一次函数增减性
- 格式:doc
- 大小:42.50 KB
- 文档页数:1
一次函数的定义及性质一次函数,也被称为线性函数,是数学中最简单且最常见的函数之一。
它可以用以下一般形式表示:f(x) = ax + b,其中a和b是常数,且a ≠ 0。
在本文中,我们将深入探讨一次函数的定义及其性质。
一、定义一次函数是指形式为f(x) = ax + b的函数,其中a和b为常数,a ≠ 0。
其中,x是自变量,f(x)是函数的值,a称为一次函数的斜率,b称为一次函数的截距。
二、性质一次函数具有以下性质:1. 斜率:一次函数的斜率表示了函数图像在每单位自变量变化时的纵坐标的变化量。
斜率可以通过函数的解析式中的a来确定。
当a>0时,函数图像呈现上升的趋势;当a<0时,函数图像呈现下降的趋势;当a=0时,函数呈现一条水平线。
2. 截距:一次函数的截距是函数图像与y轴的交点,可以通过函数的解析式中的b来确定。
截距表示了当自变量为0时,函数取得的值。
3. 增减性:根据斜率的正负来判断一次函数的增减性。
当斜率a>0时,函数随着自变量的增大而增加;当斜率a<0时,函数随着自变量的增大而减小。
4. 零点:一次函数的零点是指函数图像与x轴的交点,即f(x) = 0的解。
根据一次函数的形式,当ax + b = 0时,可以求得x = -b/a,这就是一次函数的零点。
5. 定义域和值域:一次函数的定义域是所有实数集合R,即函数对于任意实数都有定义。
值域取决于斜率a的正负情况,当a>0时,值域为区间(-∞, +∞);当a<0时,值域为区间(-∞, +∞)。
6. 对称性:一次函数具有x轴的对称性,即对于函数图像上任意一点(a, b),如果(a, -b)也在图像上,则函数具有对称性。
7. 线性关系:一次函数表示了两个变量之间的线性关系,其中x是自变量,f(x)是因变量。
当自变量的增加导致因变量的相应增加时,我们可以说这两个变量呈正相关的线性关系。
总结:一次函数是一种简单但重要的数学函数,具有直线的特点。
一次函数知识点总结一次函数是初中数学中的重要内容,它不仅在数学学科中有着广泛的应用,还为后续学习其他函数奠定了基础。
接下来,让我们一起系统地梳理一下一次函数的相关知识点。
一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。
当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x 的正比例函数。
理解一次函数的定义需要注意以下几点:1、自变量 x 的次数是 1。
2、系数 k 不为 0。
3、常数项 b 可以为任意实数。
二、一次函数的图像一次函数的图像是一条直线。
1、当 k > 0 时,直线从左到右上升,y 随 x 的增大而增大;当 k < 0 时,直线从左到右下降,y 随 x 的增大而减小。
2、 b 的值决定了直线与 y 轴的交点坐标。
当 x = 0 时,y = b,所以直线 y = kx + b 与 y 轴的交点坐标为(0,b)。
例如,函数 y = 2x + 1 的图像是一条斜率为 2,截距为 1 的直线。
当 x = 0 时,y = 1,所以它与 y 轴交于点(0,1);当 y = 0 时,2x + 1 = 0,解得 x =-1/2,所以它与 x 轴交于点(-1/2,0)。
三、一次函数的性质1、增减性如前所述,k 的正负决定了函数的增减性。
2、对称性一次函数的图像是轴对称图形,直线 y = kx + b 关于直线 x =b/2k 对称。
四、一次函数的表达式1、已知两点坐标(x₁,y₁),(x₂,y₂),可以通过待定系数法求出一次函数的表达式。
设一次函数的表达式为 y = kx + b,将两点坐标代入,得到方程组:y₁= kx₁+ by₂= kx₂+ b解这个方程组,求出 k 和 b 的值,即可得到一次函数的表达式。
2、已知直线的斜率 k 和一个点的坐标(x₀,y₀),也可以用点斜式求出表达式:y y₀= k(x x₀)五、一次函数与方程、不等式的关系1、一次函数与一元一次方程一次函数 y = kx + b 的图像与 x 轴交点的横坐标,就是一元一次方程 kx + b = 0 的解。
