高中物理数学物理法试题(有答案和解析)
- 格式:doc
- 大小:904.00 KB
- 文档页数:20
高中数学物理试题及答案1. 数学试题:题目1:已知函数 \( f(x) = 3x^2 - 5x + 2 \),请求解 \( f(-1) \) 的值。
答案:将 \( x = -1 \) 代入函数中,计算得 \( f(-1) = 3(-1)^2 - 5(-1) + 2 = 3 + 5 + 2 = 10 \)。
题目2:求解方程 \( 2x^2 - 7x + 3 = 0 \) 的根。
答案:使用求根公式,\( x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a} \),其中 \( a = 2 \),\( b = -7 \),\( c = 3 \)。
计算得 \( x = \frac{7 \pm \sqrt{49 - 24}}{4} = \frac{7 \pm\sqrt{25}}{4} = \frac{7 \pm 5}{4} \),因此方程的根为 \( x_1 = 3 \) 和 \( x_2 = \frac{1}{2} \)。
2. 物理试题:题目1:一个质量为 \( 5 \) 公斤的物体从静止开始自由下落,忽略空气阻力,求物体下落 \( 2 \) 秒后的速度。
答案:根据自由落体运动的公式 \( v = gt \),其中 \( g \) 是重力加速度,取 \( 9.8 \) 米/秒²,\( t \) 是时间。
因此 \( v = 9.8 \times 2 = 19.6 \) 米/秒。
题目2:一个电荷量为 \( 3 \times 10^{-6} \) 库仑的点电荷,与另一个电荷量为 \( -2 \times 10^{-6} \) 库仑的点电荷相距\( 0.1 \) 米,求它们之间的库仑力。
答案:使用库仑定律 \( F = k \frac{|q_1 q_2|}{r^2} \),其中\( k \) 是库仑常数,取 \( 8.99 \times 10^9 \) 牛顿·米²/库仑²,\( q_1 \) 和 \( q_2 \) 是两个电荷的电荷量,\( r \) 是它们之间的距离。
高中物理数学物理法题20套(带答案)一、数学物理法1.一透明柱体的横截面如图所示,圆弧AED 的半径为R 、圆心为O ,BD ⊥AB ,半径OE ⊥AB 。
两细束平行的相同色光1、2与AB 面成θ=37°角分别从F 、O 点斜射向AB 面,光线1经AB 面折射的光线恰好通过E 点。
已知OF =34R ,OB =38R ,取sin370.6︒=,cos 370.8︒=。
求:(1)透明柱体对该色光的折射率n ;(2)光线2从射入柱体到第一次射出柱体的过程中传播的路程x 。
【答案】(1)43;(2)54R 【解析】 【分析】 【详解】(1)光路图如图:根据折射定律sin(90)sin n θα︒-=根据几何关系3tan 4OF OE α== 解得37α︒= 43n =(2)该色光在柱体中发生全反射时的临界角为C ,则13sin 4C n == 由于sin sin(90)sin 530.8sin a C β︒︒=-==>光线2射到BD 面时发生全反射,根据几何关系3tan 82REH OE OH R R β=-=-=可见光线2射到BD 面时发生全反射后恰好从E 点射出柱体,有sin OBOGα= 根据对称性有2x OG =解得54x R =2.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。
坐标原点O有一粒子源,在xoy 平面向各个方向发射质量为m ,电量为q 的正电荷,粒子的速率均为v =qBdm。
进入II 区域时,只有速度方向平行于x 轴的粒子才能进入,其余被界面吸收。
不计粒子重力和粒子间的相互作用,求: (1)某粒子从O 运动到O '的时间; (2)在I 区域内有粒子经过区域的面积;(3)粒子在II 区域运动,当第一次速度为零时所处的y 轴坐标。
物理解题方法:数学物理法压轴难题综合题附答案一、高中物理解题方法:数学物理法1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷62.510C/kg qm=⨯、速率5110m/s v =⨯的带负电的粒子,忽略粒子间的相互作用及重力。
其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。
两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。
距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。
求:(1)磁感应强度B 1的方向和大小;(2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。
