直升机飞行操控的基本原理
- 格式:docx
- 大小:1.48 MB
- 文档页数:10
直升飞机飞行原理直升机是一种垂直起降的飞行器,它可以在空中悬停、向前、向后、向左、向右飞行,还可以进行定点停留、低高度飞行、复杂地形涂毒、运输货物等,是一种非常灵活多变的飞行器。
那么,直升机是如何实现这种“绕不过去”的飞行方式的呢?下面,我们来了解一下直升机的飞行原理。
一、空气动力学基础不论是飞机还是直升机,它们都要靠空气动力学来实现飞行。
空气动力学是研究空气对物体的作用的学科。
在空气中,物体移动时,空气会对其产生阻力、升力和推力等作用。
在直升机的飞行中,最主要的就是升力了。
升力是空气对直升机产生的向上的支持力,使其能够腾空而起。
而产生升力的关键,则是由于在直升机的旋转叶片上产生了一个向下的气流,这个气流将气体压缩,使其速度加快,压力降低,形成低压区。
而直升机上方的空气则形成高压区,从而产生了升力。
二、基本构造1.机身部分:直升机的主体部分,其中装置有驾驶室、乘客和货物舱、发动机等。
2.旋翼部分:直升机最重要的部分,由主旋翼和尾旋翼组成。
3.主旋翼:是直升机上的最重要的部分,主要产生升力和推进力。
它是一组大型的可旋转叶片,可以轮流地在上下、左右和前后方向调整。
4.尾旋翼:又称为方向舵,主要负责平衡和转向直升机。
5.起落架:支撑直升机在地面或者水面上的装置。
三、飞行原理我们知道,飞机在飞行中通过翼面产生升力和推力来维持飞行。
而直升机则是通过旋翼来产生升力和推力,从而可以实现垂直起降和各种方向的移动。
正常飞行时,主旋翼的旋转速度越快,升力就越大。
主旋翼在旋转时还产生了空气流,对于尾旋翼而言,这种空气流就相当于一束强劲的风,从而也可以产生升力和推力,平衡直升机并控制飞行方向。
直升机的旋翼不仅可以产生升力和推力,还可以调整飞行方向。
当主旋翼向右旋转时,直升机就会向左飞行,反之亦然。
而尾旋翼则可以扭转调整直升机的飞行方向。
在直升机的飞行过程中,由于旋翼旋转的高速气流形成较大的后向力,所以需要加装平衡重量使其平衡。
直升机的升降与飞行原理直升机是一种通过主旋翼产生升力并控制飞行方向和高度的特殊飞行器。
它具有垂直起降的能力,且具有较高的机动性和灵活性,可以在狭小的空间中起降,飞越各种复杂地形。
直升机的升降原理是通过主旋翼产生升力。
主旋翼是直升机的关键部件,由数根长而薄的旋翼桨叶组成,固定在旋翼桨毂上,通过发动机的动力带动旋转。
当旋翼快速旋转时,它会产生天线的空气动力学性能,形成向上的升力,将直升机抬起。
主旋翼产生升力的原因是空气的剪切力。
当旋翼运动时,上方的旋翼桨叶相对于下方的叶片的速度更快,所以在上方形成了低气压,而下方则形成了高气压。
这种气压差会随着旋翼旋转而扩大,形成一个向上的剪切力,从而产生升力。
旋翼桨叶的斜度和扭转角度可以调整,以控制升力的大小和方向。
直升机的飞行原理是通过改变主旋翼的控制角度和旋翼的旋转速度来调整飞行方向和高度。
控制角度的调整通过副翼、升降舵和尾翼实现,这些部件可以改变旋翼叶片的攻角和迎角,从而调整升力的大小和方向,使直升机可以向前飞行、后退、左右偏转、上升或下降。
直升机的操纵比较复杂,需要飞行员具备专业的技能和经验。
飞行员通过操纵棒和脚蹬来控制直升机的飞行,以保持平衡和稳定。
悬挂在机身尾部的尾旋翼则用来抵消主旋翼产生的扭矩,防止直升机自转。