初中生数学一次函数知识点总结9篇第1篇示例:初中数学是中学数学的起点,一次函数是数学学习的基础之一。
通过学习一次函数,初中生可以掌握数学思维和解决问题的能力,使其在学习数学的道路上更进一步。
下面将对初中生数学一次函数知识点进行总结。
一、一次函数的定义所谓一次函数,就是函数的自变量的最高次数为1的函数。
一次函数的一般形式为y=ax+b,其中a和b为常数,a≠0。
二、一次函数的图像一次函数的图像是一条直线,是通过两点确定的。
其中a决定了直线的斜率,斜率为正时,图像是上升的;斜率为负时,图像是下降的;斜率为0时,图像是水平的。
b决定了直线和y轴的交点。
三、一次函数的性质1. 一次函数的图像是一条直线;2. 一次函数的导数恒为常数,即该函数的增长速率恒定;3. 一次函数的解析式中的a决定了直线的斜率,b决定了与y轴的交点;4. 一次函数的定义域为一切实数,值域也为一切实数。
四、一次函数的运算1. 一次函数的加减运算:两个一次函数相加或相减仍然是一次函数;2. 一次函数的乘除运算:两个一次函数相乘或相除不一定是一次函数;3. 一次函数的复合运算:两个一次函数复合之后还是一次函数。
五、一次函数的应用1. 确定两点绘制直线:通过给定的两点,可以确定一条直线,进而解决相关问题;2. 求函数的零点:求一次函数的解析式中自变量为零时的函数值;3. 求函数的最值:通过一次函数的表达式求出极值点,可求出函数的最大值和最小值;4. 判断函数的单调性:通过分析一次函数的斜率,可得出函数的单调性。
初中生在学习一次函数时,应充分理解一次函数的定义、图像、性质和运算规律,灵活运用所学知识解决相关问题,提高数学思维和解决问题的能力。
多做练习、加强实践,不断巩固提升自己的数学水平,为将来更深入的学习打下坚实基础。
希望初中生能够在数学学习中取得更好的成绩,为未来的学习和发展打下良好的基础。
第2篇示例:初中生学习数学的一次函数是数学中的一个重要内容,也是数学知识体系中的基础部分。
一次函数知识点一:一次函数图像的特点两点确定一条直线,根据这个特点,我们在画一次函数的图像时,可以确定两个点,再过这两个点做直线就行了,而且,为了简单,我们常选过点(0,b )和)0,(kb-作直线。
由观察可知:(1) 正比例函数的图像时一条直线,并经过两个象限。
(2) 当k>0,其图像经过第一、三象限,当k<0时,其图像经过第二、四象限。
知识点二:一次函数及图像的性质 (1) 增减性: 对于一次函数y=kx+b当k>0,y 的值随x 的增大而增大; 当k<0,y 的值随x 的增大而减小; (2) 图像所在的象限:当k>0,b>0,图像位于第一、二、三象限; 当k>0,b<0,图像位于第一、三、四象限; 当k<0,b>0,图像位于第一、二、四象限; 当k<0,b<0,图像位于第二、三、四象限;(3) 两直线的位置关系:直线111b x k l +=和直线222b x k l +=⎩⎨⎧≠=相交与则则21212121,//,l l k k l l k k 知识点三:正比例函数图像与一次函数图像的关系一次函数b kx +=y 的图像是一条直线,它可以看作是由直线kx =y 沿y 轴平移b 个单位长度得到(当b >0时,向上平移;当b<0时,向下平移)一次函数的解题技巧一次函数是初中数学最重要的内容之一,它的知识结构体系非常丰富,在具体的解题过程中会运用到许多重要的思想方法:如数形结合思想,函数思想,转化和化归的思想,综合运用思想等,掌握一次函数的解题技巧,可以提高同学们的学习效率,下面举例说明:例题例1 如图,直线y=ax+b 经过点A (-1,-2)和B (-2,0),直线y=2x 过点A ,则不等式02≤+<b kx x 的解集是为:( )A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0分析:根据不等式2x <kx+b <0体现的几何意义得到:直线y=kx+b 上,点在点A 与点B 之间的横坐标的范围. 解答:解:不等式2x <kx+b <0体现的几何意义就是直线y=kx+b 上,位于直线y=2x 上方,x 轴下方的那部分点,显然,这些点在点A 与点B 之间. 故选B . 点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合. 二:函数思想通过学习函数使我们逐步用函数的观点,方法去思考问题,将已知条件或所给数量关系进行转化,借助函数的图像或性质去解决问题。
