一次函数及其性质
- 格式:doc
- 大小:567.50 KB
- 文档页数:23
一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。
它也被称为线性函数,因为它的图像是一条直线。
一次函数是数学中的基础概念之一,具有一些重要的性质和应用。
一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。
其中,a称为一次项的系数,b称为常数项。
当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。
二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。
斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。
截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。
三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。
当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。
对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。
平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。
四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数的定义及性质一次函数,也被称为线性函数,是数学中最简单且最常见的函数之一。
它可以用以下一般形式表示:f(x) = ax + b,其中a和b是常数,且a ≠ 0。
在本文中,我们将深入探讨一次函数的定义及其性质。
一、定义一次函数是指形式为f(x) = ax + b的函数,其中a和b为常数,a ≠ 0。
其中,x是自变量,f(x)是函数的值,a称为一次函数的斜率,b称为一次函数的截距。
二、性质一次函数具有以下性质:1. 斜率:一次函数的斜率表示了函数图像在每单位自变量变化时的纵坐标的变化量。
斜率可以通过函数的解析式中的a来确定。
当a>0时,函数图像呈现上升的趋势;当a<0时,函数图像呈现下降的趋势;当a=0时,函数呈现一条水平线。
2. 截距:一次函数的截距是函数图像与y轴的交点,可以通过函数的解析式中的b来确定。
截距表示了当自变量为0时,函数取得的值。
3. 增减性:根据斜率的正负来判断一次函数的增减性。
当斜率a>0时,函数随着自变量的增大而增加;当斜率a<0时,函数随着自变量的增大而减小。
4. 零点:一次函数的零点是指函数图像与x轴的交点,即f(x) = 0的解。
根据一次函数的形式,当ax + b = 0时,可以求得x = -b/a,这就是一次函数的零点。
5. 定义域和值域:一次函数的定义域是所有实数集合R,即函数对于任意实数都有定义。
值域取决于斜率a的正负情况,当a>0时,值域为区间(-∞, +∞);当a<0时,值域为区间(-∞, +∞)。
6. 对称性:一次函数具有x轴的对称性,即对于函数图像上任意一点(a, b),如果(a, -b)也在图像上,则函数具有对称性。
7. 线性关系:一次函数表示了两个变量之间的线性关系,其中x是自变量,f(x)是因变量。
当自变量的增加导致因变量的相应增加时,我们可以说这两个变量呈正相关的线性关系。
总结:一次函数是一种简单但重要的数学函数,具有直线的特点。
一次函数的性质及应用一次函数,也称为线性函数,是数学中较为简单而重要的函数类型之一。
它的一般形式可以表示为 y = ax + b,其中 a 和 b 是常数,a 表示直线斜率,b 表示直线与 y 轴的截距。
一次函数在数学中有着广泛的应用,本文将介绍一次函数的性质及其在实际问题中的应用。
1. 一次函数的性质一次函数的性质主要包括直线斜率和截距的关系,直线的特殊情况以及函数图像的特点。
1.1 直线斜率和截距的关系在一次函数 y = ax + b 中,直线的斜率 a 决定了直线的倾斜程度,截距 b 决定了直线在 y 轴上的位置。
当 a > 0 时,直线向右上方倾斜;当 a < 0 时,直线向左上方倾斜;当 a = 0 时,直线平行于 x 轴。
截距 b 则表示直线与 y 轴的交点在 y 轴上的位置,当 b > 0 时,交点在 y 轴上方;当 b < 0 时,交点在 y 轴下方;当 b = 0 时,交点位于原点。
