点。
20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、补偿校正与复合校正四种。
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
自动控制原理习题答案详解自动控制原理习题详解(上册)第一章习题解答1-2日常生活中反馈无处不在。
人的眼、耳、鼻和各种感觉、触觉器官都是起反馈作用的器官。
试以驾车行驶和伸手取物过程为例,说明人的眼、脑在其中所起的反馈和控制作用。
答:在驾车行驶和伸手取物过程的过程中,人眼和人脑的作用分别如同控制系统中的测量反馈装置和控制器。
在车辆在行驶过程中,司机需要观察道路和行人情况的变化,经大脑处理后,不断对驾驶动作进行调整,才能安全地到达目的地。
同样,人在取物的过程中,需要根据观察到的人手和所取物体间相对位置的变化,调整手的动作姿势,最终拿到物体。
可以想象蒙上双眼取物的困难程度,即使物体的方位已知。
1-3 水箱水位控制系统的原理图如图1-12所示,图中浮子杠杆机构的设计使得水位达到设定高度时,电位器中间抽头的电压输出为零。
描述图1-12所示水位调节系统的工作原理,指出系统中的被控对象、输出量、执行机构、测量装置、给定装置等。
图1-12 水箱水位控制系统原理图答:当实际水位和设定水位不相等时,电位器滑动端的电压不为零,假设实际水位比设定水位低,则电位器滑动端的电压大于零,误差信号大于零(0e >),经功率放大器放大后驱动电动机M 旋转,使进水阀门开度加大,当进水量大于出水量时(12Q Q >),水位开始上升,误差信号逐渐减小,直至实际水位与设定水位相等时,误差信号等于零,电机停止转动,此时,因为阀门开度仍较大,进水量大于出水量,水位会继续上升,导致实际水位比设定水位高,误差信号小于零,使电机反方向旋转,减小进水阀开度。
这样,经反复几次调整后,进水阀开度将被调整在一适当的位置,进水量等于出水量,水位维持在设定值上。
在图1-12所示水位控制系统中,被控对象是水箱,系统输出量水位高,执行机构是功率放大装置、电机和进水阀门,测量装置浮子杠杆机构,给定和比较装置由电位器来完成。
1-4 工作台位置液压控制系统如图1-13所示,该系统可以使工作台按照给定电位器设定的规律运动。
(西安电子科技大学出版社)习题2-1试列写题2-1图所示各无源网络的微分方程.M 0= 2.39VJ 11= 2.19X 10∙A ,试求在工作点(w 0, i 0}附近方=/(〃,的 规性化方程。
2-7设晶网管三相桥式全控整漉电路的怆入房为控制角α,输出r 为空战整流电压口,它们之间的 关系为 式中,U ⑷是整流电压的理想空竣(«•试推导其线性化方程式.2-8 ∙系统由如下方程祖组成,其中Xr(S)为输入,XKS)为输出,试绘制系统构造图,并求出闭 环传递函数。
2-9系统的微分方程组如下其中r 、K l . K- K 、、/、K 、、T 均为正常数,试建设系统构造图,并求系统的传递函数C(S)/R(s).图2-2图有双M 冷 ⑵(W <»U.之间的关系为i* =l0P(e""∕0.026-l),假设系统工作点在 2-6如题2∙6图所示电路,.极耳啦J4非钻盛曲F ,其电流L 和电压2-10试化简即2-10图所示的系统构造图.并求传递函数C(S)11R(S), K(S) C(S)/ C(S) R(S) 筑书规图所材 Gl C(S) G,卡G 5佛与函数 国S) C(S) G) 5 “七; Hl 弟统 £(S) M(S)2-16零初 设某 2-17 g (t) = 7-5e 6f . 咫2∙ 15图求系统 的传速函数, 始条件下的输出响试求该系统的传递 2-18系统的 W'> I 控制系统构造t f 1*1 2-16 W 系统构造图 R(S) ΛU) 2-15 E(S) C (Λ I I - L_rτ∏J ∙13图 系统G:" r ,(5) E(S)凤 F) R ⑸M ⑸松) ⅛4和脉冲响应函数, 单位脉冲响应为。
3-1 i 殳来统的墩专力桿式旬卜:(1) 0.2c(t) =2r(t)(2)0.04c(t) 0.24c(t) c(t) = r(t)试求系统闭环传递函数 ①(s),以及系统的单位脉冲响应 部初始条件为零。
解:(1) 因为 0.2sC(s) =2R(s)闭环传递函数_ 1_ 20.04s0.24s 1Ts 198%的数值。
若加热容器使水温按 10OC/min 的速度匀速上升,问温度计的稳态指示误差有 多大?Ts 1由一阶系统阶跃响应特性可知: c(4T)二98oo ,因此有 4T =1 min ,得出 T = 0.25 min 。
视温度计为单位反馈系统,则开环传递函数为单位脉冲响应: C(s)=10/s g(t) -10 t _0单位阶跃响应 c(t) C(s) =10/s 2c(t) = 10t(2)(0.04s 2 0.24s 1)C(s)二 R(s)C(s)R(s) 0.04s 20.24s 1单位脉冲响应: C(s)= 0.04s0.24s 1g(t)用宀n4t3单位阶跃响应 h " Wk 2; 16]s 6s (s 3)216g(t)和单位阶跃响应 c(t)。