(可用反三解函数表示,如π1arcsin 62=)【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤;(3)17arcsinarcsin168π+【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径r R =则21v qvB m R=得11T B =方向垂直纸面向里。
(2)如图所示211()22L qU y mR v=⋅ 且要出电场04cm y ≤≤在磁场B 2中运动时22v qvB m r=合,cos v v a =合进入B 2后返回到边界EF 时,进出位置间距2cos y r a ∆=得22mv y qB ∆=代入得8cm y ∆=说明与加速电场大小无关。
高中数学物理试题及答案一、选择题(每题4分,共40分)1. 若函数\( f(x) = 2x^2 - 4x + 3 \),则\( f(2) \)的值为:A. 1B. 3C. 5D. 72. 在物理学中,光年是指:A. 光在一年内传播的距离B. 光在一年内传播的速度C. 光在一年内传播的时间D. 光在一年内传播的频率3. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,经过4秒后的速度为:A. 4m/sB. 6m/sC. 8m/sD. 10m/s4. 根据牛顿第二定律,力F与加速度a和质量m的关系是:A. \( F = ma \)B. \( F = ma^2 \)C. \( F = m/a \)D. \( F = a/m \)5. 一个圆的面积为\( \pi \),那么它的半径是:A. 1B. \( \sqrt{\pi} \)C. 2D. \( \sqrt{2} \)6. 根据欧姆定律,电阻R、电流I和电压V之间的关系是:A. \( I = VR \)B. \( I = \frac{V}{R} \)C. \( I = V + R \)D. \( I = V - R \)7. 一个物体从高度h自由落体,忽略空气阻力,其下落时间t与高度h的关系是:A. \( t = \sqrt{\frac{2h}{g}} \)B. \( t = \sqrt{2gh} \)C. \( t = \frac{h}{g} \)D. \( t = \frac{g}{h} \)8. 一个电路中,电阻R1和R2串联,总电阻R等于:A. \( R = R1 + R2 \)B. \( R = \frac{R1}{R2} \)C. \( R = R1 \times R2 \)D. \( R = \frac{R1 + R2}{R1 \times R2} \)9. 根据能量守恒定律,一个物体的动能和势能之和在没有外力作用下是:A. 增加的B. 减少的C. 保持不变的D. 不确定的10. 一个物体的质量为2kg,受到的重力为:A. 2NB. 10NC. 20ND. 40N二、填空题(每题4分,共20分)11. 圆的周长公式为\( C = \pi \times \)______。
高中物理数学物理法题20套(带答案)及解析一、数学物理法1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值 (2)若,的最大值【答案】(1)(2)22212v v v t g -∆=-【解析】 试题分析:(1)若,取最大值时,应该在抛出点处相遇 ,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v v v t g -∆=考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t 取得最大的条件,也可以运用函数法求极值分析.3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
甘肃省武威市第六中学高中物理物理解题方法:数学物理法压轴题易错题一、高中物理解题方法:数学物理法1.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值(2)若,的最大值【答案】(1)(2)22212v vvtg g-∆=-【解析】试题分析:(1)若,取最大值时,应该在抛出点处相遇,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v vvtg-∆=-考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t取得最大的条件,也可以运用函数法求极值分析.2.质量为M的木楔倾角为θ,在水平面上保持静止,质量为m的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F拉着木块匀速上滑,如图所示,求:(1)当α=θ时,拉力F有最小值,求此最小值;(2)拉力F最小时,木楔对水平面的摩擦力.【答案】(1)mg sin 2θ(2)12mg sin 4θ【解析】【分析】对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】(1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N联立以上各式解得:()sin 2cos mg F θθα=-.