直升机的飞行原理也有一些特殊的现象和特点。
例如,当直升机在低速飞行时,空气的动力学特性会发生变化,导致其操纵性和稳定性降低,称为蜗牛效应。
为了克服这个问题,直升机通常会搭配使用尾推力装置或使用复合材料制造旋翼桨叶,以提高飞行性能和安全性。
在飞行过程中,直升机还需要注意气流的影响,例如涡流、气流湍流等。
这些气流会对直升机的稳定性和操控性产生影响,飞行员需要及时调整飞行姿态和操纵。
另外,直升机还需要注意与其他飞机和物体的安全距离,避免发生碰撞事故。
总之,直升机的升降与飞行原理是通过主旋翼产生升力和调整旋翼角度来控制飞行方向和高度。
直升机的飞行是一项复杂的任务,需要飞行员具备专业的技能和经验,同时还需要注意气流和其他飞行物体的影响,以确保飞行的安全和稳定。
直升机控制原理嘿,朋友们!今天咱来聊聊直升机那神奇的控制原理。
你说直升机咋就能在空中那么灵活地飞来飞去呢?就好像一只机灵的小鸟!其实啊,它就靠那几个关键的部分来掌控。
先说说主旋翼吧,这可是直升机的大功臣啊!它就像个大力士,不停地旋转产生升力,把直升机托起来。
你想想,要是没有它,直升机不就跟块铁疙瘩似的掉地上啦?主旋翼转得快,升力就大,直升机就能飞得高;转得慢呢,那就能慢慢降落。
这多有意思啊,就跟咱骑自行车控制速度似的。
还有那尾桨呢,可别小瞧它。
它就像个小尾巴,专门负责保持直升机的平衡和方向。
要是没有尾桨,直升机不就像个无头苍蝇一样乱转啦?它能让直升机稳稳地向前飞、向后飞,或者来个漂亮的转弯。
你说神奇不神奇?操纵杆就像是直升机的大脑,飞行员通过它来下达各种指令。
往前推,直升机就往前飞;往后拉,它就往后退。
往左边掰,它就往左拐;往右边掰,它就往右拐。
这不就跟咱玩遥控汽车一样嘛,只不过这个可是在天上玩的,刺激吧!那发动机呢,就是直升机的心脏啊!它提供动力,让一切都动起来。
要是发动机出了问题,那直升机可就没法飞啦。
就好像人没了心脏,还怎么活呀!咱再说说直升机在空中的姿态调整,这可需要飞行员有高超的技术和敏锐的反应。
就好比咱走路,得时刻保持平衡,不然不就摔跟头啦?直升机也是一样,飞行员得通过操纵杆和各种设备,时刻让它保持稳定。
你说开直升机的飞行员得多厉害呀,他们得同时关注那么多东西,还得做出准确的判断和操作。
这可不是一般人能做到的呀!咱普通人虽然不能亲自去开直升机,但了解了解这些知识也挺有意思的呀。
想象一下,要是你能像飞行员一样坐在驾驶舱里,掌控着这架神奇的机器,在蓝天白云下自由翱翔,那该是多么酷的一件事啊!总之,直升机的控制原理虽然复杂,但也充满了趣味和挑战。
它让我们看到了人类的智慧和科技的力量。
下次再看到直升机在天上飞,你就可以跟身边的人讲讲它是怎么飞起来的啦!。
直升机的飞控原理直升机的飞控系统是控制直升机飞行的核心部件,它的基本原理是通过对旋钮、操纵杆等操纵装置的操作转换成电信号,再通过电子设备对这些信号进行处理和控制,最终传达给直升机各个部位,实现对直升机姿态、航向、高度、速度等参数的控制。
直升机的飞控系统由多个部分组成,包括飞行总线、飞行控制计算机、电动操纵表面、液压操纵系统等。
飞行总线是连接飞行控制计算机和其他部件的通信系统,用于传输控制指令和接收状态信息。
飞行控制计算机是控制系统的核心,负责处理操纵装置转换成的电信号,根据飞行任务要求和飞行状态进行计算和控制,再通过飞行总线向其他部件发送控制指令。
