飞机副翼操纵系统原理
- 格式:doc
- 大小:4.91 MB
- 文档页数:28
飞行原理简介飞行原理简介(一)要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。
这些问题将分成几个部分简要讲解。
一、飞行的主要组成部分及功用到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:1.机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。
在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。
机翼上还可安装发动机、起落架和油箱等。
不同用途的飞机其机翼形状、大小也各有不同。
2.机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3.尾翼——尾翼包括水平尾翼和垂直尾翼。
水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。
垂直尾翼包括固定的垂直安定面和可动的方向舵。
尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。
其次还可为飞机上的其他用电设备提供电源等。
现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。
除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是*空气动力升空飞行的。
在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。
流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。
在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。
机翼通常有平直翼、后掠翼、三角翼等。
机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。
近来先进飞机还采用了边条机翼、前掠机翼等平面形状。
左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。
即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。
为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。
襟翼平时处于收上位置,起飞着陆时放下。
3)尾翼尾翼分垂直尾翼和水平尾翼两部分。
1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。
通常垂直尾翼后缘设有方向舵。
飞行员利用方向舵进行方向操纵。
当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。
同样,蹬左舵时,方向舵左偏,机头左偏。
某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。
2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。
低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。
飞行操纵系统摘要:飞行操纵系统是保障民航飞机在天空安全可靠飞行的重要系统。
它是飞机上所有用来传递操纵指令,驱动舵面运动的所有部件和装置的总和,用于控制飞机的飞行姿态、气动外形和乘坐品质。
波音737NG作为典型的液压助力机械式主操作系统,对其研究具有重要意义。
因此,本文将结合波音737NG对飞机的主操纵系统和辅助操纵系统做主要介绍。
正文:飞行操纵系统分类很多,根据操纵信号的来源不同可分为人工飞行操纵系统和自动飞行操纵系统。
自动飞行操纵系统操纵信号由系统本身产生,而人工飞行操纵系统操纵信号由驾驶员产生。
在人工操纵系统中,通常又分为主操纵系统和辅助操纵系统。
主操纵系统指驱动副翼、升降舵和方向舵,使飞机产生绕纵轴、横轴、立轴转动的系统。
其他驱动扰流板、前缘装置、后缘襟翼和水平安定面配平等辅助操纵面的操纵系统均称为辅助操纵系统。
