多项式除以多项式ppt课件
- 格式:ppt
- 大小:405.00 KB
- 文档页数:10
多项式除以多项式多项式除法示例多项式除以多项式的一般步骤:多项式除以多项式通常以垂直形式计算(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.(2)用除数的第一项去掉除数的第一项,得到商的第一项(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.(4)将减少的差值作为一个新的除数,然后按照上述方法继续计算,直到余数为零或余数小于除数。
除数=除数×商+余数如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除多项式除以多项式的运算多项式除以多项式,一般可用竖式计算,方法与算术中的多位数除法相似,现举例说明如下:例1计算(x?9x?20)?(x?4)规范解法2.∴(x2)?9x?20)?(x?4)?x?5.解算步骤说明:(1)将除法公式x(2)除以除法公式X22?9x?20和x组?按照字母的降序排列22?9x?20的第一项x除以除式x?4的第一项x,得x?x?x,这就是商的第一项.(3)商和除法的第一项x?乘以4得到x?4X,从x222开始用X(4)写?9x?20岁以下22?9x?20减去x?4x,得差5x?20,写在下面,就是被除式去掉x?4x后的一部分.(5) 5倍?将20的第一项5x除以除法的第一项x得到5x?十、5.这是商的第二项,以代数和的形式写在第一项x之后(6)以商式的第二项5与除式x?4相乘,得5x?20,写在上述的差5x?20的下面.(7)相减得差0,表示恰好能除尽.(8)写出运算结果,(x542?9x?20)?(x?4)?x?5.22案例2计算(6x?9x?7x?20x?3)?(2x×5)。
规范性解决方案-1-五千四百二十二∴(6x?9x?7x?20x?3)?(2x?x?5)32? 3倍?3倍?6x?1.你是9x吗?2.注①遇到被除式或除式中缺项,用0补位或空出;②余式的次数应低于除式的次数.另外,以上两例还可用分离系数法求解.如例2.∴(6x?9x?7x?20x?3)?(2x×5)32?3x?3x?6x?1???????????余9x?2.什么是综合部?由前面的问题4我们知道两个多项式相除可以用竖式进行,但当除式为一次式,而且它的首项系数为1时,情况比较特殊.例如:计算(2x?3x?4)?(x?3)。
多项式除法示例多项式除以多项式的一般步骤:多项式除以多项式一般用竖式进行演算(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐. (2)用被除式的第一项去除除式的第一项,得商式的第一项.(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来. (4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除多项式除以多项式的运算多项式除以多项式,一般可用竖式计算,方法与算术中的多位数除法相似,现举例说明如下: 例1 计算)4()209(2+÷++x x x规范解法 ∴ .5)4()209(2+=+÷++x x x x解法步骤说明: (1)先把被除式2092++x x 与除式4+x 分别按字母的降幂排列好.(2)将被除式2092++x x的第一项2x 除以除式4+x 的第一项x ,得x x x =÷2,这就是商的第一项.(3)以商的第一项x 与除式4+x 相乘,得x x 42+,写在2092++x x 的下面.(4)从2092++x x减去x x 42+,得差205+x ,写在下面,就是被除式去掉x x 42+后的一部分.(5)再用205+x 的第一项x 5除以除式的第一项x ,得55=÷x x ,这是商的第二项,写在第一项x 的后面,写成代数和的形式.(6)以商式的第二项5与除式4+x 相乘,得205+x ,写在上述的差205+x 的下面. (7)相减得差0,表示恰好能除尽. (8)写出运算结果,.5)4()209(2+=+÷++x x x x例2 计算)52()320796(2245--÷+-+-x x x x x x .规范解法 ∴ )52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .注 ①遇到被除式或除式中缺项,用0补位或空出;②余式的次数应低于除式的次数. 另外,以上两例还可用分离系数法求解.如例2. ∴ )52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .8.什么是综合除法?由前面的问题4我们知道两个多项式相除可以用竖式进行,但当除式为一次式,而且它的首项系数为1时,情况比较特殊. 如:计算)3()432(3-÷-+x x x.因为除法只对系数进行,和x 无关,于是算式(1)就可以简化成算式(2).还可以再简化.方框中的数2、6、21和余式首项系数重复,可以不写.再注意到,因除式的首项系数是1,所以余式的首项系数6、21与商式的系数重复,也可以省略.如果再把代数和中的“+”号省略,除式的首项系数也省略,算式(2)就简化成了算式(30的形式:将算式(3)改写成比较好看的形式得算式(4),再将算式(4)中的除数-3换成它的相反数3,减法就化为了加法,于是得到算式(5).其中最下面一行前三个数是商式的系数,末尾一个数是余数.多项式相除的这种算法,叫做综合除法,它适合于除式为一次式,而且一次项系数为1. 例1 用综合除法求12333234+-+-x x x x 除以1-x 的商式和余式.规范解法 ∴ 商式2223-+-=x x x ,余式=10.例2 用综合除法证明910152235-+-x x x 能被3+x 整除.