第二章 2.1 第1课时 数列的概念与通项公式 【教师版】
- 格式:docx
- 大小:286.94 KB
- 文档页数:15
2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
二、教学重点:研究等差数列的概念以及通项公式的推导。
教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。
四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。
由复习引入,通过数学知识的内部提出问题。
知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。
课题:2.1.1数列的概念与简单表示法(1)【学习目标】1、理解数列的概念;2、认识数列是反映自然规律的基本数学模型;3、初步掌握数列的一种表示方法——通项公式;【学习重点】数列及其有关概念,通项公式及其应用【学习难点】根据一些数列的前几项抽象、归纳数列的通项公式【授课类型】新授课【教 具】多媒体电脑、实物投影仪、电子白板。
【学习方法】诱思探究法【学习过程】 一、复习引入:师 课本图2.1-1中的三角形数分别是多少? 生 1,3,6,10,…师 图2.1-2中的正方形数呢? 生 1,4,9,16,25,师 像这样按一定次序排列的一列数你能否再举一些? 生 -1的正整数次幂:-1,1,-1,1, 无穷多个数1排成一列数:1,1,1,1, 生 一些分数排成的一列数:32,154,356,638,9910,二、新课学习:折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试生 一般折5、6次就不能折下去了,厚度太高了师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样? 生 随着对折数厚度依次为:2,4,8,16,…,256,…; 随着对折数面积依次为21,41 ,81 ,161 ,…,2561生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的1/256,再折下去太困难了 师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点? 生 均是一列数 生 还有一定次序师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列 注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列 2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列 递减数列:从第2项起,每一项都不大于它的前一项的数列 常数数列:各项相等的数列摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列, 2.递减数列 [知识拓展]师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系, 项 2 4 8 16↓ ↓ ↓ ↓序号 你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式三、 特例示范1.根据下面数列{a n }的通项公式,写出前5项: (1)a n =1n n ;(2)a n =(-1)n·n师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项2.根据下面数列的前几项的值,写出数列的一个通项公式: (1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…; (5)2,-6,12,-20,30,-42,这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式 [合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数)定义域 R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式 y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列 4,5,6,7,8,9,10…;② 1,21 ,31 ,41,…③的图象生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关?生 与我们学过的一次函数y=x+3的图象有关 师 数列1,21 ,31 ,41,…③的图象与我们学过的什么函数的图象有关?生 与我们学过的反比例函数xy 1的图象有关师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点四、课堂小结本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式六、作业布置:六、课后反思:。