当α=θ时,F 有最小值,F min =mg sin 2θ.(2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=12mg sin 4θ. 【点睛】木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题.3.某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示.可视为质点的赛车从起点 A 出发,沿水平直线轨道运动L 后,由B 点进人半径为R 的光滑竖直半圆轨道,并通过半圆轨道的最高点C ,才算完成比赛.B 是半圆轨道的最低点.水平直线轨道和半圆轨道相切于B 点.已 知赛车质量m= 5kg ,通电后以额定功率P =2W 工作,进入竖直半圆轨道前受到的阻力恒为F 1=0.4N ,随后在运动中受到的阻力均可不计,L = 10.0m ,R = 0. 32m ,g 取l0m/s 2.求:(1)要使赛车完成比赛,赛车在半圆轨道的B 点对轨道的压力至少为多大? (2)要使赛车完成比赛,电动机至少工作多长时间?(3)若电动机工作时间为t 0=5s 当半圆轨道半径为多少时赛车既能完成比赛且飞出的水平距离最大?水平距离最大是多少? 【答案】(1)30N (2) 4s (3) 1.2m 【解析】试题分析:(1)赛车恰能过最高点时,根据牛顿定律:解得由B点到C 点,由机械能守恒定律可得:2211222B c mv mv mg R =+⋅a 在B 点根据牛顿定律可得:联立解得:54m/s B v gR ==则:630N F mg == (2)对赛车从A 到B 由动能定理得:解得:t=4s(3)对赛车从A 到C 由动能定理得:200122f Pt F L mg R mv --⋅=赛车飞出C 后有:解得:所以 当R=0.3m 时x 最大, x max =1.2m考点:牛顿第二定律;动能定理;平抛物体的运动.4.一路灯距地面的高度为h ,身高为L 的人以速度v 匀速行走,如图所示: (1)试证明人的头顶的影子做匀速直线运动; (2)求人影的长度随时间的变化率。
高考物理数学物理法试题(有答案和解析)及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
物理数学物理法练习题含答案及解析物理和数学是自然界的两个重要学科,它们之间有着紧密的联系。
物理数学是一门研究物理学中的数学方法和应用的学科,对于学习物理学和数学学科的学生来说,理解物理数学的基本概念和方法非常重要。
本文将为大家提供一些物理数学物理法的练习题,并附带答案及解析,希望能帮助大家加深对物理数学物理法的理解。
物理数学物理法练习题一:1. 对于一维的匀强磁场,其磁感应强度与位置关系为B(x)=B0(1-αx),求出在此磁场中的磁场力。
答案:由洛伦兹力公式F=q(v×B),其中q为电荷量,v为速度,B为磁感应强度。
在一维情况下,速度的方向与磁场垂直,即v⊥B。
则磁场力可表示为F=qvB=qvB0(1-αx)。
解析:根据洛伦兹力公式,磁场力的大小与电荷量、速度以及磁感应强度的乘积有关。
在一维匀强磁场中,磁感应强度与位置存在线性关系,根据此关系可以得到磁场力的表达式。
物理数学物理法练习题二:2. 在直角坐标系中,由一个点电荷产生的静电场强度为E=3xi+4yj,其中i和j为单位矢量,求出点电荷的电荷量。
答案:静电场的强度和电荷量的关系由高斯定律给出,即E=ρ/ε0,其中E为静电场强度,ρ为电荷密度,ε0为真空中的介电常数。
在此题中,静电场强度为E=3xi+4yj,代入高斯定律可得ρ/ε0=3xi+4yj。
解析:根据高斯定律,静电场的强度与电荷量的关系是一个线性关系。
通过求解此关系方程组,我们可以确定电荷量的值。
物理数学物理法练习题三:3. 一根长为L的均质细杆,质量为m,绕过其一端的固定轴按垂直于杆的方向以角速度ω旋转,求杆上离轴一端的质点的动能。
答案:质点的动能可表示为K=1/2Iω^2,其中K为动能,I为转动惯量,ω为角速度。
对于质点来说,其距离轴的距离为r=L,转动惯量为I=1/3mL^2。
代入公式,动能可表示为K=1/2(1/3mL^2)ω^2=1/6mL^2ω^2。
解析:根据转动惯量的定义和动能的定义,我们可以通过计算转动惯量和角速度的乘积来确定质点的动能。