直升机的飞控系统实现对姿态的控制主要是通过电动操纵表面和液压操纵系统来实现的。
电动操纵表面一般包括前翼、副翼和方向舵等,通过电机驱动改变表面的位置和角度,从而改变直升机的姿态。
液压操纵系统一般包括液压泵、液压缸和液压阀等,通过泵将液压油输送到缸中,使缸表面的活塞发生位移,进而改变操纵表面的位置和角度。
直升机的飞控系统还可以实现对航向、高度和速度等参数的控制。
航向控制主要是通过控制尾桨的转动来实现的。
尾桨通过尾桨马达驱动,可以改变直升机的航向。
高度控制主要是通过改变旋翼的推力来实现的。
旋翼的叶片角度可以通过电机驱动的系统或液压驱动的系统进行调节,从而改变旋翼的推力。
速度控制主要是通过改变旋翼的转速来实现的。
旋翼的转速可以通过燃油分配系统或液压调节系统来进行控制。
飞行控制计算机是直升机飞控系统的核心部件,它通过接收操纵装置的输入信号,根据飞行任务和状态信息进行计算和控制,最终向操纵表面和液压操纵系统发送控制指令。
飞行控制计算机一般具有实时计算、状态估计和故障处理等功能。
它可以实现对直升机的自动控制和稳定飞行。
总之,直升机的飞控系统是控制直升机飞行的关键部件,通过操纵装置的操作转换成电信号,然后通过飞行控制计算机进行处理和控制,最终传达给直升机各部件,实现对直升机的姿态、航向、高度、速度等参数的控制。
直升机飞行操控的基本原理图 1 直升机飞行操纵系统- 概要图(a)(b)图2 直升机操纵原理示意图1.改变旋翼拉力的大小2.改变旋翼拉力的方向3.改变尾桨的拉力飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。
如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。
一、周期变距操纵系统周期操纵系统用于操纵旋翼桨叶的桨距周期改变。
当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。
纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。
周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。
1.右侧周期变距操纵杆3.左侧周期变距操纵杆2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件13.总距拉杆14.与复合摇臂相连接的拉杆15.伺服机构16.伺服机构(横滚+总距)17.伺服机构(俯仰+总距)18.可调拉杆图 3 直升机周期变距操纵系统(一)纵向操纵情况当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。
直升飞机飞行向前的原理
直升飞机飞行向前的原理基于两个主要的原理:旋翼推力和机身姿态调整。
首先,旋翼推力是直升飞机向前飞行的主要动力源。
直升机的旋翼通过改变旋翼叶片的角度和旋转速度来产生升力,并通过调整旋翼的总体推力来控制飞行方向。
在前进飞行时,直升机将旋翼产生的推力分成两个部分:升力和推力。
升力是垂直向上的力量,支撑直升机的重量。
推力是由旋转旋翼产生的水平向前的力量。