1.2 直线的特殊情况一次函数中存在两种特殊的情况,即水平和竖直线。
当直线平行于 x 轴时,斜率 a = 0,此时直线呈水平姿态。
水平直线的一般形式为 y = b,其中 b 为直线与 y 轴的交点在 y 轴上的位置。
当直线平行于 y 轴时,斜率不存在,此时直线呈竖直姿态。
竖直直线的一般形式为 x = c,其中 c 为直线与 x 轴的交点在 x 轴上的位置。
1.3 函数图像的特点一次函数的图像呈现直线的形式。
根据直线的性质,我们可以得出以下结论:a) 当a ≠ 0 时,直线是无限延伸的;b) 当 a = 0 时,直线是水平的,长度可能有限也可能无限;c) 当 b = 0 时,直线经过原点。
2. 一次函数的应用一次函数在实际问题中有着广泛的应用,其中包括数学、物理、经济等各个领域。
2.1 数学领域在数学中,一次函数常用于解决线性方程组的问题。
线性方程组可以通过一次函数的表示转化为直观易懂的图像,从而得出解的意义和解的性质。
1、 一元一次方程与一次函数(1) 对于一次函数m ,由它的函数值0y =就得到关于x 的一元一次方程0kx b +=,解这个方程得bx k=-,于是可以知道一次函数m 的图像与x 轴的交点坐标为(,0)bk -. (2) 若已知一次函数m 的图像与x 轴的交点坐标,也可以知道这个交点的横坐标bx k =-,其就是一元一次方程0kx b +=的根.2、 一元一次不等式与一次函数(1) 由一次函数y kx b =+的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式0kx b +>(或0kx b +<)的解集.(2) 在一次函数m 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式0kx b +>(或0kx b +<)的解集.模块一:一次函数与不等式x没【例1】 已知一次函数经过(20)A ,和(13)B -,,在直角坐标系中画出函数图像且求在这个一次函数图像上且位于x【例2】 已知(0)y kx b k =+≠的函数图像如图所示:(1)求在这个函数图像上且位于x 轴上方所有点的横坐标的取值范围; (2)求不等式0kx b +≤的解集.【例3】 已知(0)y kx b k =+≠的函数图像如图所示:(1)求在这个函数图像上且位于y 轴左侧所有点的横坐标的取值范围; (2)求在这个函数图像上且位于y 轴右侧所有点的纵坐标的取值范围; (3)求2016y x b =-+在y 轴上的截距.【例4】已知一次函数解析式是132y x=-.(1)当x取何值时,2y=?(2)当x取何值时,2y>?(3)当x取何值时,2y<?(4)当x取何值时,02y<<?【例5】已知函数()31f x x=-+.(1)当x取何值时,()2f x=-?(2)当x取何值时,4()2f x>>-?(3)在平面直角坐标系中,在直线()31f x x=-+上且位于x轴下方所有点,它们的横坐标的取值范围是什么?【例6】已知方程20(0)ax a-=>的解为4x=,(1)求出函数2y ax=-与x轴的交点坐标;(2)解不等式20ax-≥.【例7】已知一次函数y ax b=+与y mx n=+交于点(34),,根据其图像回答下列问题:(1)求解不等式组:44 ax bmx n+>⎧⎨+≤⎩;(2)求解方程组:y b ax mx y n-=⎧⎨=-⎩;(3)求解不等式:ax b mx n+≤+.【例8】当-1≤x≤2时,函数6y ax=+满足10y<,求出常数a的取值范围.1、 一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质: 当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升; 当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降.2、 一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得) 当0k >,且0b >时,直线y kx b =+经过一、二、三象限; 当0k >,且0b <时,直线y kx b =+经过一、三、四象限; 当0k <,且0b >时,直线y kx b =+经过一、二、四象限; 当0k <,且0b <时,直线y kx b =+经过二、三、四象限. 把上述条件反过来叙述,也是正确的.