一次函数增减性
增减性是物理学、数学和计算机科学中一个重要概念,也称作增
减复杂度。
它是描述一个函数在输入变化时其输出变化率的一种量度。
增减性关系着算法的复杂度,表明了算法的性能需求,具有重要的理
论和应用价值。
在数学中,增减性可以用微分来表示,其计算公式为:导数
=d/dx。
f(x)表示对x变量求导,判断f(x)集合上是否有零点,若有
则表示该函数在该点处是增或减性。
增减性是计算机科学中一个重要概念,它可以评估一个计算的复
杂性,从而评估算法的效率。
比较常见的比较常见的时间上的增减性
算法有:O(n),O(nlogn),O(n2),O(n3)等,分别的表示算法
复杂度的增减趋势。
算法复杂度的增长不确定性可以采用阶乘时间复杂度n!或厄米复杂度2n来衡量,这是描述算法性能最佳情况和最差情况的指标。
这些
指标也因硬件环境而异。
分析一个函数的增减性不仅需要根据当前的输入变化,而且要考
虑算法在不同输入范围下所产生的变化趋势等因素。
因此,函数的增
减性不仅受当前输入变化的影响,而且受多方面因素的影响,准确预
测函数的增减性是问题的关键。
增减性的正确分析,可以有效提高算法的运行效率,使算法性能
更加稳定,甚至几乎没有变化。
它不仅对理论研究有重要意义,而且
对实际的应用具有重要意义。
了解增减性可以帮助我们分析函数的输
入变化,以及其所产生的输出。
初中数学知识归纳一次函数的像与性质初中数学知识归纳:一次函数的像与性质一次函数在初中数学中占据着重要的地位,它是一种线性函数,也被称为直线函数。
在这篇文章中,我们将归纳一次函数的像与性质,以帮助读者更好地理解和应用这一概念。
一、函数的定义与表达方式一次函数可以表示为 f(x) = ax + b 的形式。
其中,a 和 b 分别是实数,且a ≠ 0。
函数 f(x) 的定义域是全体实数集 R,值域也是全体实数集 R。
二、一次函数的图像特点1. 直线图像一次函数的图像是一条直线,可以用直线的斜率和截距来确定。
斜率 a 决定了直线的倾斜程度,而截距 b 决定了直线与 y 轴的交点。
2. 斜率的意义斜率 a 反映了函数的变化率。
当 a > 0 时,直线向右上方倾斜;当 a < 0 时,直线向右下方倾斜;当 a = 0 时,直线水平。
斜率的绝对值越大,表示直线的变化越快。
3. 截距的意义截距 b 表示了直线与 y 轴的交点,也就是在 x = 0 时,函数的值。
当 b > 0 时,直线在 y 轴的下方交点;当 b < 0 时,直线在 y 轴的上方交点;当 b = 0 时,直线经过原点。
三、一次函数的像一次函数的像指的是函数中的自变量对应的函数值,也就是函数的输出值。
对于一次函数 f(x) = ax + b,我们可以通过给出 x 的值,计算得到对应的 y 值。
1. 函数值的计算给定一个 x 值,计算对应的 y 值可以使用函数表达式 f(x) = ax + b。
将 x 值代入表达式中,即可得到 y 的值。
2. 函数值的含义一次函数的像反映了自变量和函数值之间的对应关系。
通过计算函数值,我们可以推断自变量的变化对函数值的影响。
四、一次函数的性质一次函数具有一些重要的性质,我们将逐一进行归纳。
1. 线性关系一次函数是一种线性函数,它满足函数关系的线性特性。
换句话说,函数的图像是一条直线,而且随着自变量的变化,函数值也呈线性变化。
一次函数、二次函数和反比例函数是数学中常见的函数类型,它们在图像的增减性质上有着不同的特点。
本文将针对一次函数、二次函数和反比例函数的增区间进行详细分析和比较。
一、一次函数的增区间一次函数的一般形式为y=ax+b,其中a和b为常数且a不等于0。
一次函数的图像是一条直线,它具有以下特点:1. 如果a大于0,表示直线向上倾斜,那么函数的增区间为整个实数集(-∞,+∞);2. 如果a小于0,表示直线向下倾斜,那么函数的增区间为空集∅。