通过调整旋翼的倾斜角度和转速,直升飞机可以控制这两个力量的比例,从而实现向前飞行。
其次,机身姿态的调整对于直升飞机向前飞行也非常重要。
直升机可以通过改变机身的倾斜角度,即前倾或后倾,来改变飞行方向。
当直升飞机向前飞行时,它需要倾斜机身以产生一个称为气动阻力的侧向力。
这个侧向力可以抵消旋翼产生的侧向推力,从而使直升机向前飞行。
综上所述,直升机通过旋翼推力和机身姿态的调整来实现向前飞行。
旋翼推力提供了主要的动力,而机身姿态的调整则是调整飞行方向的手段。
这些原理协同作用,使直升机能够在空中实现平稳、灵活的向前飞行。
直升机的工作原理
直升机的工作原理是利用主旋翼和尾推力来产生升力和动力。
主要包括以下几个部分:
1. 主旋翼:主旋翼是直升机最重要的部分,通常由三至六片可调节的旋翼叶片组成。
当发动机提供足够的动力使主旋翼快速旋转时,旋翼叶片会产生升力。
通过改变叶片的推力和螺旋桨角度,可以控制直升机的升力和姿态。
2. 尾推力:直升机的尾部有一根垂直的尾旋翼,它的作用是产生推力和水平方向的倾斜力。
通过改变尾旋翼的推力和方向,可以控制直升机的方向和平衡。
3. 方向舵:直升机的尾部还有一个水平的方向舵,用来控制直升机的左右转向。
通过改变方向舵角度,可以改变直升机的水平方向。
4. 发动机:直升机的发动机通常是内燃机或涡轮发动机,提供所需的动力和转动力给主旋翼。
5. 操纵系统:直升机的操纵系统包括操纵杆、脚踏板、控制杆等。
驾驶员通过操纵这些操纵设备来改变主旋翼和尾推力的推力、角度和方向,从而控制直升机的升力、姿态和飞行方向。
总结来说,直升机的工作原理通过旋转的主旋翼产生升力,通过尾推力和调整方向舵来控制飞行方向,通过发动机提供动力。
驾驶员通过操纵系统来控制这些机构,使直升机飞行在所需高度和方向上。
直升机飞行原理直升机是一种能够垂直起降、悬停、倾斜飞行的飞行器,其飞行原理和固定翼飞机有很大的不同。
直升机依赖于旋翼产生升力,并利用动力系统提供动力,从而实现飞行。
本文将从直升机的构造和旋翼原理出发,详细介绍直升机的飞行原理。
构造直升机的主要构造包括机身、旋翼系统、尾部装置和动力系统。
其中,旋翼系统是直升机的关键部件,主要负责提供升力和推进力。
在旋翼系统中,主要包括主旋翼和尾旋翼。
主旋翼位于直升机的上方,通过叶片的旋转产生升力,同时还能控制直升机的姿态和前进方向。
尾旋翼位于直升机的尾部,主要负责抵消主旋翼产生的扭矩,以保持直升机平衡。
旋翼原理在直升机的飞行中,旋翼起着至关重要的作用。
旋翼的工作原理类似于扭矩力和力的平衡,通过叶片的旋转产生升力。
当旋翼快速旋转时,叶片的形状和角度可以改变,从而在不同飞行阶段产生不同的升力。
当旋翼产生足够的升力时,直升机就能够垂直起飞和悬停。
除了升力,旋翼还可以产生推进力。
通过调整叶片的角度和旋速,直升机可以实现水平飞行和向前推进。
在飞行过程中,旋翼还可以控制直升机的姿态和高度,使其能够灵活地适应各种飞行任务。
飞行原理直升机的飞行原理主要基于旋翼的运动和控制。
在起飞阶段,直升机通过增加旋翼的旋速和角度,产生足够的升力,从而实现垂直起飞。
在悬停和低速飞行时,直升机通过调整旋翼的角度和叶片的位置,保持飞行平稳。
在水平飞行时,直升机借助尾旋翼来抵消旋翼产生的扭矩,使飞行保持平衡。
总的来说,直升机的飞行原理是通过旋翼系统产生升力和推进力,同时通过尾部装置和动力系统来控制飞行姿态和方向。