【例9】 已知函数:①2y x =-+;② 132y x =+;③ 53y x =;④ 32xy -=;⑤11(1)45y x x =--.在这些函数中,函数值函数值y 随自变量x 的值增大而减小的函数有_______________.【例10】 已知一次函数(32)1y m x m =-++,函数值y 随自变量x 的值增大而减小.(1)求m 的取值范围; (2)其函数图像经过那些象限?【例11】 已知点(1)A a -,和(4)B b ,在函数13y x m =-+的图像上,试比较a 与b 的大小.【例12】 完成下列填空:(1) 直线25y x =--是________(填“上升”或“下降”)的,并且与y 轴的______半轴相交,因此这条直线经过第________象限,截距为_______;(2) 直线7(2)y x =-是________(填“上升”或“下降”)的,并且与y 轴的______半轴相交,因此这条直线经过第________象限,截距为_______.【例13】 直线2(1)1y m x m =+++与y 轴的交点坐标是(03),,且直线经过第一、二、四象限,则该直线与x 轴的交点为__________.【例14】 直线2(1)3y m x =--上有两点11()A x y ,和点22()B x y ,,且12x x >,12y y <,则常数m 的取值范围是_______________.【例15】 已知一次函数y kx b =+的图像是与直线23y x =-平行的直线.(1) 随着自变量x 的值的增大,函数值y 增大还是减小? (2) 直线4y kx =-经过哪几个象限? (3) 直线y kx b =+经过哪几个象限?【例16】 已知直线(21)3y m x m =-+,分别根据下列条件求m 的值或m 的取值范围:(1) 这条直线经过原点; (2) 这条直线经过一二四象限; (3) 这条直线不经过第三象限; (4) 这条直线与2 1.5y x =-+平行;【例17】 函数y ax b =+与y bx a =+的图象在同一坐标系内的大致位置正确的是( ).A B C D【例18】 点(1,m )、(2,n )在函数2(963)3(3)y a a x a a =-+-+-≠的图象上,则m 、n 的大小关系是____________.【例19】 无论p 为何值,除0以外,直线2y px p =+一定经过__________象限.【例20】 不论k 为何值,解析式(21)(3)(11)0k x k y k --+--=表示的函数的图象必过定点,求此定点的坐标.1、一次函数y kx b =+(,k b 为常数,0k ≠)中k 、b 的意义: k (称为斜率)表示直线y kx b =+(0k ≠)的倾斜程度;b (称为截距)表示直线y kx b =+(0k ≠)与y 轴交点是(0,)b ,也表示直线在y 轴上的截距.2、同一平面内,不重合的两直线1(0)a ≠与2(0)a ≠的位置关系: 当1212a a b b =≠,时,两直线平行.当12a a ≠时,两直线相交,交点为方程组1122y a x b y a x b =+⎧⎨=+⎩的解.当12b b =时,两直线交于y 轴上同一点.【例21】 已知一次函数y =kx +b ,y 随x 的增大而增大,且kb <0,指出一次函数的图像经过的象限.【例22】 若直线1l :23y x =-与直线2l :3y x =-+相交于点P ,(1)求P 点坐标;(2)求1l ,2l 与x 轴所围成的三角形的面积; (3)求1l ,2l 与y 轴所围成的三角形的面积; (4)求1l ,2l 与坐标轴所围成的四边形的面积.11b x a y +=22b x a y +=【例23】 已知:如图,直线PA 是一次函数(0)y x n n =+>的图象,直线PB 是一次函数2(0)y x m m =-+>的图象,其中点Q 是直线PA 与y 轴的交点.(1)用m ,n 来分别表示点P ,A ,B ,Q 的坐标;(2)四边形PQOB 的面积是56,AB =2,试求P 点的坐标,并写出直线PA 与PB 的解析式.【例24】 已知一次函数f (x )=ax +2a +1,当11x -≤≤时,f (x )的值有正有负,求a 的取值范围.【例25】 已知m 为正整数,直线5214x m y -++=和233my x =-+的交点在第四象限,求这两条直线与x 轴围成的三角形的面积.【习题1】已知,直线2(1)2y k x k =-++在y 轴上的截距为4,且y 随x 的增大而增大, 则k =_____________.