一、飞行主操作系统1、副翼飞机副翼通常铰接在机翼外侧后缘,在大型飞机的组合横向操纵系统中,通常有4块副翼----2块内副翼和2块外副翼。
低速飞行时,内外副翼可以共同进行横向操作;高速飞行时,仅有内副翼进行横向操作。
副翼系统操纵飞机绕纵轴进行滚转运动,运动期间,一侧机翼的副翼上偏,另一侧机翼的副翼下偏,两侧机翼产生升力差,飞机完成滚转。
图一典型副翼操纵系统原理如图所示为737NG飞机的副翼操纵系统,采用并列驾驶盘式操纵机构,两驾驶盘通过互联鼓轮柔性相连。
当转动任意驾驶盘产生操纵信号都可以按如下路径向后传递:驾驶盘、左侧副翼鼓轮、钢索、副翼输入扇形轮、副翼输入扭力管、输入摇臂和输入杆、液压助力器、输出摇臂和输出扭力管、输出鼓轮、钢索、扇形轮、传动杆、副翼。
其中关键部件为驾驶盘柔性互联机构、液压助力器与副翼感觉定中机构。
驾驶盘柔性互联机构用于防止驾驶盘卡阻。
正常情况下,操纵一侧驾驶盘,另一侧随动。
当右侧驾驶盘卡阻,左侧机长可以操纵左驾驶盘通过左钢索系统操纵副翼;当左驾驶盘卡阻时,副驾驶可以使用右驾驶盘操纵扰流板进行应急横滚操作。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载飞机副翼操纵系统原理地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容张家界航空工业职业技术学院毕业设计题目:飞机副翼操纵系统分析系别:数控工程系专业:航空机电设备维修姓名:学号:指导老师:摘要本论文主要阐述了关于飞机副翼的组成,个组成部件的工作原理,调整及日常维护方法。
飞机的操纵性又可以称为飞机的操纵品质,是指飞机对操纵的反应特性。
操纵则是飞行员通过驾驶机构改变飞机的飞行状态。
改变飞机纵向运动(如俯仰)的操纵称为纵向操纵,主要通过推、拉驾驶杆,使飞机的升降舵或全动平尾向下或向上偏转,产生俯仰力矩,使飞机作俯仰运动。
使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。
关键词:驾驶杆传动杆传动机构载荷感觉器AbstractThe main thesis expounded aileron plane about the composition of component parts of the working principle, adjustment and routine maintenance methods. Manipulate the plane of the plane can be referred to as the quality of the manipulation means to manipulate the plane's response characteristics. Manipulation is to change the pilot institutions have passed the driving plane flight status. Vertical plane to change the sport (such as pitch) of manipulation known as vertical manipulation, mainly through the push, pull stick, so that the elevator or the whole plane Hirao moving downward or upward deflection, resulting in pitching moment, so that plane forpitch sports. Plane around the longitudinal axis so that rotation of the body known as the lateral manipulation manipulation, mainly by the plane's aileron deflection to achieve.Key word: Stick load transmission rod drive mechanism sensilla 目录TOC \o "1-3" \h \z \u HYPERLINK \l "_Toc293490176" 摘要 PAGEREF _Toc293490176 \h 