【苏教版】高中数学必修五第2章数列§2.1 数列的概念及其通项公式课时讲义【三维目标】:一、知识与技能1.通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项公式),了解数列是一种特殊函数;认识数列是反映自然规律的基本数学模型;2.了解数列的分类,理解数列通项公式的概念,会根据通项公式写出数列数列的前几项,会根据简单数列的前几项写出数列的通项公式;3. 培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.二、过程与方法1.通过对具体例子的观察分析得出数列的概念,培养学生由特殊到一般的归纳能力;2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.3.通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);三、情感、态度与价值观1.体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
2.在参与问题讨论并获得解决中,培养观察、归纳的思维品质,养成自主探索的学习习惯;并通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
【教学重点与难点】:重点:数列及其有关概念,通项公式及其应用。
难点:根据一些数列的前几项抽象、归纳数列的通项公式。
【学法与教学用具】:1. 学法:学生以阅读与思考的方式了解数列的概念;通过类比函数的思想了解数列的几种简单的表示方法;以观察的形式发现数列可能的通项公式。
2. 教学方法:启发引导式3. 教学用具:多媒体、实物投影仪、尺等.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题1. 观察下列例子中的7列数有什么特点:(1)传说中棋盘上的麦粒数按放置的先后排成一列数:1,2,22,23,…,263(2)某种细胞,如果每个细胞每分钟分裂为2个,那么每过1分钟,1个细胞分裂的个数依次为1,2,4,8,16,…(3)π精确到0.01,0.001,0.0001…的不足近似值排成一列数:3.14,3.141,3.1415,3.14159,3.141592…(4)人们在1740年发现了一颗彗星,并推算出它每隔83年出现一次,则从出现那次算起,这颗彗星出现的年份依次为1740,1823,1906,1989,…(5)某剧场有10排座位,第一排有20个座位,后一排都比前一排多2个,则各排的座位数依次为:20,22,24,26,…,38(6)从1984年到今年,我国体育健儿共参加了6次奥运会,获得的金牌数依次排成一列数:15,5,16,16,28,32(7)"一尺之棰,日取其半,万世不竭"如果将"一尺之棰"视为1份,那么每日剩下的部分依次为1,12,14,18,116,... 这些数字能否调换顺序?顺序变了之后所表达的意思变化了吗?思考问题,并理解顺序变化后对这列数字的影响.(组织学生观察这7组数据后,启发学生概括其特点,教师总结并给出数列确切定义)注意:由古印度关于国际象棋的传说、生物学中的细胞分裂问题及实际生活中的某些例子导入课题,既激活了课堂气氛,又让学生体会到数列在实际生活中有着广泛的应用,提高学生学习的兴趣。
2.2.1 等差数列第1课时 等差数列的概念及通项公式[教材·要点]1.等差数列定义一般地,如果一个数列从第2项起,每一项与它的前一项之差都等于同一个常数,那么这样的数列称为等差数列.这个常数叫作数列的公差,常用字母d 表示.2.等差中项如果b =a +c 2,那么数b 称为a 和c 的等差中项. 3.等差数列的递推公式与通项公式已知等差数列{a n }的首项为a 1,公差为d ,填表: 递推公式通项公式 a n -a n -1=d (n ≥2)a n =a 1+(n -1)d[问题·引入]1.等差数列的公差d 可以为负数、正数、零吗?[提示] 可以,当a n <a n +1时,d >0,当a n =a n +1时,d =0,当a n >a n +1时,d <0.2.b =a +c 2是a ,b ,c 成等差数列的什么条件? [提示] 充要条件3.如何理解等差数列的自然语言与符号语言的关系?[提示] 在数列{a n }中,若已知首项a 1,且满足a n -a n -1=d (n ∈N +,n ≥2,d 为常数)或a n +1-a n =d (n ∈N +,d 为常数),则数列{a n }为等差数列.可见,等差数列的意义用符号语言表示,即a 1=a ,a n =a n -1+d (n ≥2),其本质是等差数列的递推公式.题型一 等差数列定义的应用 例1 (1)已知数列{a n }为等差数列且a 5=11,a 8=5,求a n .(2)求等差数列10,8,6,…的第20项.(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 解 (1)设数列{a n }的公差为d ,由等差数列的通项公式及已知条件可得⎩⎪⎨⎪⎧ a 1+4d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=19,d =-2, ∴a n =19+(n -1)×(-2)=-2n +21.(2)由于a 1=10,d =-2,∴a n =10+(n -1)×(-2)=-2n +12,∴a 20=-2×20+12=-28.