【习题2】若点P (,)a b -在第二象限内,则直线y ax b =-不经过________.【习题3】若0bc <,0ab >,则一次函数a cy x b b=--的图像经过第_________象限.【习题4】已知点A (2)a -,、B (3)b -,在直线(5)2y k x =++上,且a b ≥,则k 的取值范围是__________.【习题5】根据图中所画的直线1y kx k =--,则一次函数213ky kx k -=+在y 轴上的截距为__________,与坐标轴围成的三角形面积为__________.【习题6】(1)一次函数(63)24y m x n =-+-不经过第三象限,则m 、n 的范围是________;(2)直线(63)24y m x n =-+-不经过第三象限,则m 、n 的范围是_________.【习题7】已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,下列结论:(1)00k b >>,;(2)00k b ><,;(3)00k b <>,;(4)00k b <<,.其中正确的是_________.【习题8】直线111:l y k x a =+,222:l y k x b =+的交点坐标是(1,2),则使1y <2y 的x 取值 范围是__________【习题9】若一次函数(0)y kx b k =+≠的自变量x 的取值范围是26x -≤≤,相应的函数值的范围是119x -≤≤,求此函数的解析式,以及其经过哪些象限?【习题10】已知方程1(0)ax b a -=<的解为x =(1)求出函数1y ax b =--与x 轴的交点坐标;(2)解不等式10ax b --≥;(3)试求函数1y ax b =--与一次函数2(y x =-的交点坐标.【习题11】如图,直线L :122y x =-+与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (04),,动点M 从A 点以每秒1个单位的速度沿x 轴向左移动. (1)求A 、B 两点的坐标;(2)求∆COM 的面积S 与点M 的移动时间t 之间的函数关系式; (3)当t 何值时∆COM ≌∆AOB ,并求此时M 点的坐标.【习题12】一个一次函数图象与直线514y x=-平行,与x轴、y轴的交点分别为A、B,并且过点(125)--,,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有哪些?【习题13】已知:不论k取什么实数,关于x的函数236kx a x bky+-=-(a、b是常数)始终经过点(11),,试求a、b的值.【作业1】已知一次函数y kx b=+的图像交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式___________【作业2】(1)已知m是整数,且一次函数(4)2y m x m=+++的图像不经过第二象限,则m为__________;(2)一次函数(2)43y a x a=-+-的图像与y轴的交点在x轴的下方,则a的取值范围是__________.【作业3】已知直线2(0)y mx m m=+<.(1)当x取何值时,0y=?(2)当x取何值时,0y>?(3)当x取何值时,0y<?(4)在m的取值范围内,直线在平面直角坐标系始终经过哪些象限?【作业4】已知(0)y kx b k =+≠的函数图像如图所示:(1)求在这个函数图像上且位于x 轴下方所有点的横坐标的取值范围; (2)求解不等式0kx b +≥.【作业5】函数y kx k =+与ky x=(0)k ≠在同一坐标系内的图象可能是( ).ABCD【作业6】已知一次函数2(3)2y m x m =--+,函数值y 随自变量x 的值增大而减小.(1)求m 的取值范围; (2)其函数图像经过那些象限?【作业7】已知点(3)a A y ,和(3)b B y -,在函数2(3)y m x m =--+的图像上,试比较a y 与by 的大小.【作业8】k 在为何值时,直线2154k x y +=+与直线23k x y =+的交点在第四象限?