一次函数的增区间要么是整个实数集,要么是空集,取决于直线的斜率a的正负性。
二、二次函数的增区间二次函数的一般形式为y=ax²+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条开口朝上或者朝下的抛物线,它具有以下特点:1. 如果a大于0,表示抛物线开口朝上,那么函数的增区间为实数集中与顶点的横坐标相等的点构成的单点集{x| x=x0}。
其中,顶点的横坐标x0=-b/2a;2. 如果a小于0,表示抛物线开口朝下,那么函数的增区间为整个实数集(-∞,+∞)。
二次函数的增区间要么是单点集,要么是整个实数集,取决于抛物线开口的方向和顶点的横坐标。
三、反比例函数的增区间反比例函数的一般形式为y=k/x,其中k为非零常数。
反比例函数的图像是一条对称于第一象限和第三象限的双曲线,它具有以下特点:1. 当k大于0时,函数的增区间为区间(0,+∞);2. 当k小于0时,函数的增区间为区间(-∞,0)。
反比例函数的增区间取决于常数k的正负性,当k为正时增区间在正半轴,当k为负时增区间在负半轴。
总结:一次函数、二次函数和反比例函数的增区间分别与直线的斜率、抛物线开口的方向和对称轴的正负相关。
对于一次函数和二次函数而言,其增区间可以通过其一般形式中的参数a的正负性来确定,而对于反比例函数,其增区间可以通过函数的常数k的正负性来确定。
通过本文的分析和比较,读者可以更加清晰地理解一次函数、二次函数和反比例函数在增区间上的不同特点。
一次函数的图像和性质讲义-综合提高版内容指引:知识点+例题+达纲测试训练+答案 一、一次函数的图像1.正比例函数y=kx(k ≠0,k 是常数)的图像是经过O (0,0)和M (1,k )两点的一条直线(如图13-17).(1)当k >0时,图像经过原点和第一、三像限;(2)k <0时,图像经过原点和第二、四像限.2.一次函数y=kx+b(k 是常数,k ≠0)的图像是经过A (0,b )和B (-kb,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况:(1)k >0,b >0时,直线经过第一、二、三像限,如图13-18A (2)k >0,b <0时,直线经过第一、三、四像限,如图13-18B (3)k <0,b >0时,直线经过第一、二、四像限,如图13-18C (4)k <0,b <0时,直线经过第二、三、四像限,如图13-18D3.一次函数的图像的两个特征(1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A (0,b ),因此b 叫直线在y 轴上的截距.(2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A (0,b )和B (-kb ,0).设直线与x 的夹角为α,则tg α=|kb b|=|k|,由于角α:0<α<90°,tg α>,因此|k|=tg α.4.一次函数的图像与直线方程(1)一次函数y=kx+b(k ≠0)的图像是一条直线,因此y=kx+b(k ≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).二、两条直线的关系1.与坐标轴不平行的两条直线l1:y1=k1x+b1,l2:y2=k2x+b,若l1若l2相交,则k1≠k2;若k1≠k2,则l1与l2不平行,其交点是联立这两条直线的方程,求得的公共解.三、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.待定系数法求一次函数的解析式:若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=k1x1+b①y2=k2x2+b2②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.【重点难点解析】例1已知一次函数y=(m+3)x+(4-n),(1)m为何值时,y随x的增大而减小;(2)n为何值时,函数的图像与y轴的交点x轴下方;(3)m、n为何值时,函数图像与y=x+2的图像平行.