(3)由于a 1=2,d =7,∴a n =2+(n -1)×7=7n -5,由7n -5=100,得n =15.∴100是这个数列的第15项.规律总结先根据两个独立的条件解出两个量a 1和d ,进而再写出a n 的表达式,有几个独立的条件就可以解出几个未知量,这是方程思想的重要应用.变式训练1.已知等差数列{a n }中,a 5=10,a 12=31,求a 10和d .解 由等差数列的定义,可知a 12-a 5=7d =31-10=21,∴d =3.∴a 10=a 12-2d =31-6=25. 题型二 等差中项的应用例2 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.解 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧ a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.规律方法等差中项描述了等差数列中相邻三项之间的数量关系:a n -1+a n +1=2a n (n ≥2).因此在等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它前一项与后一项的等差中项;反之,如果一个数列从第二项起,每一项(有穷数列的末项除外)都是它前一项与后一项的等差中项,那么这个数列是等差数列.在具体解题过程中,如果a ,b ,c 成等差数列,常转化为a +c =2b 的形式去运用;反之,如果要证明a ,b ,c 成等差数列,只需证a +c =2b 即可. 变式训练2.已知数列{a n }满足a n -1+a n +1=2a n (n ≥2),且a 2=5,a 5=13,则a 8=________.【解析】由a n -1+a n +1 =2a n (n ≥2)知,数列{a n }是等差数列,∴a 2,a 5,a 8成等差数列. ∴a 2+a 8=2a 5,∴a 8=2a 5-a 2=2×13-5=21.【答案】213.已知1a ,1b ,1c 成等差数列,求证:b +c a ,a +c b ,a +b c也构成等差数列. 证明 ∵1a ,1b ,1c为等差数列, ∴2b =1a +1c,即2ac =b (a +c ). ∵b +c a +a +b c =c (b +c )+a (a +b )ac=c 2+a 2+b (a +c )ac =a 2+c 2+2ac ac=2(a +c )2b (a +c )=2(a +c )b . ∴b +c a ,a +c b ,a +b c为等差数列. 题型三 等差数列的判定例3 已知数列{a n }的通项公式a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.(1)解 欲使{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q 应是一个与n 无关的常数,所以只有2p =0.即p =0时,数列{a n }是等差数列.(2)证明 因为a n +1-a n =2pn +p +q ,所以a n +2-a n +1=2p (n +1)+p +q .而(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数,所以{a n +1-a n }是等差数列.规律总结判断一个数列是否为等差数列的常用方法 方法符号语言 定义法a n -a n -1=d (常数)(n ≥2且n ∈N +) 等差中项法2a n =a n -1+a n +1(n ≥2且n ∈N +) 通项公式法a n =kn +b (k ,b 为常数,n ∈N +)变式训练4.已知数列{a n },满足a 1=2,a n +1=2a n a n +2,数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解 数列⎩⎨⎧⎭⎬⎫1a n 是等差数列, 理由如下:∵a 1=2,a n +1=2a n a n +2, ∴1a n +1=a n +22a n =12+1a n , ∴1a n +1-1a n =12, 即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12, 公差为d =12的等差数列. 题型四 等差数列通项公式及其应用例4 已知等差数列{a n }中,a 3+a 5=-14,2a 2+a 6=-15,求a 8.解 a 3+a 5=-14⇒a 1+2d +a 1+4d =2a 1+6d =-14⇒a 1+3d =-7.①又2a 2+a 6=-15⇒2(a 1+d )+a 1+5d =-15⇒3a 1+7d =-15.②解①②联立的方程组得⎩⎪⎨⎪⎧a 1=2,d =-3, ∴a n =2+(n -1)×(-3)=-3n +5,∴a 8=-3×8+5=-19.规律总结等差数列的通项公式是本节的重点,在应用时要注意方程思想的应用.有两种情况:(1)已知a n ,a 1,n ,d 中任意三个量可求第四个量,即“知三求一”.(2)已知等差数列中的任意两项,就可以确定等差数列中的任一项.变式训练 5.数列{a n }各项的倒数组成一个等差数列,若a 3=2-1,a 5=2+1,求a 11.