【作业9】画出函数32y x =--的图像,利用图像求:(1)方程320x --=的根; (2)不等式320x --≥的解集; (3)当7y ≤时,求x 的取值范围;(4)当11x -≤≤时,求y 的取值范围; (5)求图像与坐标轴围成的三角形的面积;【作业10】已知直线23y mx m m =-++分别根据下列条件求m 的值或m 的取值范围:(1)直线经过(13),;(2)直线经过原点;(3)直线与1y =-平行;(4)直线在y 轴上的截距4; (5)直线经过一三四象限;【作业11】若一次函数(0)y kx b k =+≠,当31x -≤≤时,对应的函数y 值为19y ≤≤,则一次函数的解析式为_____________.【作业12】已知2y x =-+与x 轴、y 轴分别交于点A 和点B ,另一直线(0)y kx b k =+≠经 过点(10)C ,,且把∆AOB 分成两部分.(1)若把∆AOB 被分成的两部分面积相等,求k 、b 的值; (2)若∆AOB 被分成的两部分面积之比为1:5,求k 、b 的值.。
一次函数的性质一次函数,也被称为线性函数,是数学中非常基础和重要的概念之一。
它的表达形式可以写作y = ax + b,其中a和b是实数,a不等于0。
在本文中,我们将探讨一次函数的一些性质,并深入了解它们在数学和现实生活中的应用。
1. 一次函数的图像一次函数的图像是一条直线。
它通过两点,可以得出一条确切的直线。
我们可以通过确定两个点,或者一个点和斜率来确定这条直线。
其中,斜率a决定了直线的斜率和方向,b则是直线与y轴的截距。
这意味着当x增加1个单位时,y的增加量为a。
2. 斜率的性质斜率是一次函数的重要特征之一,它代表了函数图像的倾斜程度。
斜率可以用于解释直线的增长速度和方向。
当斜率为正数时,函数图像向上倾斜,表示y随着x的增加而增加;当斜率为负数时,函数图像向下倾斜,表示y随着x的增加而减小;斜率为0时,函数图像平行于x轴,表示y的值不随x的变化而变化。
3. 截距的性质截距是一次函数图像与y轴的交点。
截距b决定了函数图像与y轴的位置关系。
当截距为正数时,函数图像在y轴上方;当截距为负数时,函数图像在y轴下方;截距为0时,函数图像经过坐标原点。
4. 反比例关系一次函数还可以表示两个变量之间的反比例关系。
当一个变量的增加导致另一个变量的减小,并且它们的关系可以用一次函数来表示时,我们称之为反比例关系。
在一次函数中,斜率为正数,截距为0的情况下,函数图像趋近于x轴,并呈现出反比例关系。
5. 应用案例一次函数在现实生活中有广泛的应用。
例如,当我们计算汽车的速度和行驶时间时,可以使用一次函数来表示两者之间的关系。
速度是行驶的距离与所需时间的比值,因此我们可以用速度作为y轴,时间作为x轴,建立一条通过原点的直线来描述这一关系。
另一个应用案例是成本与产量之间的关系。
当我们研究产品的成本与产量之间的关系时,可以使用一次函数来建立模型。
成本是一个变量,它随着产量的增加而变化,在一次函数中,斜率代表单位产量的成本增加量。
一次函数的性质一次函数是数学中一种基本的函数类型,也称为线性函数。
它的特点是函数图像为一条直线,表现出一种简单而直接的变化规律。
一次函数通常以 y = ax + b 的形式表示,其中 a 和 b 都是常数。
一次函数的性质有很多,接下来我们将逐一介绍。
1. 变化趋势:一次函数的图像为一条斜率恒定的直线,斜率的值决定了函数图像的变化趋势。
当斜率 a > 0 时,函数图像为上升的直线;当斜率 a < 0 时,函数图像为下降的直线;当斜率 a = 0 时,函数图像为水平直线。
2. 截距:一次函数的图像在 x 轴上与 y 轴相交的点分别称为 x 轴截距和 y 轴截距。
x 轴截距为负数的情况下,函数的图像位于 y 轴的左侧;x 轴截距为正数的情况下,函数的图像位于 y 轴的右侧。
3. 定义域和值域:一次函数的定义域是所有实数,即该函数对于任意实数值的 x 都有定义。
一次函数的值域是所有实数,即该函数可以取到任意实数值的 y。
4. 求解交点:一次函数与 x 轴的交点称为根,也就是函数图像与 x轴的交点;与 y 轴的交点称为解,也就是函数图像与 y 轴的交点。
求解根的方法是令 y = 0,并解出 x 的值;求解解的方法是令 x = 0,并解出 y 的值。
5. 判断与关系:对于两个不同的一次函数 f(x) = ax + b 和 g(x) = cx + d,若 a = c 且 b = d,则两个函数是相等的;若 a = c 且b ≠ d,则两个函数是平行的,它们的图像永远不会相交;若a ≠ c,则两个函数是相交的,它们会有一个交点。
6. 性质推广:一次函数的性质可以推广到更高维度的情况。
对于二维空间中的直线,它可以表示为三个一次函数形式的方程组,其中每个方程都有两个变量。
对于三维空间中的平面,它可以表示为三个一次函数形式的方程组,其中每个方程都有三个变量。