解:(1)当m+3<0,即m<-3时,y随x的增大而减小;(2)当4-n<0,即n>4时,函数的图像与y轴的交点在x下方;(3)当m+3=1且4-n ≠2时,即m=-2, n ≠2时,函数的图像是一条与y=x+2平行的直线.例2 当a 、b >0,ac <0,直线ax+by+c=0不通过哪个像限. 解:∵b ≠0 ∴由原函数式变形得: y=-b a x-bc ∴ab >0 ∴-b a<0 又∵ac <0,∴-bc>0直线ax+by+c=0不通过第三像限. 例3 直线l 1:y 1=k 1x+b 1 与y=2x 平行且通过A (3,4),直线l 2:y 2=k 2x+b 2通过B (1,3),C (-1,5),求l 1和l 2的解析式.解:∵y 1=k 1x+b 1与y=2x 平行且通过A (3,4)∴⎩⎨⎧=+=4b 3k 2k 111解这个方程组得:⎩⎨⎧==-2b 2k 11∴l 1的解析式为:y=2x-2∵y 2=k 2x+b 2通过B (1,3)和C (-1,5)两点,将两点的坐标代入解析式得:∴l 2的解析式为:y=-x+4例4 已知一个正比例函数和一个一次函数,它们的图像都经过P (-2,1),且一次函数在y 轴上的截距为3.(1)求这两个函数的解析式;(2)在同一坐标系中,分别画出两个函数的图像;(3)求这两个函数的图像与y 轴围成的三角形的面积.解:(1)设正比例函数和一次函数的解析式分别为y=k 1x 和 y=k 2x+b.由y=k 1x 过点(-2,1)得1=-2k 1 ∴k 1=-21由y=k 2x+b 过点(-2,1),截距为3 得:b=3 -2k 2+b=1 解得:k 2=1 b=3(2)过点O (0,0)、P (-2,1)两点画一条直线,即得函数y=-21x 的图像.经过A (0,3)和P (-2,1)画一条直线即得y=x+3的直线,如图13-21(3)直线y=x+3与y 轴交于点A (0,3)过P 作PH ⊥y 轴,则OA=3,PH=|-2|=2,而函数与y 轴所围成的三角形面积即是△APO 的面积.S △APO=21·AO ·PH =21×3×2=3例5 已知y-(m-3)与x (m 是常数)成正比例,且 x=6时,y=1;x=-4时, y=-4.(1)求y 与x 之间的函数关系式;(2)在直角坐标系中,画出这个函数的图像;(3)求出这个函数的图像与坐标轴的两个交点之间的距离.解:∵y-(m-3)与x 成正比例∴可设y-(m-3)=kx,即y=kx+m-3①⎩⎨⎧-=+-=+1m k 44m k 6故所求函数关系式为:y=21x-2 (2)经过A (6,1)和B (-4,-4)画直线即是函数y=21x-2的图像.如图13-22(3)当x=0时:y=21×0-2=-2 当y=0时,0=21x-2 x=4 ∴C (4,0),D (0,-2)|CD|=52242222=+=+OD OC综上所述5例可见,本节重点为:①根据直线所通过的点的条件求直线方程;②根据直线方程求作直线的图像;③根据增减性、截距求直线方程;④根据两直线的位置关系求直线方程;本节的难点是求直线围成的图形的面积.解决重难点的方法是运用待定系数法和数形结合的方法.【难题巧解点拨】例6 已知函数y=|x-a|+|x+19|+|x-a-96|,其中a 为常数,且满足19<a <96,当自变量x 的取值范围为a ≤x ≤96时,求y 的最大值.解:∵19<a <96,a ≤x ≤96∴x-a ≥0,x+19>10,x-a-96<0则y=x-a+x+19+a+96-x=115+x 函数y=15+x 是一次函数,其增减性表明y 随x 的增大而增大. ∴在a ≤x ≤96的x 取值范围内,当x=96时,y 取最大值,即: y max =96+115=211说明:含绝对值的函数首先要讨论绝对值的式子的正负性质,再根据绝对值定义化简,从而得到一次函数;讨论在某一自变量的取值范围内最大值或最小值要根据一次函数的性质和自变量x 范围的两端点取值来求.