1HYPERLINK \l "_Toc293490177" Abstract PAGEREF_Toc293490177 \h 2HYPERLINK \l "_Toc293490178" 目录 PAGEREF_Toc293490178 \h 3HYPERLINK \l "_Toc293490179" 第1章副翼的结构 PAGEREF _Toc293490179 \h 1HYPERLINK \l "_Toc293490180" 1.1 概述 PAGEREF_Toc293490180 \h 1HYPERLINK \l "_Toc293490181" 1.2 副翼的功用及结构 PAGEREF _Toc293490181 \h 1HYPERLINK \l "_Toc293490182" 1.3 副翼与机翼的连接 PAGEREF _Toc293490182 \h 2HYPERLINK \l "_Toc293490183" 1.4 作用在副翼上的外载荷PAGEREF _Toc293490183 \h 3HYPERLINK \l "_Toc293490184" 1.5 副翼结构中力的传递 PAGEREF _Toc293490184 \h 4HYPERLINK \l "_Toc293490185" 第2章副翼组成和传动 PAGEREF _Toc293490185 \h 5HYPERLINK \l "_Toc293490186" 第3章载荷感觉器 PAGEREF _Toc293490186 \h 7HYPERLINK \l "_Toc293490187" 第4章液压助力器 PAGEREF _Toc293490187 \h 10HYPERLINK \l "_Toc293490188" 4.1 基本工作原理 PAGEREF_Toc293490188 \h 10HYPERLINK \l "_Toc293490189" 4.2 ZL-5液压助力器分析 PAGEREF _Toc293490189 \h 12HYPERLINK \l "_Toc293490190" 第5章副翼反效 PAGEREF_Toc293490190 \h 17HYPERLINK \l "_Toc293490191" 第6章副翼操纵系统的维修PAGEREF _Toc293490191 \h 18HYPERLINK \l "_Toc293490192" 6.1 副翼的更换 PAGEREF_Toc293490192 \h 18HYPERLINK \l "_Toc293490193" 6.2 副翼调整片拆装 PAGEREF _Toc293490193 \h 19HYPERLINK \l "_Toc293490194" 6.3 副翼系统的调整 PAGEREF _Toc293490194 \h 20HYPERLINK \l "_Toc293490195" 6.4 副翼故障分析 PAGEREF_Toc293490195 \h 20HYPERLINK \l "_Toc293490196" 全文总结 PAGEREF_Toc293490196 \h 22HYPERLINK \l "_Toc293490197" 致谢 PAGEREF_Toc293490197 \h 23HYPERLINK \l "_Toc293490198" 参考文献 PAGEREF_Toc293490198 \h 24第1章副翼的结构1.1 概述飞机操纵品质的好坏是一个与飞行员有关的带一定主观色彩的问题,但是仍然有一些基本的标准来衡量飞机的操纵品质。
飞机转向原理
飞机转向原理是指飞机改变其飞行方向或航向的机制和方法。
飞机转向主要依靠飞行控制系统和操纵设备来实现。
以下是一些常见的飞机转向原理:
1. 方向舵:方向舵位于飞机的垂直尾翼上,用于控制飞机的左右转向。
当飞行员操作方向舵,改变其位置时,会产生一个扭矩,使飞机发生转向运动。
2. 副翼:副翼位于飞机的主翼上,用于控制飞机的滚转运动。
当飞行员操作副翼,使其升降,可以改变飞机的横摇姿态,从而改变其飞行方向。
3. 运动方向:改变飞机的运动方向也可以实现转向。
飞行员可以调整油门杆和俯仰控制,来改变飞机的速度和俯仰角度,从而改变其飞行方向。
4. 空气动力学:飞机在飞行过程中受到空气动力学的影响,比如升力、阻力和侧向力等。
通过调整飞机的气动特性,可以实现转向操作。
5. 自动驾驶系统:现代飞机通常配备了自动驾驶系统,可以通过计算机控制和调整飞机的转向运动。