解 设b n =1a n(n ∈N +),则{b n }为等差数列,公差为d . 由已知得b 3=1a 3=12-1=2+1, b 5=1a 5=12+1=2-1. ∴⎩⎨⎧ b 1+2d =2+1,b 1+4d =2-1,解得⎩⎨⎧b 1=3+2,d =-1. ∴b 11=b 1+10d =2-7,∴a 11=1b 11=12-7=-7-247. [随堂体验落实]1.△ABC 中,三内角A ,B ,C 成等差数列,则B 等于( )A .30°B .60°C .90°D .120°【解析】∵A +B +C =180°且B =A +C 2, ∴3B =180°,B =60°.【答案】B2.一个等差数列的前4项是a ,x ,b,2x ,则a b等于( ) A.14B .12 C.13D.23 【解析】⎩⎪⎨⎪⎧2x =a +b ,2b =x +2x ,∴a =x 2,b =32x . ∴a b =13. 【答案】C3.{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =( ) A .-2B .-12C .12D .2【解析】由题意知a 1+6d -2(a 1+3d )=-1,①a 1+2d =0,②由①②可得d =-12,a 1=1. 【答案】B4.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________.【解析】设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+2d =7,a 1+4d =a 1+d +6. 解得⎩⎪⎨⎪⎧a 1=3,d =2. ∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1.∴a 6=2×6+1=13.【答案】135.设{a n }是等差数列,若a m =n ,a n =m (m ≠n ),求a m +n .解:法一:由⎩⎪⎨⎪⎧ a 1+(m -1)d =n ,a 1+(n -1)d =m , 得⎩⎪⎨⎪⎧a 1=m +n -1,d =-1, ∴a m +n =a 1+(m +n -1)d=(m +n -1)-(m +n -1)=0.法二:∵a m =a n +(m -n )d ,∴n =m +(m -n )d ,∵m ≠n ,∴d =-1,∴a m +n =a m +[(m +n )-m ]d =n +n ×(-1)=0.[感悟高手解题]已知数列{a n },a 1=a 2=1,a n =a n -1+2(n ≥3).(1)判断数列{a n }是否为等差数列?说明理由;(2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2,而a 2-a 1=0不满足a n -a n -1=2(n ≥3),∴{a n }不是等差数列.(2)当n ≥2时,令a 2=b 1=1,a 3=b 2=3,a 4=b 3=5,…a n =b n -1=1+2[(n -1)-1]=2n -3.又a 1=1,∴a n =⎩⎪⎨⎪⎧1 (n =1),2n -3 (n ≥2) [点评] 在(1)问中由a n -a n -1=2(常数),直接得出{a n }为等差数列,这是易出错的地方,事实上,数列{a n }从第2项起,以后各项组成等差数列,而{a n }不是等差数列,a n =f (n )应该表示为“分段函数”型.因此我们在判断等差数列时,要严格按其定义判断.。
第二章 数列§2.1 数列的概念与简单表示法第1课时 数列的概念与通项公式1.下列说法中正确的是A.数列1,3,5,7可表示为{1,3,5,7}B.数列1,0,-1,-2与-2,-1,0,1是相同的数列C.数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D.数列0,2,4,6,…可记为{2n }解析 {1,3,5,7}是一个集合,故选项A 错;数虽相同,但顺序不同,不是相同的数列,故选项B 错;数列0,2,4,6,…可记为{2n -2},故选项D 错,故选C. ★答案★ C2.已知数列{a n }为1,0,1,0,…,则下列各式可作为数列{a n }的通项公式的有 (1)a n =12[1+(-1)n +1];(2)a n =sin 2n π2;(3)a n =12[1+(-1)n +1]+(n -1)(n -2);(4)a n =1-cos n π2;(5)a n =⎩⎪⎨⎪⎧1(n 为奇数),0(n 为偶数).A.1个B.2个C.3个D.4个解析 对于(3),将n =3代入,则a 3=3≠1,易知(3)不是通项公式.根据三角中的半角公式可知(2)和(4)实质是一样的,都可作为数列{a n }的一个通项公式.数列1,0,1,0,…的通项公式可猜想为a n =12+12×(-1)n +1,即为(1)的形式.(5)是分段表示的,也为数列的一个通项公式.故选D.★答案★ D3.在数列1,1,2,3,5,8,x ,21,34,55中,x 等于 A.11B.12C.13D.14解析 观察数列可知,后一项是前两项的和, 故x =5+8=13. ★答案★ C4.数列1,2,7,10,13,…中的第26项为________.