例7 如图13-23在平面直角坐标系中,点O ′的坐标为(0,3),⊙O ′与y 轴交于原点O 和点A ,又B 、C 、E 三点的坐标分别为(0,-2)、(4,0)、(x ,0),且0<x <4.(1)求点A 的坐标;(2)当点E 在线段OC 上移动时,直线BE 与⊙O ′有哪几种位置关系?(3)求出直线BE 与⊙O ′每种位置关系时,x 的取值范围.分析:直线与圆有三种位置关系,从直线与圆相切这种特殊情形,用运动变化的观点寻求结论成立的条件是解本题的关键.解:(1)∵O ′(0,3) ∴⊙′的半径为: OO ′=3,∴OA=2·OO ′=2×3=6,∴A (0,6)(2)∵点B 在⊙O ′外,BE 与⊙O ′有三种位置关系:相离、相切、相交; (3)当直线BE 与⊙O ′相切于D 点时,连结O ′D ,则△O ′BD 是Rt △. O ′D=3, O ′B=5,BD=4,OB=2,OE=x∵△O ′BD ∽△EBO∴BD OB D O OE =' 即423=x ,解得:x=23故当23<x <4时,直线BE 与⊙O ′相离;当x=23时,直线BE 与⊙O ′相切.当0<x <23时,直线BE 与⊙O ′相交.例8 如图13-24,某航空公司托运行李的费用与托运行李重量的关系为一直线,由图中可知行李的重量不超过多少公斤,就可以免费托运?解:设直线方程为:y=kx+b (k 、b 是常数,k ≠0)由图可知:x=20时,y=330;x=40时,y=630;把x,y 的对应取值代入直线方程,得:解这个方程组,得:k=30,b=-570 ∴直线方程为:y=30x-570若y=0时,30x-570=0, ∴x=19答:只要行李重量不超过19公斤时,就可免费托运.【命题趋势分析】由于一次函数是最基本的函数内容,是初中重点之一,在实际中应用十分广泛,因此是中考热点考题.有关一次函数考试主要是概念、图像、性质三个基本内容和待定系数法、数形结合法两种数学方法.【典型热点考题】例9 填空题:已知直线l:y=-3x+2,现在4个命题:①点P (1,-1)在直线l 上;②若直线l 与x 轴、y 轴分别交于A 、B 两点,则AB=1032;③若点M (31,1),N (a 、b )都在直线l 上,且a >31,则b >1;④若点Q 到两坐标轴的距离相等,且点Q 在l 上,则点Q 在第一或第四像限.其中正确的命题是 .(注意:在横线上填上你认为正确的命题序号)(2000年厦门市中考题)分析:检验①:只需将x=1,y=-1代入函数式看是否适合,当x=1时,y=-3+2=-1,即P(1,-1)在直线y=-3x+2上,①命题正确;检验②;当y=0时,求得x=32,即A (32,0),当x=0时,y=2,即B (0,2),∴AB=10322)32(22=+,命题②正确;检验③,若M (31,1),N(a,b)都在y=-3x+2上,根据直线的性质,k=-3<0,y 随x 的增加而减小,∴a >31时,应该有b <0,因此b >1错误,即命题③错误;检验④,∵Q 到两坐标轴的距离相等,设Q (m 、n ),则|m|=|n|,且n=-3m+2,由此解得:⎩⎨⎧-==11n m 或⎪⎪⎩⎪⎪⎨⎧==2121n m 因此Q 点在第一或第四像限,命题④正确.因此,选①、②、④填空.例10 某居民小区按照分期付款的形式福利售房,政府给予一定的贴息,小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款5000元与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%.(1)若第x (x ≥2)年小明家交付房款y 元,求年付款y (元)与x (年)的函数关系式;(2)将第三年,第十年应付房款填入下列表格中:(2000年大连市中考题)年份 第一年 第二年 第三年 …… 第十年 交房款(元)300005360……分析:首期付款后共余120000-30000=90000元房款,以后每年付款应为5000,与上一年所欠余款×0.4%,即余款的利息之和.解:(1)y=5000+[90000-5000(x-2)] ×0.4% =5400-20x (x ≥2)(2)当x=3时,y=5340,当 x=10 时,y=5200, 因此第三年应付款5340元,第十年应付款5200元. 