已知全 闭环传递函数13-2 温度计的传递函数为 — ,用其测量容器内的水温,1min 才能显示出该温度的解法一 依题意,温度计闭环传递函数1G(s) 口G(s“4」 1 —①(s) Ts「K=”TV=1用静态误差系数法,当 r(t^10 t 时,10e ss 二—=10T = 2.5 C 。
K3-3 已知二阶系统的单位阶跃响应为c(t) =10-12.5e」.2t si n(1.6t 53.1o)试求系统的超调量b%、峰值时间t p和调节时间t s。
1 严+ y----解:c(t) =1 _ ---- e ~ sin(p 1 _U2豹n t + P)2 '二cos :二cos53.1° 二0.6t s 二 3.5 =3.2 =2.92(S)5n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
一、简答题1. 被控对象、被控量、干扰各是什么?答:对象:需进行控制的设备或装置的工作进程。
被控量:被控对此昂输出需按控制要求变化的物理量。
干扰:对生产过程产生扰动,使被控量偏离给定值的变量。
2. 按给定信号分类,控制系统可分为哪些类型?答:恒值控制系统、随动控制系统、程序控制系统。
3. 什么是系统的静态?答:被控量不随时间改变的平衡状态。
4. 什么是系统的动态?答:被控量随时间变化的不平衡状态。
5. 什么是系统的静态特性?答:系统再平衡状态下输出信号与输入信号的关系。
6. 什么是系统的动态特性?答:以时间为自变量,动态系统中各变量变化的大小、趋势以及相互依赖的关系。
7. 控制系统分析中,常用的输入信号有哪些?答:阶跃、斜坡、抛物线、脉冲。
8. (3次)传递函数是如何定义的?答:线性定常系统在零初始条件下输出响应量的拉氏变换与输入激励量的拉氏变换之比。
9. 系统稳定的基本条件是什么?答:系统的所有特征根必须具有负的实部的实部小于零。
10. 以过渡过程形式表示的质量指标有哪些?答:峰值时间t p 、超调量δ%、衰减比n d 、调节时间t s 、稳态误差e ss 。
11. 简述典型输入信号的选用原因。
答:①易于产生;②方便利用线性叠加原理;③形式简单。
12. 什么是系统的数学模型?答:系统的输出参数对输入参数的响应的数学表达式。
13. 信号流图中,支路、闭通路各是什么?答:支路:连接两节点的定向线段,其中的箭头表示信号的传送方向。
闭通路:通路的终点就是通路的起点,且与其他节点相交不多于一次。
14. 误差性能指标有哪些?答:IAE ,ITAE ,ISE ,ITSE二、填空题1. 反馈系统又称偏差控制,起控制作用是通过给定值与反馈量的差值进行的。
2. 复合控制有两种基本形式,即按参考输入的前馈复合控制和按扰动输入的前馈复合控制。
3. 某系统的单位脉冲响应为g(t)=10e -0.2t +5e -0.5t ,则该系统的传递函数G(s)为ss s s 5.052.010+++。
自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
第一章 自动控制的一般概念习题及答案1-1 根据题1-15图所示的电动机速度控制系统工作原理图,完成:(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1-1 所示。
1-2 题1-16图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。
图1-16 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1-3 图1-17为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
图1-17 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。
此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
第三章习题及答案3-1 已知系统脉冲响应如下,试求系统闭环传递函数Φ(s)。