解析 ∵a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,∴a n =3n -2, ∴a 26=3×26-2=76=219. ★答案★ 2195.已知数列{a n }的通项公式为a n =2n 2+n,那么110是它的第________项.解析 令2n 2+n =110,解得n =4或n =-5(舍去),所以110是该数列的第4项.★答案★ 4[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.下列有四个结论,其中叙述正确的有①数列的通项公式是唯一的;②数列可以看做是一个定义在正整数集或其子集上的函数;③数列若用图象表示,它是一群孤立的点;④每个数列都有通项公式.A.①②B.②③C.③④D.①④解析数列的通项公式不唯一,有的数列没有通项公式,所以①④不正确.★答案★ B2.数列0,33,22,155,63,…的一个通项公式是A.a n=n-2n B.a n=n-1nC.a n=n-1n+1D.a n=n-2n+2解析已知数列可化为:0,13,24,35,46,…,故a n=n-1n+1.★答案★ C3.已知数列12,23,34,…,nn+1,则0.96是该数列的A.第20项B.第22项C.第24项D.第26项解析由nn+1=0.96,解得n=24.★答案★ C4.已知数列{a n}的通项公式a n=nn+1,则a n·a n+1·a n+2等于A.n n +2B.n n +3C.n +1n +2D.n +1n +3解析 a n ·a n +1·a n +2=n n +1·n +1n +2·n +2n +3=n n +3.故选B. ★答案★ B5.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是 A.15 B.5C.6D.log 23+log 31325解析 a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132 =lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5. ★答案★ B6.(能力提升)图中由火柴棒拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第n 个图形中,火柴棒的根数为 A.3n -1B.3nC.3n +1D.3(n +1)解析 通过观察,第1个图形中,火柴棒有4根;第2个图形中,火柴棒有4+3根;第3个图形中,火柴棒有4+3+3=4+3×2根;第4个图形中,火柴棒有4+3+3+3=4+3×3根;第5个图形中,火柴棒有4+3+3+3+3=4+3×4根,…,可以发现,从第二项起,每一项与前一项的差都等于3,即a 2-a 1=3,a 3-a 2=3,a 4-a 3=3,a 5-a 4=3,…,a n -a n -1=3(n ≥2),把上面的式子累加,则可得第n 个图形中,a n =4+3(n -1)=3n +1(根).★答案★ C二、填空题(每小题5分,共15分)7.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析 令n -2n 2=0.08,解得n =10⎝⎛⎭⎫n =52舍去,即为第10项. ★答案★ 108.若数列{a n }的通项公式是a n =3-2n ,则a 2n =________,a 2a 3=________.解析 根据通项公式我们可以求出这个数列的任意一项. 因为a n =3-2n ,所以a 2n =3-22n =3-4n , a 2a 3=3-223-23=15. ★答案★ 3-4n159.(能力提升)如图(1)是第七届国际数学教育大会(简称ICME 7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.解析 因为OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…,所以a n =n . ★答案★n三、解答题(本大题共3小题,共35分)10.(11分)观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式: (1)34,23,712,( ),512,13,…; (2)53,( ),1715,2624,3735,…; (3)2,1,( ),12,…;(4)32,94,( ),6516,…. 解析 (1)根据观察:分母的最小公倍数为12,把各项都改写成以12为分母的分数,则序号1 2 3 4 5 6 ↓ ↓ ↓ ↓ ↓ ↓912 812 712 ( ) 512 412于是括号内填612,而分子恰为10减序号,故括号内填12,通项公式为a n =10-n 12.(2)53=4+14-1, 1715=16+116-1, 2624=25+125-1, 3735=36+136-1. 只要按上面形式把原数改写,便可发现各项与序号的对应关系:分子为序号加1的平方与1的和的算术平方根,分母为序号加1的平方与1的差.故括号内填108, 通项公式为a n =(n +1)2+1(n +1)2-1.(3)因为2=21,1=22,12=24,所以数列缺少部分为23,数列的通项公式为a n =2n .