例11 已知直线x-2y=-k+6和x+3y=4y+1,若它们的交点在第四像限内,(1)求k 的取值范围,(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线x-2y=-k+6上,求使△PAO 为等腰三角形的点P 的坐标.(2000年西安市中考题)解:(1)依题意:解这个方程组,得:x=k+4,y=k-1 ∵两直线的交点在第四像限 ∴k+4>0,且k-1<0解不等式组得:-4<k <1 (2)∵k 为非负整数,∴k=0 ∴直线x-2y=-k+6即为:y=x 21-3设P (a ,b )为直线y=x 21-3上一点,作PE ⊥x 轴,垂足为E ,若使PO=PA ,则应有OE=AE ,即E (1,0)∵a=1,∴b=-25∴P 1(1,- 25) 若使PO=OA=2,则a 2+b 2=4,a 2+(21a-3)2=4,45a 2-3a+5=0, △=9-25<0此方程无解.若使PA=OA=2,则(2-a )2+b 2=4,(2-a)2+(21a-3)2=4, ∴45a 2-7a+9=0,a 1=2,a 2=518,当a 1=2时,b 1=-2,当a 2=518时 ,b 2=-56. ∴P 2(2,-2)或P 3(518,56)综合上所述,点P 的坐标为(1,-25),(2,-2),(518,-56)如图13-25.【同步达纲练习】(时间:45分钟,满分:100分)一、选择题(10分×6=60分)(1)一次函数y=kx+b 的图像经过点(m,-1)和点(1,m),其中,m <-1,则k 和b 满足的条件是( )A.k <0,b <0B.k >0,b >0C.k <0,b >0D.k >0,b <0(2)若一次函数y=(1-2k)x-k (x 为自变量)的函数值y 随x 的增大而增大,且此函数的图像不经过第二像限,则k 的取值范围是( )A.k <21 B.k >0 C.0<k <21 D.k <0或k >21 (3)当mn <0 mp >0时,一次函数y=mnx p m 的图像不经过的像限是( ) A.第一像限 B.第二像限 C.第三像限 D.第四像限(4)一次函数y=kx+b 的图像如图13-26,那么k 、b 应满足的条件是( ) A.k >0,b >0 B.k >0,b <0 C.k <0,b >0 D.k <0,b <0 (5)已知函数y=xk的图像经过点(-1,1),则函数y=kx+3的图像是( )(6)直线y=kx+b 与直线 y=-x 垂直,并且经过点(-1,1),那么直线y=kx+b 的解析式为( )A.y=-x-2B.y=x+2C.y=x-2D.y=-x+2 三、解答题(10分×3=30分)(7)已知一次函数y=(3-k)x+2k+1.①如果它的图像经过(-1,2)点,求k 的值;②如果它的图像经过第一、二、四像限,求k 的取值范围.(8)已知y+b 与x-1(其中b 是常数)成正比例.①证明:y 是x 的一次函数;②若这个一次函数的图像经过点(25,0),且与坐标轴在第一像限内围成的三角形的面积为425,求这个一次函数,并画出它的图像.(9)已知一次函数y=(p+3)x+(2-q).①p 为什么实数时y 随x 的增大而增大?②q 为什么实数时,函数图像与y 轴的交点在x 轴的上方;③p 、q 为什么实数时,函数的图像过原点?(10)如图13-27,在直角坐标系中,点A (x 1,-3)在第三像限,点B (x 2,-1)在第四像限,线段AB 与y 轴交于点D ,∠AOB=90°,①当x 2=1时,求图像经过A 、B 的一次函数的解析式;②当△OAB 的面积等于9时,设∠AOD=α,求sin α·cos α的值.【素质优化训练】一个水池的容积是100m 3,现存水20m 3,今要灌满水池,已知进水管的流量是每小时8m 3,写出水池的水量υ与进水时间t 之间的函数关系式,并画出图像.【生活实际应用】某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出货,可获利15%,并可用本和利再投资其它商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用200元,请问根据商场的资金状况,如何购销获利最多?