在实际应用中,一次函数常常被用于描述变化的趋势和规律。
初中数学一次函数知识点总结一次函数知识是每年中考的重点知识,是每卷必考的主要内容,本知识点主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.下面是小编为大家整理的关于初中数学一次函数知识点,希望对您有所帮助!初中数学一次函数知识点一次函数的定义一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。
当b=0时,一次函数y=kx,又叫做正比例函数。
1.一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。
2.当b=0,k≠0时,y=kx仍是一次函数。
3.当k=0,b≠0时,它不是一次函数。
4.正比例函数是一次函数的特例,一次函数包括正比例函数。
2一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3.正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
当k>0,b>0时,直线通过一、二、三象限;当k>0,b<0时,直线通过一、三、四象限;当k<0,b>0时,直线通过一、二、四象限;当k<0,b<0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
3一次函数的图象与性质的口诀一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
初二数学一次函数知识点总结知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。
(2019年1月最新最细)2019全国中考真题解析考点汇编☆一次函数及其性质 一、选择题1. (2019新疆乌鲁木齐,5,4)将直线y =2x 向右平移1个单位后所得图象对应的函数解析式为( ) A 、y =2x -1 B 、y =2x -2 C 、y =2x +1 D 、y =2x +2 考点:一次函数图象与几何变换。
专题:探究型。
分析:根据函数图象平移的法则进行解答即可.解答:解:直线y =2x 向右平移1个单位后所得图象对应的函数解析式为y =2(x -1), 即y =2x -2. 故选B .点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.2. (2019南昌,8,3分)已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2 B .﹣1 C .0 D .2考点:一次函数图象与系数的关系. 专题:探究型.分析:根据一次函数的图象经过第一、二、三象限判断出b 的符号,再找出符合条件的b 的可能值即可.解答:解:∵一次函数的图象经过第一、二、三象限,∴b >0,∴四个选项中只有2符合条件.故选D .点评:本题考查的是一次函数的图象与系数的关系,即一次函数y =kx +b (k ≠0)中,当b <0时,函数图象与y 轴相较于负半轴.3. (2019陕西,4,3分)下列四个点,在正比例函数x y 52-=的图像上的点是( )A .(2,5)B .(5,2)C .(2,-5)D .(5,-2) 考点:一次函数图象上点的坐标特征。
专题:函数思想。
分析:根据函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知错误!未找到引用源。
是定值. 解答:解:由错误!未找到引用源。
,得错误!未找到引用源。
=﹣错误!未找到引用源。
;A 、∵错误!未找到引用源。
=错误!未找到引用源。
,故本选项错误;B 、∵错误!未找到引用源。
=错误!未找到引用源。
,故本选项错误;C 、∵错误!未找到引用源。
=﹣错误!未找到引用源。
,故本选项错误;D 、∵错误!未找到引用源。
=﹣错误!未找到引用源。
,故本选项正确; 故选D . 点评:本题考查了正比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.4. (2019•台湾1,4分)坐标平面上,若点(3,b )在方程式3y=2x ﹣9的图形上,则b 值为何( ) A 、﹣1 B 、2 C 、3 D 、9考点:一次函数图象上点的坐标特征。
专题:计算题。