(4)先将原数列变形为112,214,( ),4116,…,所以括号内应填318,数列的通项公式为a n =n +12n .11.(12分)在数列{a n }中,a 1=2,a 17=66,通项公式是关于n 的一次函数. (1)求数列{a n }的通项公式;(2)求a 2 017;(3)2 018是否为数列{a n }中的项?解析 (1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧k +b =2,17k +b =66,解得k =4,b =-2.∴a n =4n -2. (2)a 2 017=4×2 017-2=8 066.(3)令2 018=4n -2,解得n =505∈N *, ∴2 018是数列{a n }的第505项.12.(12分)(能力提升)数列{a n }中,a n =n 2n 2+1.(1)求数列的第7项;(2)求证:此数列的各项都在区间(0,1)内; (3)区间⎝⎛⎭⎫13,23内有无数列的项?若有,有几项? 解析 (1)a 7=7272+1=4950.(2)证明 ∵a n =n 2n 2+1=1-1n 2+1,∴0<a n <1,故数列的各项都在区间(0,1)内.(3)因为13<n 2n 2+1<23,所以12<n 2<2,又n ∈N *,所以n =1,即在区间⎝⎛⎭⎫13,23内有且只有一项a 1.。
§2.1数列的概念与简单表示法第1课时数列的概念与通项公式学习目标1.理解数列及其有关概念.2.理解数列的通项公式,并会用通项公式写出数列的任意一项.3.对于比较简单的数列,会根据其前几项写出它的一个通项公式.知识点一数列及其有关概念1.按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项.2. 数列的一般形式可以写成a1,a2,a3,…,a n,…,简记为{a n}.思考数列1,2,3与数列3,2,1是同一个数列吗?答案不是.顺序不一样.知识点二通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.知识点三数列的分类1.按项数分类,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.2.按项的大小变化分类,从第2项起,每一项都大于它的前一项的数列叫做递增数列;从第2项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列.1.1,1,1,1是一个数列.( √ )2.数列1,3,5,7,…的第10项是21.( × ) 3.每一个数列都有通项公式.( × )4.如果一个数列不是递增数列,那么它一定是递减数列.( × )题型一 数列的分类例1 下列数列中,既是递增数列又是无穷数列的是( ) A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n答案 C解析 A ,B 都是递减数列,D 是有穷数列,只有C 符合题意.反思感悟 判断数列的单调性时一定要确保每一项均大于(或均小于)后一项,不能有例外. 跟踪训练1 下列数列哪些是有穷数列?哪些是递增数列?哪些是递减数列?哪些是摆动数列?哪些是常数列?(1)2 010,2 012,2 014,2 016,2 018; (2)0,12,23,…,n -1n ,…;(3)1,12,14,…,12n -1,…;(4)-11×2,12×3,-13×4,14×5,…; (5)1,0,-1,…,sin n π2,…; (6)9,9,9,9,9,9.解 (1)(6)是有穷数列;(1)(2)是递增数列;(3)是递减数列;(4)(5)是摆动数列;(6)是常数列. 题型二 由数列的前几项写出数列的一个通项公式例2 写出下列数列的一个通项公式,使它的前4项分别是下列各数: (1)1,-12,13,-14;(2)12,2,92,8; (3)9,99,999,9 999.解 (1)这个数列的前4项的绝对值都是序号的倒数,并且奇数项为正,偶数项为负, 所以它的一个通项公式为a n =(-1)n +1n,n ∈N *.(2)数列中的项,有的是分数,有的是整数,可将各项都统一成分数再观察:12,42,92,162,…,所以它的一个通项公式为a n =n 22,n ∈N *.(3)各项加1后,变为10,100,1 000,10 000,…,此数列的通项公式为10n ,可得原数列的一个通项公式为a n =10n -1,n ∈N *.反思感悟 要由数列的前几项写出数列的一个通项公式,只需观察分析数列中项的构成规律,看哪些部分不随序号的变化而变化,哪些部分随序号的变化而变化,确定变化部分随序号变化的规律,继而将a n 表示为n 的函数关系.跟踪训练2 写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)-11×2,12×3,-13×4,14×5; (2)22-12,32-13,42-14,52-15;(3)7,77,777,7 777.解 (1)这个数列前4项的分母都是序号数乘以比序号数大1的数,并且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)nn ×(n +1),n ∈N *.