这种独特的设计使得直升机成为一种灵活多变的飞行器,适用于各种特殊环境和任务需求。
通过了解直升机的构造和飞行原理,我们可以更好地理解直升机的工作原理和操作方法,为飞行员和工程师提供了重要的参考。
直升机作为一种重要的飞行器,不仅在军事、救援和运输领域发挥着重要作用,也在科研和探索领域有着广泛的应用前景。
直升飞机原理
直升飞机是一种垂直起降的飞行器,其原理基于空气动力学和机械工程的原理。
首先,直升飞机通过一个或多个旋转的主旋翼产生升力。
主旋翼由多个叶片组成,通常由轻质的、高强度的材料制成。
当主旋翼高速旋转时,它会将空气向下压,同时产生向上的反作用力,即升力。
这种升力足以支持直升飞机在空中悬停、起飞和降落。
为了保持平衡,直升飞机通常还配备了一个尾旋翼。
尾旋翼通常位于飞机尾部,以一个垂直轴旋转。
尾旋翼的作用是产生一个向左或向右的力,以抵消主旋翼产生的扭矩。
这使得直升飞机可以在飞行中保持平衡。
除了主旋翼和尾旋翼外,直升飞机还配备了一个发动机。
发动机通常位于飞机的尾部,可以提供足够的推力,使得直升飞机能够垂直起飞和降落。
发动机一般使用燃油燃烧或者电力来产生动力,并通过传动系统将动力传递给主旋翼和尾旋翼。
此外,直升飞机还配备了一系列的控制系统,包括操纵杆、螺旋桨蓝宝石等。
操纵杆用于控制飞机的方向和倾斜,螺旋桨蓝宝石用于改变主旋翼和尾旋翼的旋转速度。
总结起来,直升飞机通过主旋翼产生升力,尾旋翼抵消扭矩,发动机提供动力,控制系统控制飞机的方向和倾斜。
这些原理的相互配合使得直升飞机能够实现垂直起降和悬停在空中。
直升机飞行操控的基本原理
图 1 直升机飞行操纵系统- 概要图
(a)
(b)
图2 直升机操纵原理示意图
1.改变旋翼拉力的大小
2.改变旋翼拉力的方向
3.改变尾桨的拉力
飞行操纵系统包括周期变距操纵系统、总距操纵系统和航向操纵系统。
如图2所示,周期变距操纵系统控制直升机的姿态(横滚和俯仰),总距操纵系统控制直升机的高度,航向操纵系统控制直升机的航向。
一、周期变距操纵系统
周期操纵系统用于操纵旋翼桨叶的桨距周期改变。
当桨距周期改变时,引起桨叶拉力周期改变,而桨叶拉力的周期改变,又引起桨叶周期挥舞,最终使旋翼锥体相对于机身向着驾驶杆运动的方向倾斜,从而实现直升机的纵向(包括俯仰)及横向(包括横滚)运动。
纵向和横向操纵虽然都通过驾驶杆进行操纵,但二者是各自独立的。
周期变距操纵系统(见图3)包括右侧和左侧周期变距操纵杆(1)和(3)、可调摩擦装置(2)、橡胶波纹套(4)、俯仰止动件(5)、横滚连杆(7)、俯仰连杆(8)、横滚止动件及中立位置定位孔(9)、横滚拉杆(10)、横滚协调拉杆(11)、俯仰扭矩管轴组件(12)、总距拉杆(13)、与复合摇臂相连接的拉杆(14)、伺服机构(15)、伺服机构(横滚+总距)
(16)、伺服机构(俯仰+总距)(17)和可调拉杆(18)等组件。
1.右侧周期变距操纵杆3.左侧周期变距操纵杆
2.可调摩擦装置4.橡胶波纹套5.俯仰止动件6.复合摇臂 7.横滚连杆8.俯仰连杆9.横滚止动件及中立位置定位孔10.横滚拉杆11.横滚协调拉杆12.俯仰扭矩管轴组件1
3.总距拉杆1
4.与复合摇臂相连接的拉杆1
5.伺服机构1
6.伺服机构(横滚+总距)1
7.伺服机构(俯仰+总距)1
8.