分析:利用一次函数图象上点的坐标性质,将点(3,b)代入即可得出b的值.解答:解:把点(3,b)代入3y=2x﹣9,得:b=﹣1.故选A.点评:本题考查的知识点是:在这条直线上的点的坐标一定适合这条直线的解析式.5.(2019台湾,9,4分)如图的坐标平面上,有一条通过点(-3,-2)的直线L.若四点(-2,a).(0,b).(c,0).(d,-1)在L上,则下列数值的判断,何者正确()A.a=3 B.b>-2 C.c<-3 D.d=2考点:一次函数图象上点的坐标特征。
专题:数形结合。
分析:根据函数的图象可判断出函数的增减性,从而结合选项即可判断各选项正确与否.解答:解:由题意得:此函数为减函数,A.-2>-3,故a<-2,故本选项错误;B.-3<0,故-2>b,故本选项错误;C.0>-2,故c<-3,故本选项正确;D.-1>-2,故b<-3,故本选项错误.故选C.点评:本题考查一次函数图象上点的坐标特征,解答本题的关键是掌握函数的增减性,另外本题还可以利用特殊值设出符合题意的函数解析式,然后代入判断.6.(2019重庆江津区,4,4分)直线y=x﹣1的图象经过的象限是()A、第一、二、三象限B、第一、二、四象限C、第二、三、四象限D、第一、三、四象限考点:一次函数的性质。
专题:计算题。
分析:由y=x﹣1可知直线与y轴交于(0,﹣1)点,且y随x的增大而增大,可判断直线所经过的象限.解答:解:直线y=x﹣1与y轴交于(0,﹣1)点,且k=1>0,y随x的增大而增大,∴直线y=x﹣1的图象经过第一、三、四象限.故选D.点评:本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.7.(2019湖北咸宁,8,3分)如图,在平面直角坐标系中,□OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将□OABC分割成面积相等的两部分,则直线l的函数解析式是()A、y=x+1B、错误!未找到引用源。
C、y=3x﹣3D、y=x﹣1考点:待定系数法求一次函数解析式;平行四边形的性质;中心对称。
分析:首先根据条件l经过点D(1,0),且将▱OABC分割成面积相等的两部分,求出E点坐标,然后设出函数关系式,再利用待定系数法把D,E两点坐标代入函数解析式,可得到答案.解答:解:设D(1,0),∵线l经过点D(1,0),且将▱OABC分割成面积相等的两部分,∴OD=OE=1,∵顶点B的坐标为(6,4).∴E(5,4)设直线l的函数解析式是y=kx+b,∵图象过D(1,0),E(5,4),∴错误!未找到引用源。
,解得:错误!未找到引用源。
,∴直线l的函数解析式是y=x﹣1.故选D.点评:此题主要考查了待定系数法求一次函数解析式,解题的关键是求出E点坐标.8(2019,台湾省,15,5分)如图的坐标平面上有四直线L1、L2、L3、L4.若这四直线中,有一直线为方程式3x﹣5y+15=0的图形,则此直线为何?()A、L1B、L2C、L3D、L4考点:一次函数的图象;一次函数图象上点的坐标特征。
专题:推理填空题。
分析:求出直线与X、Y轴的交点坐标(0,3),(﹣5,0),根据图象即可选出答案.解答:解:将x=0代入3x﹣5y+15=0得:y=3,∴方程式3x﹣5y+15=0的图形与y轴的交点为(0,3),将y=0代入3x﹣5y+15=0得:x=﹣5,∴方程式3x﹣5y+15=0的图形与x轴的交点为(﹣5,0),观察图形可得直线L1与x、y轴的交点恰为(﹣5,0)、(0,3),∴方程式3x﹣5y+15=0的图形为直线L1.故选A.点评:本题主要考查对一次函数的图象,一次函数图象上点的坐标特征等知识点的理解和掌握,能根据一次函数的图象进行判断是接此题的关键.9.(2019山东滨州,6,3分)关于一次函数y=-x+1的图像,下列所画正确的是( ).【考点】一次函数的图象.【专题】常规题型.【分析】根据函数的k为-1,b=1,可判断函数为减函数,且与y轴的交点在y轴的负半轴.【解答】解:由题意得:函数的k为-1,b=1,∴函数为减函数,且与y轴的交点在y轴的负半轴,结合选项可得C符合题意.故选C.【点评】本题考查一次函数的图象的知识,难度不大,对于此类题目要先判断增减性及与y 轴交点的位置.10.(2019山东济南,10,3分)一次函数y=(k﹣2)x+3的图象如图所示,则k的取值范围是()A .k >2B .k <2C .k >3D .k <3 考点:一次函数图象与系数的关系。
专题:探究型。