高中物理数学物理法题20套(带答案)含解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mvqv BR='⑨1mvRqB'=⑩带电粒子在磁场中圆周运动的周期为T12π2πR mTv qB'==⑪在磁场中运动时间2π(π2)2πt Tα--=⑫联立⑪⑫得663π10s9.4210st--=⨯=⨯2.如右图所示,一位重600N的演员,悬挂在绳上.若AO绳与水平方向的夹角为37︒,BO绳水平,则AO、BO两绳受到的力各为多大?若B点位置往上移动,则BO绳的拉力如何变化?(孩子:你可能需要用到的三角函数有:3375sin︒=,4cos375︒=,3374tan︒=,4373cot︒=)【答案】AO绳的拉力为1000N ,BO绳的拉力为800N,OB绳的拉力先减小后增大.【解析】试题分析:把人的拉力F沿AO方向和BO方向分解成两个分力,AO绳上受到的拉力等于沿着AO绳方向的分力,BO绳上受到的拉力等于沿着BO绳方向的分力.根据平衡条件进行分析即可求解.把人的拉力F沿AO方向和BO方向分解成两个分力.如图甲所示由平衡条件得:AO 绳上受到的拉力为21000sin 37OA GF F N === BO 绳上受到的拉力为1cot 37800OB F F G N ===若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示:由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.3.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在粘性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为p 04E ≤≤J ,距离抛出点正下方O 点右方0.4m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少?(2)得分最大时,小弹丸A 经过圆弧最高点时对圆轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节)弹簧的弹性势能范围为p 04E ≤≤J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大? 【答案】(1)2J (2) 30N (3) 0.5m ,1m 【解析】 【分析】 【详解】(1)根据机械能守恒定律得:21p 0122E v mg R m =+⋅ A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有:mv 1=2mv 2200122gt R =x =v 2t 0解得:E p =2J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得:21N v F mg m R+=解得:F N =30N由牛顿第三定律知:F 压=F N =30N(3)根据2p 1122E mv mg R =+⋅ mv 1=2mv 2 2R =12gt 2,x =v 2t联立解得:x =其中E p 最大为4J ,得 R =0.5m 时落点离O ′点最远,为:x m =1m4.如图所示,在xOy 平面的第一、第四象限有方向垂直于纸面向里的匀强磁场;在第二象限有一匀强电场,电场强度的方向沿y 轴负方向。
高中物理数学物理法试题(有答案和解析)一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。
2.如图所示,在竖直分界线MN的左侧有垂直纸面的匀强磁场,竖直屏与MN之间有方向向上的匀强电场。
在O处有两个带正电的小球A和B,两小球间不发生电荷转移。
若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。
已知小球B的质量是小球A的1n倍,电荷量是小球A的2n倍。
若测得小球A在磁场中运动的半径为r,小球B击中屏的位置的竖直偏转位移也等于r。
两小球重力均不计。
(1)将两球位置互换,解锁弹簧后,小球B在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A小球向左运动求A、B两小球打在屏上的位置之间的距离。
【答案】(1)2n,21nn;(2)123rrn n-【解析】【详解】(1)两小球静止反向弹开过程,系统动量守恒有A1Bmv n mv=①小球A、B在磁场中做圆周运动,分别有2AAAmvqv Br=,21B2BBn mvn qv Br=②解①②式得A2Br n r =磁场运动周期分别为A 2πm T qB=,1B 22πn m T n qB =解得运动时间之比为AA 2B B 122T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。
水平方向有A A L v t =③竖直方向有2A A A 12y a t =④ 由牛顿第二定律得A qE ma =⑤解③④⑤式得2A A()2qE L y m v =⑥ 小球B 在电场中做类平抛运动,同理有22B 1B()2n qE L y n m v =⑦ 由题意知B y r =⑧应用几何关系得B A 2y y r y ∆=+-⑨解①⑥⑦⑧⑨式得123r y r n n ∆=-3.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。
已知磁场的磁感应强度大小为,不计带电粒子的重力。
求: (1)带电粒子的比荷; (2)C 点的坐标。