规范证法 这里)3(3--=+x x ,所以综合除法中的除数应是-3.(注意被除式按降幂排列,缺项补0.) 因余数是0,所以910152235-+-x x x能被3+x 整除.当除式为一次式,而一次项系数不是1时,需要把它变成1以后才能用综合除法.. 例3 求723-+x x除以12+x 的商式和余数.规范解法 把12+x 除以2,化为21+x ,用综合除法. 但是,商式2322+-≠x x ,这是因为除式除以2,被除式没变,商式扩大了2倍,应当除以2才是所求的商式;余数没有变.∴ 商式43212+-=x x ,余数437-=. 为什么余数不变呢?我们用下面的方法验证一下. 用723-+x x除以21+x ,得商式2322+-x x ,余数为437-,即 ∴ 437232213223-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=-+x x x x x()4374321122-⎪⎭⎫ ⎝⎛+-+=x x x .即 323-+x x除以12+x 的商式43212+-=x x ,余数仍为437-. 综合除法与余数定理综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。
如何进行多项式除以多项式的运算多项式除以多项式,一般可用竖式计算,方法与算术中的多位数除法相似,现举例说明如下:例1 计算)4()209(2+÷++x x x规范解法∴ .5)4()209(2+=+÷++x x x x解法步骤说明:(1)先把被除式2092++x x 与除式4+x 分别按字母的降幂排列好.(2)将被除式2092++x x 的第一项2x 除以除式4+x 的第一项x ,得x x x =÷2,这就是商的第一项.(3)以商的第一项x 与除式4+x 相乘,得x x 42+,写在2092++x x 的下面.(4)从2092++x x 减去x x 42+,得差205+x ,写在下面,就是被除式去掉x x 42+后的一部分.(5)再用205+x 的第一项x 5除以除式的第一项x ,得55=÷x x ,这是商的第二项,写在第一项x 的后面,写成代数和的形式.(6)以商式的第二项5与除式4+x 相乘,得205+x ,写在上述的差205+x 的下面.(7)相减得差0,表示恰好能除尽.(8)写出运算结果,.5)4()209(2+=+÷++x x x x例2 计算)52()320796(2245--÷+-+-x x x x x x .规范解法∴ )52()320796(2245--÷+-+-x x x x x x 163323-+-=x x x ……………………………余29-x .注 ①遇到被除式或除式中缺项,用0补位或空出;②余式的次数应低于除式的次数.另外,以上两例还可用分离系数法求解.如例2.∴ )52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .8.什么是综合除法?由前面的问题4我们知道两个多项式相除可以用竖式进行,但当除式为一次式,而且它的首项系数为1时,情况比较特殊.如:计算)3()432(3-÷-+x x x .因为除法只对系数进行,和x 无关,于是算式(1)就可以简化成算式(2).还可以再简化.方框中的数2、6、21和余式首项系数重复,可以不写.再注意到,因除式的首项系数是1,所以余式的首项系数6、21与商式的系数重复,也可以省略.如果再把代数和中的“+”号省略,除式的首项系数也省略,算式(2)就简化成了算式(30的形式:将算式(3)改写成比较好看的形式得算式(4),再将算式(4)中的除数-3换成它的相反数3,减法就化为了加法,于是得到算式(5).其中最下面一行前三个数是商式的系数,末尾一个数是余数.多项式相除的这种算法,叫做综合除法,它适合于除式为一次式,而且一次项系数为1.例1 用综合除法求12333234+-+-x x x x 除以1-x 的商式和余式.规范解法∴ 商式2223-+-=x x x ,余式=10.例2 用综合除法证明910152235-+-x x x 能被3+x 整除.规范证法 这里)3(3--=+x x ,所以综合除法中的除数应是-3.(注意被除式按降幂排列,缺项补0.)因余数是0,所以910152235-+-x x x 能被3+x 整除.当除式为一次式,而一次项系数不是1时,需要把它变成1以后才能用综合除法..例3 求723-+x x 除以12+x 的商式和余数.规范解法 把12+x 除以2,化为21+x ,用综合除法.但是,商式2322+-≠x x ,这是因为除式除以2,被除式没变,商式扩大了2倍,应当除以2才是所求的商式;余数没有变. ∴ 商式43212+-=x x ,余数437-=. 为什么余数不变呢?我们用下面的方法验证一下.用723-+x x 除以21+x ,得商式2322+-x x ,余数为437-,即 ∴ 437232213223-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=-+x x x x x ()4374321122-⎪⎭⎫ ⎝⎛+-+=x x x . 即 323-+x x 除以12+x 的商式43212+-=x x ,余数仍为437-.。