飞行员可以通过输入目标航向或使用导航系统来实现飞机的导航和转向。
总之,飞机转向原理是通过操纵飞机的控制设备、调整飞机的运动参数或利用空气动力学来改变飞机的飞行方向。
这些原理
的应用使得飞机能够实现精确的转向操作,实现导航和飞行目标的达成。
飞控系统工作原理或过程
飞控系统是飞机上的重要部件,它通过控制飞机的姿态、飞行
方向和稳定性来确保飞行安全。
飞控系统的工作原理和过程涉及到
多个方面,我会从多个角度来解释。
首先,飞控系统的工作原理涉及到传感器的使用。
飞控系统通
过安装在飞机上的传感器来获取飞机的姿态、速度、高度等重要参数。
这些传感器包括陀螺仪、加速度计、空速表、高度表等,它们
不断地向飞控系统提供飞机的状态信息。
其次,飞控系统的工作原理还涉及到控制执行器的使用。
一旦
飞控系统接收到传感器提供的飞机状态信息,它会根据预设的飞行
控制逻辑来计算出相应的控制指令。
这些指令会传输给飞机上的执
行器,如副翼、升降舵、方向舵等,以调整飞机的姿态和飞行方向。
另外,飞控系统的工作原理还包括飞行控制逻辑的设计。
飞控
系统中的飞行控制逻辑是由飞行控制计算机来实现的,它根据飞机
的状态信息和飞行任务要求,计算出相应的控制指令。
这些指令可
以是对姿态的调整、对飞行方向的改变,甚至是对发动机推力的调节,以确保飞机的稳定飞行。
此外,飞控系统还涉及到飞行员的操作和干预。
虽然飞控系统
可以自动执行许多飞行任务,但飞行员仍然是飞机上的重要控制者。
飞行员可以通过操纵飞机上的控制杆、脚蹬等来对飞控系统的指令
进行调整和干预,以应对特殊情况或执行特定飞行任务。
总的来说,飞控系统的工作原理和过程涉及到传感器的信息获取、控制执行器的指令传递、飞行控制逻辑的计算和飞行员的操作
干预等多个方面,它们共同确保飞机的安全飞行。
操纵飞机俯仰,横滚和转弯的原理
操纵飞机的俯仰、横滚和转弯原理是基于飞行动力学的基本原理和飞行控制系统的操作。
下面是每个方面的原理解释:
1. 俯仰(Pitch):俯仰是飞机绕横轴旋转的动作,即飞机的
头部向上或向下倾斜。
操纵俯仰通常是通过改变机身的升降舵和/或后掠翼的位置来实现的。
当升降舵或后掠翼上仰时,将
改变飞机的升力分布,导致飞机头部向上倾斜;反之,向下倾斜。
这种变化使得飞机前部向上或向下移动,从而改变飞机的飞行姿态。
2. 横滚(Roll):横滚是飞机绕纵轴旋转的动作,即飞机向一
侧倾斜。
操纵横滚通常是通过改变飞机的副翼或副翼后掠翼的位置来实现的。
当副翼或副翼后掠翼向上或下方移动时,会改变对应部分的升力分布,使飞机在一侧倾斜。
这种变化将引起飞机的转向,从而改变飞机的飞行方向。
3. 转弯(Turn):转弯是指在平飞状态下改变飞机的飞行方向。
在飞机转弯时,操纵飞机的主要控制是通过改变副翼的位置,然后借助侧向推力(若有的话)提供辅助。
当副翼偏向一侧时,该侧的升力将增加,导致飞机向该侧转向。
同时,通过提供适当的横向推力,可以进一步帮助飞机完成转弯动作。
总之,通过操纵飞机的控制面,如升降舵、副翼和后掠翼等,可以改变飞机的升力分布,从而引起俯仰、横滚和转弯的动作。
飞机的操纵通过飞行员或自动飞行控制系统完成。
飞机副翼操纵系统原理介绍飞机的副翼操纵系统是飞机机翼上主翼之外的另一对操纵面。
副翼的主要功能是在飞行过程中提供飞机的横向控制。
本文将介绍飞机副翼操纵系统的原理以及其在飞机操纵中的作用。
原理飞机副翼操纵系统基于一个简单的原理:改变副翼操纵面的迎角,以改变飞机横向运动的方向和幅度。
副翼的操纵面可以向上或向下旋转,这取决于操纵杆的操作。
操纵杆连接到副翼操纵系统,通过控制连接杆和滑轨等机械装置,将操纵杆的运动转化为副翼的运动。
当操纵杆向左或向右被推动时,副翼的操纵面将自动向下或向上旋转。
副翼的运动会改变飞机机翼的升力分布,从而引起飞机的滚转运动。
具体来说,当副翼操纵面向下旋转时,副翼所在的机翼区域产生更大的升力,飞机将向相应的一侧滚转。
相反,当副翼操纵面向上旋转时,副翼所在的机翼区域产生较小的升力,飞机将向相应的一侧滚转。
副翼操纵系统还包括一些辅助设备,如副翼传动机构和飞控计算机。
副翼传动机构负责将操纵杆的运动传递给副翼操纵面,并确保操纵系统的平稳和可靠运动。
飞控计算机则负责监控和控制副翼操纵系统的运动,以确保飞机的稳定性和可操控性。
作用飞机副翼操纵系统在飞机横向控制中起着重要的作用。
它能够快速且精确地改变飞机的滚转运动,提供飞行过程中的横向稳定性和可操控性。