可调拉杆
图 3 直升机周期变距操纵系统
(一)纵向操纵情况
当前推驾驶杆时,通过俯仰扭矩管轴组件(9)及俯仰连杆(8),使复合摇臂(6)上的纵向摇臂逆时针转动,通过其后的拉杆、摇臂,使左前侧纵向伺服机构下移,自动倾斜器固
定盘向左前方倾斜,旋翼桨盘前倾,进而使直升机向前运动。
后拉驾驶杆,情况相反。
(二)横向操纵情况
当右压驾驶杆时,驾驶杆向右偏转,带动左横滚连杆(7)向前运动,同时右横滚连杆(7)向后运动。
通过复合摇臂(6)及其后的拉杆、摇臂,使左后侧横向伺服机构上移,右侧伺服机构下移,自动倾斜器固定盘向右前方倾斜,旋翼桨盘右倾,进而使直升机向右运动。
左压驾驶杆情况相反。
二、总距操纵系统
总距操纵系统用于操纵旋翼的总桨距,使各片桨叶的桨距同时增大或减小,从而改变旋翼拉力的大小。
旋翼总桨距改变时,其需用功率也随之改变。
因此,还必需相应地改变发动机的油门,使发动机输出功率与旋翼的需用功率相匹配。
为了减轻驾驶员的负担,通常将发动机的油门操纵与总桨距操纵交联。
这样,当驾驶员操纵总桨距时,发动机的油门开度(供油量)也相应改变。
所以,总桨距操纵又称为桨距—油门操纵,它是由一根桨距—油门杆来进行操纵的。
旋翼的总桨距以及周期变距操纵都是通过自动倾斜器实现的。
总距操纵系统包括旋翼手柄(1)、可调摩擦装置(2)、总距扭矩管(3)、总距拉杆(4)、复合摇臂(5)、总距杆配平弹簧(6)、总距止动件及中心位置定位孔(7)、左侧和右侧总距杆(8)和(9)、复合摇臂上的预调器操纵摇臂(10)、横滚连杆(11)、俯仰拉杆(12)、与复合摇臂相连接的拉杆(13)、伺服机构(14)、伺服机构(横滚+总距)(15)、伺服机构(俯仰+总距)(16)和可调拉杆(17)等组件。
1.旋翼手柄
2.可调摩擦装置
3.总距扭矩管
4.总距拉杆
5.复合摇臂
6.总距杆配平弹簧
7.总距止动件及中心位置定位孔
8.左侧总距杆
9.右侧总距杆 10.复合摇臂上的预调器操纵摇臂11.横滚连杆12.俯仰拉杆13.与复合摇臂相连接的拉杆14.伺服机构15.伺服机构(横滚+总距16.伺服机构(俯仰+总距)17.可调拉杆
图4 直升机总距操纵系统
当上提总距杆时,总距拉杆(4)向前运动,带动复合摇臂及其上的三个周期变距操纵摇臂顺时针旋转,经后面三个拉杆(13)、摇臂传动使伺服机构作动筒壳体都向上移动同一位移,自动倾斜器也上移同一位移,三片桨叶安装角同时增大某一值,进而使直升机的升力增加。
下放总距杆时正好相反。
三、航向操纵系统
航向操纵系统用于操纵尾桨叶的桨距,改变尾桨推力(或拉力)大小,以实现航向操纵。
航向操纵系统由脚蹬组件和操纵线系两大部分组成。
航向操纵系统(见图8-7和8-8)包括右侧脚蹬组件(1)、尾梁中的连接装置(2)、航向柔性操纵钢索(3)、止动件(4)、左侧脚蹬组件(5)和扭力管(6)等组件。
1.右侧脚蹬组件
2.尾梁中的连接装置
3.航向柔性操纵索
4.止动件
5.左
侧脚蹬组件
6.扭力管
图5 直升机航向操纵系统
图 6 脚蹬组件分解
驾驶员蹬脚蹬,经操纵线系,保持或改变尾桨叶的桨距,以改变尾桨推力的大小,保持或改变直升机的方向。
当向前蹬右脚蹬时,尾桨叶桨距增加,进而增加尾桨推力,直升机向右转;而向前蹬左脚蹬时,效果正好相反。
四、飞行操纵系统简要说明
图5 操纵杆操作简要示意图
图6总桨距操作简要示意图
尾桨操纵的工作原理:
当向前蹬右脚蹬时,尾桨桨距
增加,当向前蹬左脚蹬时其效果相
反。
旋翼操纵系统的工作原理:
周期变距操纵杆和总桨距操纵
杆的作用如图7所示。
1) 横向周期变距操纵杆的作用:
当向左压周期变距操纵杆时,左
右横向线系作反向的等距运动,使自
动倾斜器绕Y轴(该Y轴通过纵向伺服
机构安装点)向右倾斜。
2)纵向周期变距操纵杆的作
用:
当向前推周期变距操纵杆时,
纵向线系使自动倾斜器绕X轴(该轴
通过两个横向伺报机构的安装点)向
前倾斜。
3) 总桨距操纵杆的作用:
当上提总桨距操纵杆时,总桨距
值增大,纵向和横向线系自复合摇臂
处起,在相同方向作等量的位移,使得自动倾斜器平行于初始位置向上平移。
图8 复合摇臂运动示意图。