(2)这个数列的前4项的分母都是比序号大1的数,分子都是比序号大1的数的平方减1, 所以它的一个通项公式为a n =(n +1)2-1n +1,n ∈N *.(3)这个数列的前4项可以变为79×9,79×99,79×999,79×9 999,即79×(10-1),79×(100-1),79×(1 000-1),79×(10 000-1), 即79×(10-1),79×(102-1),79×(103-1),79×(104-1), 所以它的一个通项公式为a n =79×(10n -1),n ∈N *.题型三 数列通项公式的简单应用例3 已知数列{a n }的通项公式为a n =2n 2-10n +4. 问当n 为何值时,a n 取得最小值?并求出最小值. 解 ∵a n =2n 2-10n +4=2⎝⎛⎭⎫n -522-172, ∴当n =2或3时,a n 取得最小值,其最小值为a 2=a 3=-8. 反思感悟 利用函数的性质研究数列的单调性与最值. 跟踪训练3 (1)已知数列{a n }的通项公式为a n =1n (n +2)(n ∈N *),那么1120是这个数列的第项. 答案 10解析 ∵1n (n +2)=1120,∴n (n +2)=10×12,∴n =10.(2)已知数列{a n }中,a n =-n 2+25n (n ∈N *),则数列{a n }的最大项是第 项. 答案 12或13解析 ∵a n =-⎝⎛⎭⎫n -2522+⎝⎛⎭⎫2522是关于n 的二次函数,又n ∈N *, ∴当n =12或n =13时,a n 最大.归纳法求数列的通项公式典例观察图中5个图形的相应小圆圈的个数的变化规律,猜想第n个图中有小圆圈.答案n2-n+1解析观察图中5个图形小圆圈的个数分别为1,1×2+1,2×3+1,3×4+1,4×5+1.故第n个图中小圆圈的个数为(n-1)·n+1=n2-n+1.[素养评析]归纳是逻辑推理的一类,可以发现新命题.本例完美诠释了“观察现象,归纳规律,大胆猜想,小心求证”这一认识发展规律.1.下列叙述正确的是( )A .数列1,3,5,7与7,5,3,1是相同的数列B .数列0,1,2,3,…可以表示为{n }C .数列0,1,0,1,…是常数列D .数列⎩⎨⎧⎭⎬⎫n n +1是递增数列答案 D解析 由数列的通项a n =nn +1知,a n +1-a n =n +1n +2-n n +1=1(n +2)(n +1)>0,即数列⎩⎨⎧⎭⎬⎫n n +1是递增数列,故选D.2.数列2,3,4,5,…的一个通项公式为( ) A .a n =n ,n ∈N * B .a n =n +1,n ∈N * C .a n =n +2,n ∈N * D .a n =2n ,n ∈N *答案 B解析 这个数列的前4项都比序号大1,所以,它的一个通项公式为a n =n +1,n ∈N *. 3.数列{a n }中,a n =2n 2-3,n ∈N *,则125是这个数列的第 项. 答案 8解析 令2n 2-3=125,解得n =8(n =-8舍去). 所以125是该数列第8项.4.已知数列{a n }的通项公式a n =(-1)n -1·n2n -1,n ∈N *,则a 1= ;a n +1= .答案 1 (-1)n ·(n +1)2n +1解析 a 1=(-1)1-1×12×1-1=1,a n +1=(-1)n +1-1·(n +1)2(n +1)-1=(-1)n ·(n +1)2n +1.5.写出数列:1,-3,5,-7,9,…的一个通项公式. 解 该数列的通项公式为a n =(-1)n +1·(2n -1),n ∈N *.1.与集合中元素的性质相比较,数列中的项也有三个性质(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的.(2)可重复性:数列中的数可以重复.(3)有序性:一个数列不仅与构成数列的“数”有关,而且也与这些数的排列次序有关.2.并非所有的数列都能写出它的通项公式.例如,π的不同近似值,依据精确的程度可形成一个数列3,3.1,3.14,3.141,…,它没有通项公式.根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.3.如果一个数列有通项公式,则它的通项公式可以有多种形式.一、选择题1.已知数列{a n }的通项公式为a n =1+(-1)n +12,n ∈N *,则该数列的前4项依次为( ) A .1,0,1,0B .0,1,0,1 C.12,0,12,0 D .2,0,2,0 答案 A解析 当n 分别等于1,2,3,4时,a 1=1,a 2=0,a 3=1,a 4=0.2.已知数列{a n }的通项公式为a n =n 2-n -50,n ∈N *,则-8是该数列的( )A .第5项B .第6项C .第7项D .非任何一项 答案 C解析 解n 2-n -50=-8,得n =7或n =-6(舍去).3.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+1 答案 C解析 令n =1,2,3,4,代入A ,B ,C ,D 检验,即可排除A ,B ,D ,故选C.4.数列23,45,67,89,…的第10项是( ) A.1617 B.1819 C.2021 D.2223答案 C解析 由数列的前4项可知,数列的一个通项公式为a n =2n 2n +1,n ∈N *, 当n =10时,a 10=2×102×10+1=2021. 