t e t k 25.10125.0)(-=解 Φ()()./(.)s L k t s ==+001251253-2 设某高阶系统可用下列一阶微分方程近似描述T c t c t r t r t ∙∙+=+()()()()τ其中,0<(T-τ)<1。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττ C t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt T T d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从0.1到0.9所需时间) 当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ∴=--t T T T s [ln ln .]τ005=-+T T T[ln ln ]τ20=+-T T T [ln]3τ3-3 一阶系统结构图如题3-3图所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t (s ),试确定参数21,K K 的值。
解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。
3-4 在许多化学过程中,反应槽内的温度要保持恒定, 题3-4图(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。
(1) 若)(1)(t t r =,0)(=t n 两种系统从开始达到稳态温度值的63.2%各需多长时间? (2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。
解 (1)对(a )系统: 1101110)(+=+=s s K s G a , 时间常数 10=T 632.0)(=T h (a )系统达到稳态温度值的63.2%需要10个单位时间;对(b )系统:11011010110010110100)(+=+=Φs s s b , 时间常数 10110=T 632.0)(=T h (b )系统达到稳态温度值的63.2%需要0.099个单位时间。
(2)对(a )系统: 1)()()(==s N s C s G n 1.0)(=t n 时,该扰动影响将一直保持。
对(b )系统: 1011011011010011)()()(++=++==Φs s s s N s C s n 1.0)(=t n 时,最终扰动影响为001.010111.0≈⨯。
3-5 一种测定直流电机传递函数的方法是给电枢加一定的电压,保持励磁电流不变,测出电机的稳态转速;另外要记录电动机从静止到速度为稳态值的50%或63.2%所需的时间,利用转速时间曲线(如题3-5图)和所测数据,并假设传递函数为)()()()(a s s Ks V s s G +=Θ=可求得K 和a 的值。
若实测结果是:加10伏电压可得每分钟1200转的稳态转速,而达到该值50%的时间为1.2秒,试求电机传递函数。
[提示:注意)()(s V s Ω=a s K +,其中dtd t θω=)(,单位是弧度/秒] 解 依题意有: 10)(=t v (伏)ππω406021200)(=⨯=∞ (弧度/秒) (1)πωω20)(5.0)2.1(=∞= (弧度/秒) (2)设系统传递函数 as Ks V s s G +=Ω=)()()(0 应有πω401010lim )()(lim )(000==+⋅⋅=⋅=∞→→aK a s K s s s V s G s s s (3)[][]ate a K a s s L a K a s s K L s V s G L t -----=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+=⋅=1101110)(10)()()(1101ω 由式(2),(3)[][]ππω20140110)2.1(2.12.1=-=-=--a a e e aK得 5.012.1=--ae解出 5776.02.15.0ln =-=a (4) 将式(4)代入式(3)得 2586.74==a K π3-6 单位反馈系统的开环传递函数)5(4)(+=s s s G ,求单位阶跃响应)(t h 和调节时间t s 。
解:依题,系统闭环传递函数)1)(1(4)4)(1(4454)(212T s T s s s s s s ++=++=++=Φ ⎩⎨⎧==25.0121T T)4)(1(4)()()(++=Φ=s s s s R s s C =41210++++s C s C s C1)4)(1(4lim)()(lim 000=++=Φ=→→s s s R s s C s s34)4(4lim)()()1(lim 011-=+=Φ+=→-→s s s R s s C s s31)1(4lim)()()4(lim 042=+=Φ+=→-→s s s R s s C s st t e e t h 431341)(--+-=421=T T , ∴3.33.3111==⎪⎪⎭⎫ ⎝⎛=T T T t t s s 。
3-7 设角速度指示随动系统结构图如题3-7图。
若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少?解 依题意应取 1=ξ,这时可设闭环极点为02,11-=λ。