【知识探究学习】求直线方程的几种方法:1.如图1,若l 与x 轴的夹角为α(0<α<90),直线与y 轴交于点(0,b ),则直线l 方程即为:y=tg α·x+b2.若l 与x 的夹角为α(0<α<90),且经过点M (x 1,y 1),如图2,则直线l 的方程即可写为:αtg x x y y =--113.若l 经过A (x 1,y 1),B (x 2,y 2),则直线l 的方程即可写为:122122x x xx y y y y --=--11参考答案:【同步达纲练习】一、A C D D C B二、(7)k=34,k >3,(8)①y=kx-(k+b)(k ≠0);②y=-2x+5;(9)①P >-3,②q <2,③p ≠3且 q=2;(10)①y=21x-32;②sin α·cos α=61 【素质优化训练】1. v=20+8t(0≤t ≤10)【生活实际应用】设商场投资x 元,在月初出售,到月末可获得y 1元,在月末出售可获利y 2元. y 1=0.265x ,y 2=0.3x-700(1) 当y 1=y 2时,x=20000(2) y 1<y 2时,x >20000(3) y 1>y 2时,x <2000。
李艳成老师精品教辅资料助你走上优生之路
第1页(共1页) 一次函数增减性
姓名___________班级__________学号__________分数___________
一、选择题
1.(4835)下列函数,y 随x 增大而减小的是( )
A .y =x
B .y =x -1
C .y =x +1
D .y =-x +1
2.(3065)已知函数y =(m +2)x -2,要使函数值y 随x 的增大而增大,则m 的取值范围是( )
A .m ≥-2
B .m >-2
C .m ≤-2
D .m <-2
3.(8795)阿已知一次函数3)21(-+=x m y 中,函数值y 随自变量x 的增大而减小,那么m 的取值范围是( )
A . 12m -≤
B . 12m -≥
C . 21-<m
D . 2
1->m 4.(9285)函数y =(k -1)x +2,y 随x 的增大而减小,则k 的范围是( )
A . k <0
B .k >1
C .k ≤1
D .k <1
5.(10870)下列一次函数中,y 的值随着x 值的增大而减小的是( )
A .y =x ;
B .y =-x ;
C .y =x +1;
D .y =x -1;
二、填空题
6.(9141)当m _____时,一次函数y =(3m +1)x +1随着x 的减小而增大.
7.(10360)已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是_______.
8.(827)已知)2()3(m x m y -+-=,y 随x 的增大而减少,并且与y 轴的交点在y 轴的负半轴,则m 的取值范围是 ;
9.(2979-2003甘肃)一个函数的图象经过点(1,2),且y 随x 的增大而增大而这个函数的解析式是(只需写一个)_____________
10.(3508)已知一次函数经过点(-1 , 2)且y 随x 增大而减小,请写出一个满足上述条件的函数关系式______________________________.
11.(3568)已知一次函数y =kx +2,请你补充一个条件,使y 随x 的增大而减小.
答案一:______________________;答案二:_______________________.
12.(3569)若一次函数y =kx +3的图象经过(-1,5)那么这个函数的表达式为__________,y 的值随x 的减小而____________.
13.(4436-2004中考)函数b ax y +=的图像如图所示,则y 随x 的增大而____________.
三、解答题
14.(10722)写出m 的3个值,使相应的一次函数y =(3m -1) x +4都是y 随x 的增大而减小.。