5.已知a n +1-a n -3=0,n ∈N *,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .不能确定答案 A解析 a n +1=a n +3>a n ,n ∈N *,即该数列每一项均小于后一项,故数列{a n }是递增数列.6.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( ) A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +2答案 D解析 ∵a n =1n +1+1n +2+1n +3+…+12n , ∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2. 7.数列0.3,0.33,0.333,0.333 3,…的一个通项公式a n 等于( )A.19(10n -1) B.13(10n -1) C.13⎝⎛⎭⎫1-110n D.310(10n -1) 答案 C解析 代入n =1检验,排除A ,B ,D ,故选C.8.如图1是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图2中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为( )A .a n =n ,n ∈N *B .a n =n +1,n ∈N *C .a n =n ,n ∈N *D .a n =n 2,n ∈N *答案 C解析 ∵OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…,∴a 1=1,a 2=2,a 3=3,…,a n =n ,….二、填空题9.观察数列的特点,用一个适当的数填空:1,3,5,7, ,11,…. 答案 3解析 由于数列的前几项中根号下的数都是由小到大的奇数,所以需要填空的数为9=3.10.数列3,5,9,17,33,…的一个通项公式是 .答案 a n =2n +1,n ∈N *11.323是数列{n (n +2)}的第 项.答案 17解析 由a n =n 2+2n =323,解得n =17(负值舍去).∴323是数列{n (n +2)}的第17项.三、解答题12.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式;(2)判断88是不是数列{a n }中的项?解 (1)设a n =kn +b ,k ≠0.则⎩⎪⎨⎪⎧ a 1=k +b =2,a 17=17k +b =66,解得⎩⎪⎨⎪⎧k =4,b =-2.∴a n =4n -2,n ∈N *. (2)令a n =88,即4n -2=88,解得n =22.5∉N *.∴88不是数列{a n }中的项.13.在数列{a n }中,a n =n (n -8)-20,n ∈N *,请回答下列问题:(1)这个数列共有几项为负?(2)这个数列从第几项开始递增?(3)这个数列中有无最小值?若有,求出最小值;若无,请说明理由.解 (1)因为a n =n (n -8)-20=(n +2)(n -10),所以当0<n <10,n ∈N *时,a n <0,所以数列{a n }共有9项为负.(2)因为a n +1-a n =2n -7,所以当a n +1-a n >0时,n >72, 故数列{a n }从第4项开始递增.(3)a n =n (n -8)-20=(n -4)2-36,根据二次函数的性质知,当n =4时,a n 取得最小值-36,即这个数列有最小值,最小值为-36.14.已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧2-n ,n 是奇数,11+2-n ,n 是偶数,则a 3+1a 4= . 答案 1916 解析 a 3=2-3=18,a 4=11+2-4=1617, ∴1a 4=1716,∴a 3+1a 4=1916. 15.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1,n ∈N *. (1)求证:该数列是递增数列;(2)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,有几项?若没有,请说明理由.(1)证明 ∵a n =9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1=3n +1-33n +1=1-33n +1, ∴a n +1-a n=⎣⎡⎦⎤1-33(n +1)+1-⎝⎛⎭⎫1-33n +1=3[(3n +4)-(3n +1)](3n +1)(3n +4)=9(3n +1)(3n +4)>0,n ∈N *, ∴{a n }是递增数列.(2)解 令13<a n =3n -23n +1<23, ∴⎩⎪⎨⎪⎧ 3n +1<9n -6,9n -6<6n +2,∴⎩⎨⎧ n >76,n <83.∴76<n <83, ∴当且仅当n =2时,上式成立,故区间⎝⎛⎭⎫13,23内有数列中的项,且只有一项为a 2=47.。