具体来说,飞机副翼操纵系统的作用包括:1.提供滚转控制:通过改变副翼的迎角,飞机可以实现左右滚转运动,从而使飞机改变飞行方向或进行机动飞行。
2.维持横向稳定性:飞机副翼操纵系统可以对抗外界环境因素(如气流和气象条件)对飞机的横向稳定性产生的影响,保持飞机在水平方向上的平衡和稳定。
3.提供飞机的横向操纵能力:飞机副翼操纵系统通过改变副翼的迎角,可以使飞机旋转和转弯,在空中执行各种横向机动动作,为飞行员提供操控飞机的自由度。
4.反作用力的平衡:飞机的副翼操纵系统可以与其他控制面(如方向舵)相互协调,使得飞机的横向控制更加平衡和协调。
5.提高安全性和可靠性:飞机副翼操纵系统的设计和技术要求十分严格,以确保其在各种飞行环境和失效情况下的安全性和可靠性。
飞机的副翼和升降原理飞机的副翼和升降是实现飞行控制的重要部分。
副翼一般用于横向控制,而升降则用于纵向控制。
本文将详细解析飞机副翼和升降的工作原理,并进行适当的说明。
首先,我们来探讨副翼的工作原理。
副翼通常装置在飞机的两侧,位于主翼和机身之间。
副翼通过改变其角度,可以改变空气动力学力,从而产生控制飞机的作用。
当副翼在一个侧向上升角度时,该侧的升力将增加,从而引起飞机向该侧倾斜。
相反,当副翼在一个侧向下降角度时,该侧的升力将减小,从而使飞机向相反的一侧倾斜。
副翼的控制一般通过操纵飞机的操纵杆或脚踏板来实现。
具体来说,当飞行员向左或向右施加横向力时,副翼会分别升起或下降,从而使飞机发生侧倾运动。
这种侧倾运动可以通过改变副翼的升降角度来控制,从而产生必要的横向力,使飞机朝期望的方向行进。
接下来,我们来讨论升降的工作原理。
升降用于控制飞机的上升和下降。
通常情况下,升降装置位于飞机尾部的水平安定面上。
升降通过改变水平安定面的升降角度,改变所产生的升力,从而实现飞机的垂直运动。
当升降面向上升时,升力增加,飞机将朝上升方向倾斜。
相反,当升降面向下降时,升力减小,飞机将朝下降方向倾斜。
通过连续的调整升降面的升降角度,飞行员可以控制飞机的爬升、下降和保持平飞状态。
升降的控制通常通过飞行员操作驾驶杆上的操纵轴或通过脚踏板上的操纵轴来完成。
当飞行员向前或向后推动操纵轴时,升降会相应地改变升降面的升降角度,从而改变升力的大小,引起飞机的垂直运动。
为了更好地控制飞机的副翼和升降,飞机通常配备了辅助设备。
例如,飞行员可以使用配备在操纵杆上的升降轮或副翼轮,通过旋转这些控制装置来调整副翼或升降的角度。
此外,飞机还可以使用附件设备,如自动驾驶系统和电子飞行仪表,来辅助副翼和升降的控制。
总结起来,飞机的副翼和升降是实现飞行控制的重要部分。
副翼主要用于横向控制,通过改变其升降角度来产生横向力,而升降则用于垂直控制,通过改变水平安定面的升降角度来产生升力,从而实现飞机的上升和下降。
张家界航空工业职业技术学院毕业设计题目:飞机副翼操纵系统分析系别:数控工程系专业:航空机电设备维修姓名:学号:指导老师:摘要本论文主要阐述了关于飞机副翼的组成,个组成部件的工作原理,调整及日常维护方法。
飞机的操纵性又可以称为飞机的操纵品质,是指飞机对操纵的反应特性。
操纵则是飞行员通过驾驶机构改变飞机的飞行状态。
改变飞机纵向运动(如俯仰)的操纵称为纵向操纵,主要通过推、拉驾驶杆,使飞机的升降舵或全动平尾向下或向上偏转,产生俯仰力矩,使飞机作俯仰运动。
使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。
关键词:驾驶杆传动杆传动机构载荷感觉器AbstractThe main thesis expounded aileron plane about the composition of component parts of the working principle, adjustment and routine maintenance methods. Manipulate the plane of the plane can be referred to as the quality of the manipulation means to manipulate the plane's response characteristics. Manipulation is to change the pilot institutions have passed the driving plane flight status. Vertical