写出系统闭环传递函数Ks s Ks 101010)(2++=Φ 闭环特征多项式20022021211010)(⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛+=++=T s T s T s K s s s D比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 59.075.40''==T t s 1''<3-8 给定典型二阶系统的设计指标:超调量σ%5≤%,调节时间 s t 3<(s ),峰值时间1<p t (s ),试确定系统极点配置的区域,以获得预期的响应特性。
解 依题σ%5≤%, ⇒ )45(707.0︒≤≥βξ;35.3<=ns t ωξ,⇒ 17.1>n ωξ;np t ωξπ21-=1<,⇒ n ωξ21-14.3>综合以上条件可画出满足要求的特征根区域如图解3-8所示。
3-9 电子心律起博器心率控制系统结构图如题3-9图所示,其中模仿心脏的传递函数相当于一纯积分环节,要求:(1) 若ξ=0.5对应最佳响应,问起博器增益K 应取多大?(2) 若期望心速为60次/分钟,并突然接通起博器,问1秒钟后实际心速为多少?瞬时最大心速多大?解 依题,系统传递函数为2222205.005.0105.0)(nn n s s K s s Ks ωξωω++=++=Φ ⎪⎪⎩⎪⎪⎨⎧⨯==n n Kωξω205.0105.0 令 5.0=ξ可解出 ⎩⎨⎧==2020nK ω将 1=t (秒)代入二阶系统阶跃响应公式 ()βωξξξω+---=-t e t h n t n 221sin 11)(可得 000024.1)1(=h (次/秒)=00145.60(次/分) 5.0=ξ时,系统超调量 σ%=16.3% ,最大心速为163.1163.01(=+=)p t h (次/秒)=78.69(次/分)3-10 机器人控制系统结构图如题3-10图所示。
试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t (s ),超调量σ%2=%。
解 依题,系统传递函数为222121212112.)1()1()1(1)1()(n n ns s K K s K K s K s s s K K s s K s ωξωω++=+++=++++=ΦΦ由 ⎪⎩⎪⎨⎧=-=≤=--5.0102.0212n p oo t e ωξπσξπξ 联立求解得⎩⎨⎧==1078.0nωξ 比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ξωω 3-11 某典型二阶系统的单位阶跃响应如题3-11图所示。
试确定系统的闭环传递函数。
解 依题,系统闭环传递函数形式应为2222.)(nn ns s K s ωξωω++=ΦΦ 由阶跃响应曲线有:21)(lim )()(lim (0==⋅Φ=Φ=∞Φ→→K ss s s R s s h s s )⎪⎪⎩⎪⎪⎨⎧=-===-=--o oo o n p e t 25225.221212ξξπσξωπ 联立求解得 ⎩⎨⎧==717.1404.0nωξ,所以有95.239.19.5717.1717.1404.02717.12)(2222++=+⨯⨯+⨯=Φs s s s s3-12 设单位反馈系统的开环传递函数为 )12.0(5.12)(+=s s s G试求系统在误差初条件1)0(,10)0(==ee 作用下的时间响应。
解 依题意,系统闭环传递函数为 5.6255.62)(1)()()()(2++=+==Φs s s G s G s R s C s 当0)(=t r 时,系统微分方程为 0)(5.62)(5)(=+'+''t c t c t c 考虑初始条件,对微分方程进行拉氏变换[][]0)(5.62)0()(5)0()0()(2=+-+'--s C c s C s c c s s C s整理得 ()())0()0(5)(5.6252c c s s C s s'++=++ (1)对单位反馈系统有 )()()(t c t r t e -=, 所以110)0()0()0(101000()0()0(-=-='-'='-=-=-=e r c e r c )将初始条件代入式(1)得 2225.7)5.2(26)5.2(105.6255110)(++++-=++--=s s s s s s C 22225.7)5.2(5.747.35.7)5.2()5.2(10++-+++-=s s s)8.705.7sin(6.105.7sin 47.35.7cos 10)(5.25.25.2︒+-=--=---t e t e t et c t t t3-13 设题3-13图(a )所示系统的单位阶跃响应如题3-13图(b )所示。