多项式除法示例 多项式除以多项式的一般步骤:多项式除以多项式一般用竖式进行演算(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.(2)用被除式的第一项去除除式的第一项,得商式的第一项.(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除多项式除以多项式的运算多项式除以多项式,一般可用竖式计算,方法与算术中的多位数除法相似,现举例说明如下: 例1 计算)4()209(2+÷++x x x规范解法∴.5)4()209(2+=+÷++x x x x解法步骤说明: (1)先把被除式2092++x x 与除式4+x 分别按字母的降幂排列好.(2)将被除式2092++x x的第一项2x 除以除式4+x 的第一项x ,得x x x =÷2,这就是商的第一项.(3)以商的第一项x 与除式4+x 相乘,得x x 42+,写在2092++x x 的下面.(4)从2092++x x减去x x 42+,得差205+x ,写在下面,就是被除式去掉x x 42+后的一部分.(5)再用205+x 的第一项x 5除以除式的第一项x ,得55=÷x x ,这是商的第二项,写在第一项x 的后面,写成代数和的形式.(6)以商式的第二项5与除式4+x 相乘,得205+x ,写在上述的差205+x 的下面. (7)相减得差0,表示恰好能除尽. (8)写出运算结果,.5)4()209(2+=+÷++x x x x例2 计算)52()320796(2245--÷+-+-x x x x x x .规范解法∴)52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .注 ①遇到被除式或除式中缺项,用0补位或空出;②余式的次数应低于除式的次数. 另外,以上两例还可用分离系数法求解.如例2.∴)52()320796(2245--÷+-+-x x x x x x163323-+-=x x x ……………………………余29-x .8.什么是综合除法由前面的问题4我们知道两个多项式相除可以用竖式进行,但当除式为一次式,而且它的首项系数为1时,情况比较特殊.如:计算)3()432(3-÷-+x x x.因为除法只对系数进行,和x 无关,于是算式(1)就可以简化成算式(2).还可以再简化.方框中的数2、6、21和余式首项系数重复,可以不写.再注意到,因除式的首项系数是1,所以余式的首项系数6、21与商式的系数重复,也可以省略.如果再把代数和中的“+”号省略,除式的首项系数也省略,算式(2)就简化成了算式(30的形式:将算式(3)改写成比较好看的形式得算式(4),再将算式(4)中的除数-3换成它的相反数3,减法就化为了加法,于是得到算式(5).其中最下面一行前三个数是商式的系数,末尾一个数是余数.多项式相除的这种算法,叫做综合除法,它适合于除式为一次式,而且一次项系数为1. 例1 用综合除法求12333234+-+-x x x x 除以1-x 的商式和余式.规范解法∴ 商式2223-+-=x x x ,余式=10.例2 用综合除法证明910152235-+-x x x 能被3+x 整除.规范证法 这里)3(3--=+x x ,所以综合除法中的除数应是-3.(注意被除式按降幂排列,缺项补0.)因余数是0,所以910152235-+-x x x能被3+x 整除.当除式为一次式,而一次项系数不是1时,需要把它变成1以后才能用综合除法.. 例3 求723-+x x除以12+x 的商式和余数.规范解法 把12+x 除以2,化为21+x ,用综合除法.但是,商式2322+-≠x x ,这是因为除式除以2,被除式没变,商式扩大了2倍,应当除以2才是所求的商式;余数没有变.∴ 商式43212+-=x x ,余数437-=. 为什么余数不变呢我们用下面的方法验证一下.用723-+x x除以21+x ,得商式2322+-x x ,余数为437-,即 ∴437232213223-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=-+x x x x x()4374321122-⎪⎭⎫ ⎝⎛+-+=x x x .即 323-+x x 除以12+x 的商式43212+-=x x ,余数仍为437-.综合除法与余数定理综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。
多项式除以多项式一般用竖式进行演算(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.(2)用被除式的第一项除以除式第一项,得到商式的第一项.(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+多项式除法示例余式2例[编辑]编辑计算把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐,写成以下这种形式:然后商和余数可以这样计算:.将分子的第一项除以分母的最高次项(即次数最高的项,此处为x)。
结果写在横线之上(x3÷ x = x2)...将分母乘以刚得到结果(最终商的第一项),乘积写在分子前两项之下(同类项对齐) (x2·(x−3) = x3−3x2)...从分子的相应项中减去刚得到的乘积(消去相等项,把不相等的项结合起来),结果写在下面。
((x3−12x2)−(x3−3x2) = −12x2+3x2 = −9x2)然后,将分子的下一项“拿下来”。
..把减得的差当作新的被除式,重复前三步(直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式)..重复第四步。
这次没什么可以“拿下来”了。
.横线之上的多项式即为商,而剩下的 (−123) 就是余数。
算数的长除法可以看做以上算法的一个特殊情形,即所有x被替换为10的情形。
3整除编辑如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除4应用编辑多项式的因式分解有时某个多项式的一或多个根已知,可能是使用Rational root theorem(英语:)得到的。
如果一个次多项式的一个根已知,那么可以使用多项式长除法因式分解为的形式,其中是一个次的多项式。
简单来说,就是长除法的商,而又知是的一个根、余式必定为零。