plane to change the sport (such as pitch) of manipulation known as vertical manipulation, mainly through the push, pull stick, so that the elevator or the whole plane Hirao moving downward or upward deflection, resulting in pitching moment, so that plane for pitch sports. Plane around the longitudinal axis so that rotation of the body known as the lateral manipulation manipulation, mainly by the plane's aileron deflection to achieve.Key word:Stick load transmission rod drive mechanism sensilla目录摘要 (2)ABSTRACT (3)目录 (4)第1章副翼的结构 (1)1.1概述 (1)1.2副翼的功用及结构 (1)1.3副翼与机翼的连接 (2)1.4作用在副翼上的外载荷 (3)1.5副翼结构中力的传递 (4)第2章副翼组成和传动 (5)第3章载荷感觉器 (7)第4章液压助力器 (10)4.1基本工作原理 (10)4.2 ZL-5液压助力器分析 (12)第5章副翼反效 (17)第6章副翼操纵系统的维修 (18)6.1副翼的更换 (18)6.2副翼调整片拆装 (19)6.3副翼系统的调整 (20)6.4副翼故障分析 (20)全文总结 (22)致谢 (23)参考文献 (24)第1章副翼的结构1.1 概述飞机操纵品质的好坏是一个与飞行员有关的带一定主观色彩的问题,但是仍然有一些基本的标准来衡量飞机的操纵品质。
操纵品质常以输入量和输出量的比值(操纵性指标)来表示,这些比值不宜过小,也不易过大。
如果比值太小,则操纵输入量小,输出量大,这种飞机对操纵过于敏感,不仅难于精确控制,而且也容易因反应量过大而产生失速或结构损坏等问题;如果比值过大,则操纵输入量大,输出量小,飞机对操纵反应迟钝,容易使飞行员产生错误判断,也可能造成飞机的大幅度振荡,同样导致失速或结构破坏。
如果飞机在作机动飞行时,不需要飞行员复杂的操纵动作,驾驶杆力和杆位移都适当,并且飞机的反映也不过快或者过分的延迟,那么就认为该飞机具有良好的操纵性。
按运动方向的不同,飞机的操纵也分为纵向、横向和航向操纵。
改变飞机纵向运动(如俯仰)的操纵称为纵向操纵,主要通过推、拉驾驶杆,使飞机的升降舵或全动平尾向下或向上偏转,产生俯仰力矩,使飞机作俯仰运动。
使飞机绕机体纵轴旋转的操纵称为横向操纵,主要由偏转飞机的副翼来实现。
当驾驶员向右压驾驶杆时右副翼上偏、左副翼下偏,使右翼升力减小、左翼升力增大,从而产生向右滚转的力矩,飞机向右滚;向左压杆时,情况完全相反,飞机向左滚转。
改变航向运动的操纵称为航向操纵,由驾驶员踩脚蹬,使方向舵偏转来实现。
踩右脚蹬时,方向舵向右摆动,产生向右偏航力矩,飞机机头向右偏转;踩左脚蹬时正相反,机头向左偏转。
实际飞行中,横向操纵和航向操纵是不可分的,经常是相互配合、协调进行,因此横向和航向操纵1.2 副翼的功用及结构1.副翼的功用副翼是使飞机产生滚转力矩,以保证飞机具有横侧操纵性。
其位置一般在机翼后缘外侧或机翼后缘内侧。
对副翼的要求:①结构具有足够的抗扭刚度②副翼偏转时产生的枢纽力矩较小(副翼上的空气动力对转轴的力矩)这样,可使飞行员操纵省力,而且还可以减小副翼的结构所承受的扭矩。
2.副翼的结构副翼通常由翼梁、翼肋、蒙皮、后缘型材组成,副翼一般都做成没有桁条的单梁式的结构,如图1-1(a)所示。
翼梁常有板式梁、管型梁两种形式,翼肋上一般开有减轻孔,蒙皮现代飞机常采用金属蒙皮,低速飞机常采用金属和布质蒙皮,如图1-1(b)所示。
后缘型材通常在接头开口部位装有斜翼肋,如图1-1(c)所示,用斜翼肋、加强板和翼梁组成的盒形结构来承受开口部位的扭矩图1-1 副翼的构造1.3 副翼与机翼的连接通常采用俩个以上的副翼接头与机翼相连。
连接的副翼接头中,至少应有一个接头是沿展向固定的,其余的接头沿展向应是可移动的。