分析:先根据一次函数的图象得到关于k 的不等式,求出k 的取值范围即可. 解答:解:一次函数的图象过二、四象限可知,k ﹣2<0, 解得k <2. 故选B .点评:本题考查的是一次函数的性质,即一次函数y=kx+b (k ≠0)中,当k <0时,函数的图象过二、四象限.11. (2019泰安,13,3分)已知一次函数y =mx +n -2的图象如图所示,则m .n 的取值范围是( )A .m >0,n <2B .m >0,n >2C .m <0,n <2D .m <0,n >2 考点:一次函数图象与系数的关系。
专题:探究型。
分析:先根据一次函数的图象经过二.四象限可知m <0,再根据函数图象与y 轴交与正半轴可知n -2>0,进而可得出结论.解答:解:∵一次函数y =mx +n -2的图象过二.四象限, ∴m <0,∵函数图象与y 轴交与正半轴, ∴n -2>0, ∴n >2. 故选D .点评:本题考查的是一次函数的图象,即直线y =kx +b 所在的位置与k .b 的符号有直接的关系.k >0时,直线必经过一.三象限.k <0时,直线必经过二.四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交. 12. (2019成都,21,4分)在平面直角坐标系xOy 中,点P (2,a )在正比例函数x y 21的图象上,则点Q (a ,3a -5)位于第 象限. 考点:一次函数图象上点的坐标特征;点的坐标。
专题:数形结合。
分析:把点P 坐标代入正比例函数解析式可得a 的值,进而根据点的Q 的横纵坐标的符号可得所在象限.解答:解:∵点P (2,a )在正比例函数错误!未找到引用源。
的图象上, ∴a =1,∴a =1,3a -5=-2,∴点Q (a ,3a -5)位于第四象限. 故答案为:四.点评:考查一次函数图象上点的坐标特征;得到a 的值是解决本题的突破点.13. (2019四川雅安,10,3分)已知一次函数y=kx+b ,k 从2,﹣3中随机取一个值,b 从1,﹣1,﹣2中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为( )A.13错误!未找到引用源。
B.23错误!未找到引用源。
C.16错误!未找到引用源。
D.12错误!未找到引用源。
考点:列表法与树状图法;一次函数的性质。
分析:根据已知画出树状图,再利用一次函数的性质该一次函数的图象经过二、三、四象限时,k <0,b <0,即可得出答案.解答:解:∵k 从2,﹣3中随机取一个值,b 从1,﹣1,﹣2中随机取一个值, ∴可以列出树状图:∴该一次函数的图象经过二、三、四象限时,k <0,b <0, ∴当k=﹣3,b=﹣1,时符合要求,∴该一次函数的图象经过二、三、四象限的概率为:16错误!未找到引用源。
, 故选:C .点评:此题主要考查了一次函数的性质以及树状图法求概率,熟练的应用一次函数知识得出k ,b 的符号是解决问题的关键.14. (2019湖南怀化,7,3分)在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,其直线解析式为( ) A .y =x +1 B .y =x ﹣1 C .y =x D .y =x ﹣2 考点:一次函数图象与几何变换。
专题:探究型。
分析:根据“左加右减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,其直线解析式为y =x +1. 故选A . 点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15.(2019年广西桂林,8,3分)直线1y kx =-一定经过点( ). A .(1,0) B .(1,k ) C .(0,k ) D .(0,-1) 考点:一次函数图象上点的坐标特征.分析:根据一次函数y=kx+b (k≠0)与y 轴的交点为(0,b )进行解答即可. 答案:解:∵直线y=kx-1中b=-1,∴此直线一定与y 轴相较于(0,-1)点, ∴此直线一定过点(0,-1). 故选D .点评:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b (k≠0)与y 轴的交点为(0,b ).3. (2019四川雅安10,3分)已知一次函数b kx y +=,k 从3,2-中随机取一个值,b 从2,1,1--中随机取一个值,则该一次函数的图像经过二.三.四象限的概率为( )A31 B 32 C 61 D 65考点:列表法与树状图法;一次函数的性质。