【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ=== 解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。
4.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止).(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1sin 42mg θ 【解析】 【分析】(1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解.(2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:Fcos mgsin f αθ=+N Fsin F mgcos αθ+=N f F μ=联立解得:()2mgsin F cos θθα=-则当=αθ时,F 有最小值,2min F mgsin =θ(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即()f Fcos αθ='+当=αθ时,12242f mgsin cos mgsin θθθ='= 【点睛】木块放在斜面上时正好匀速下滑隐含动摩擦因数的值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,求出外力F 的表达式,讨论F 取最小值的条件.5.图示为一由直角三角形ABC 和矩形CDEA 组成的玻璃砖截面图。
2AB L =,3DC L =,P 为AB 的中点,30θ︒=。
与BC 平行的细束单色光MP 从P 点入射,折射后恰好到达C 点。
已知光在真空中速度大小为c 。
求: (1)玻璃的折射率n ; (2)光从射入玻璃砖到第一次射出所用的时间t 。
【答案】3(2)332Lc【解析】 【详解】(1)在玻璃砖中的光路如图所示:由几何关系知6030i r ︒︒==由折射定律sin sin in r=得3n =(2)设玻璃的临界角为C ,则1sin C n=由几何关系知60β︒=由于33sin sin C β=>=PC 光在BD 面发生全反射,由几何关系知30︒=α由于1sin sin 2C α=< 光从射入玻璃砖到第一次从F 点射出,由几何关系知PC L =,cos 2DC LFC α== 光从射入玻璃砖到第一次射出所用的时间PC FCt v+=结合c n v=解得33Lt =6.某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示.可视为质点的赛车从起点 A 出发,沿水平直线轨道运动L 后,由B 点进人半径为R 的光滑竖直半圆轨道,并通过半圆轨道的最高点C ,才算完成比赛.B 是半圆轨道的最低点.水平直线轨道和半圆轨道相切于B 点.已 知赛车质量m= 5kg ,通电后以额定功率P =2W 工作,进入竖直半圆轨道前受到的阻力恒为F 1=0.4N ,随后在运动中受到的阻力均可不计,L = 10.0m ,R = 0. 32m ,g 取l0m/s 2.求:(1)要使赛车完成比赛,赛车在半圆轨道的B 点对轨道的压力至少为多大? (2)要使赛车完成比赛,电动机至少工作多长时间?(3)若电动机工作时间为t 0=5s 当半圆轨道半径为多少时赛车既能完成比赛且飞出的水平距离最大?水平距离最大是多少? 【答案】(1)30N (2) 4s (3) 1.2m 【解析】试题分析:(1)赛车恰能过最高点时,根据牛顿定律:解得由B点到C 点,由机械能守恒定律可得:2211222B c mv mv mg R =+⋅a 在B 点根据牛顿定律可得:联立解得:54m/s B v gR ==则:630N F mg == (2)对赛车从A 到B 由动能定理得:解得:t=4s(3)对赛车从A 到C 由动能定理得:200122f Pt F L mg R mv --⋅=赛车飞出C 后有:解得:所以 当R=0.3m 时x 最大, x max =1.2m考点:牛顿第二定律;动能定理;平抛物体的运动.7.如图所示,电流表A 视为理想电表,已知定值电阻R 0=4Ω,滑动变阻器R 阻值范围为0~10Ω,电源的电动势E =6V .闭合开关S ,当R =3Ω时,电流表的读数I =0.5A 。
(1)求电源的内阻。
(2)当滑动变阻器R 为多大时,电源的总功率最大?最大值P m 是多少?【答案】(1)5Ω;(2)当滑动变阻器R 为0时,电源的总功率最大,最大值P m 是4W 。
【解析】 【分析】 【详解】(1)电源的电动势E =6V .闭合开关S ,当R =3Ω时,电流表的读数I =0.5A ,根据闭合电路欧姆定律可知:0EIR R r=++得:r =5Ω(2)电源的总功率P=IE得:20E P R R r=++当R =0Ω,P 最大,最大值为m P ,则有:4m P =W8.如图所示,已知电源电动势E =5 V ,内阻r =2 Ω,定值电阻R 1=0.5 Ω,滑动变阻器R 2的阻值范围为0~10 Ω。
求:(1)当滑动变阻器R 2接入电路的阻值为多大时,电阻R 1消耗的功率最大,最大功率是多少。