用多接头固定的副翼,在飞行中会由于机翼变形,使副翼转轴的轴线变弯,而影响操纵的灵活性,甚至发生卡滞现象。
为了解决这一矛盾,有些飞机采用了分段的副翼,它的每一段都独立地连接在机翼后缘的支架上,而各段的翼梁则采用可以传的扭矩的万向接头或胶接接头连接起来,图1-2所示为副翼与机翼的典型的连接型式。
图1-2副翼与机翼的连接型式在机翼加强肋的后部与机翼后梁(或墙)的连接处,安装有若干个支臂,每个支臂上装有一个过渡接头。
在副翼的大梁上装有相应个数的双耳片接头。
副翼通过这些耳片接头将其悬挂到机翼的支臂上。
注意:每个操纵面除一个接头完全固定外,其余接头都有设计补偿,以便于安装和保证运动协调。
操纵副翼偏转的作动筒,其作动杆与副翼耳片接头的下耳片连接固定。
当副翼操纵作动筒动作时就使副翼绕轴心N偏转1.4 作用在副翼上的外载荷在飞行中,副翼像一根固定在机翼上的多支点梁一样承受外部载荷。
作用在副翼上的外载荷有空气动力q、操纵力T和支点反作用力R,如图1-3:R1 R2 R3所示图1-3副翼的外载荷副翼空气动力载荷的大小与副翼面积、副翼偏转角度和飞行速度有关(成正比)。
副翼面积越大、副翼偏转角度越大和飞行速度越快,则副翼上所受空气动力载荷就越大。
空气动力载荷沿弦向按梯形分布,沿展向与副翼弦长成正比。
副翼在装有支点的横截面上承受的剪力最大、弯矩最大;在操纵摇臂部位扭矩最大。
这些部位的建构虽然有所加强,但由于副翼的截面积沿展向变化很大,难以按等强度原则来进行加强,所以,上述部位的强度仍然比其他部位赋予得很少些,维护时必须注意检查。
1.5 副翼结构中力的传递空气动力在副翼结构中的传递情况与在机翼结构中传递情况相似:空气动力→蒙皮→翼肋→翼梁腹板→机翼在副翼中剪力由梁腹板所承受;弯矩由梁桁条和有效宽度的蒙皮承受;扭矩由闭周缘蒙皮承受第2章副翼组成和传动1.副翼的组成副翼操纵部分由驾驶杆、传动杆、摇臂、载荷感觉器、非线性传动机构、液压助力器等组成。
液压助力器用来利用液压帮助飞行员操纵副翼,以改善飞机的横侧操纵性。
左右副翼各由一个液压助力器操纵。
用液压操纵副翼时,副翼上的空气动力传不到驾驶杆上来,载荷感觉器可以使飞行员在操纵副翼时感受到杆力,从而根据这种感觉准确的操纵副翼。
副翼非线性传动机构用来随驾驶杆的行程改变传动系数,以保证在副翼效率较高时横侧操纵不至于过于灵敏,而在副翼效率较底时,又有足够的副翼偏转角。
左右副翼各有一个非线性机构。
2.副翼的传动方式飞行员向左压驾驶杆,经过中心机构右侧第一根副翼传动杆和第一个副翼摇臂的传动,座舱底板上的第2、5根副翼传动杆均向前运动。
同时,第10、11隔框处的传动摇臂压缩载荷感觉器。
第3根传动杆穿出底舱底板后,与第13隔框下的换向接头相连,第3根传动杆向前运动,换向接头带动后面的换向摇臂反时针旋转。
于是经过传动杆、摇臂、非线性传动机构等传动,使右副翼液压助力器上的小传动杆向后移动,助力器的传动活塞就在液压作用下向后运动去操纵右副翼向下偏转。
与此同时,左副翼液压助力器的小传动杆向前移动,助力器的传动活塞在液压作用下向前运动,操纵左副翼向上偏转。
图2-1 传动机构示意图飞行员向右压驾驶杆,各传动杆、摇臂、助力器传动活塞的运动方向与上述相反,左副翼向下偏转,右副翼向上偏转。
换向接头由叉形接头、摇杆组成。
叉形接头下端与第3根传动杆相连,上端两叉铰接在支座上。
摇杆下端插在叉形接头上,上端则铰接在摇臂轴上。
由于叉形接头的转轴线与摇臂的转轴线不平行,相互之间有一夹角,因此当传动杆带着叉形街头下端前后运动时,就能通过摇杆迫使摇臂轴转动,从而使摇臂带动其下端传动杆左右运动。
其组成如图2-1所示。
第3章载荷感觉器飞机装设液压助力器以后,用液压操纵副翼时,飞行员只需要克服液压助力器前的系统摩擦力和液压助力器配油柱塞的摩擦力,带动配油柱塞打开油路,副翼即可偏转。
这时作用在副翼上的枢轴力矩由助力器内的液压作用力平衡,不能传到驾驶杆上来。
由于摩擦力很小,飞行员会感到操纵副翼过轻。
为了使飞行员能感受到适当的杆力,以便凭感觉来准确地掌握操纵分量,控制飞行状态,副翼操纵部分中装设液压助力器以后,还装了载荷感觉器。
载荷感觉器的构造如图3-1所示,它在座舱内右后方。
外筒内的接头固定在机身上,活动杆上的接头则与第10~11隔框处传动副翼的摇臂相连。
图3-1载荷感觉器飞行员压驾驶杆使副翼偏转时,要压缩载荷感觉器内的弹簧。
左压杆,摇臂将活动杆压入,压缩左端小弹簧和中间的大弹簧;右压杆则摇臂将活动杆拉出,压缩右端小弹簧和中间大弹簧。