3.4 定积分与微积分基本定理
- 格式:pdf
- 大小:751.28 KB
- 文档页数:6
定积分、微积分基本定理
【定积分】
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积.即由y=0,x=a,x=b,y=f(X)所围成图形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个
面积,是一个数.
定积分的求法:
求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.
【微积分基本定理】
在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.
其中,微积分的核心(基本)定理是,其中F′(x)=f (x),而f(x)必须在区间(a,b)内连续.
例1:定积分=
解:
∫12|3﹣2x|dx
=+
=(3x﹣x2)|+(x2﹣3x)|
=
通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有dx;第二,每一段
对应的被积分函数的表达式要与定义域相对应;第三,求出原函数代入求解.
例2:用定积分的几何意义,则.
解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,
故==.
这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.
【考查】
定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.。
定积分与微积分基本定理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -a nf (ξi ),当n →∞时,上述和式无限接近某个□01常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )dx =limn →∞∑n i =1b -an f (ξi ).其中f (x )称为□02被积函数,a 称为积分□03下限,b 称为积分□04上限.2.定积分的几何意义3.定积分的性质性质1:⎠⎛a b kf (x )d x =□01k ⎠⎛ab f (x )d x (k 为常数).性质2:⎠⎛a b [f (x )±g (x )]d x =□02⎠⎛a b f (x )d x ±⎠⎛abg (x )d x .性质3:⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +□03⎠⎛c b f (x )d x . 4.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛a b f (x )d x=□01F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )|b a ,即⎠⎛ab f (x )dx =F (x )|b a =□02F (b )-F (a ). 5.定积分与曲边梯形面积的关系设阴影部分的面积为S. (1)S =⎠⎛ab f (x )d x ;(2)S =□01-⎠⎛ab f (x )d x ;(3)S =□02⎠⎛a c f (x )d x -⎠⎛cb f (x )d x ;(4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛a b [f (x )-g (x )]d x . 6.函数f (x )在闭区间[-a ,a ]上连续,则有: (1)若f (x )为偶函数,则⎠⎜⎛-aaf (x )d x =2⎠⎛0a f (x )d x .(2)设f (x )为奇函数,则⎠⎜⎛-aaf (x )d x =0.1.概念辨析(1)在区间[a ,b ]上连续的曲线y =f (x )和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )|d x .( )(2)若⎠⎛a b f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x轴下方.( )(3)已知质点的速度v =mt (m >0),则从t =0到t =t 0质点所经过的路程是⎠⎛0to mt d t=mt 202.( )答案 (1)√ (2)× (3)√2.小题热身(1)如图,指数函数的图象过点E (2,9),则图中阴影部分的面积等于()A.8ln 3 B .8 C.9ln 3 D .9答案A答案B(3) ⎠⎛-12|x |d x =________.答案 52解析 ⎠⎛-12|x |d x 的几何意义是函数y =|x |的图象与x 轴围成的图形(如图阴影所示)的面积,所以⎠⎛-12|x |d x =12×1×1+12×2×2=52.(4)若⎠⎛0t x 2d x =9,则常数t 的值为________.答案 3解析 ⎠⎛0t x 2d x =x 33|t 0=t 33=9,解得t =3.题型 一 定积分的计算答案 C 解析。
定积分与微积分基本定理1.定积分的概念在⎠⎛ab f (x )dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式. 2.定积分的几何意义设函数y =f (x )在区间[a ,b ]上连续且恒有f (x )≥0,则定积分⎠⎛ab f (x )dx表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积. 3.定积分的性质(1)⎠⎛a b kf (x )dx =k ⎠⎛ab f (x )dx (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]dx =⎠⎛ab f 1(x )dx ±⎠⎛ab f 2(x )dx ;(3)⎠⎛ab f (x )dx =⎠⎛ac f (x )dx +⎠⎛cb f (x )dx (其中a <c <b ).4.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )dx =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪ba ,即⎠⎛abf (x )dx =F (x )⎪⎪⎪ba =F (b )-F (a ).判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛ab f (x )dx =⎠⎛ab f (t )dt .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )dx =2⎠⎛0a f (x )dx .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )dx =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )dx .( )答案:(1)√ (2)√ (3)√ (4)×⎠⎛01e x dx 的值等于( )A .eB .1-eC .e -1 D.12(e -1)解析:选C.⎠⎛01e x dx =e x |10=e 1-e 0=e -1.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是()A .1 B.43 C. 3 D .2解析:选B .由⎩⎨⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)dx =⎠⎛02(-x 2+2x )dx =⎝ ⎛⎭⎪⎫-x 33+x 2|20=-83+4=43.若∫π20(sin x -a cos x )dx =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )|π20=1-a =2,a =-1. 答案:-1设f (x )=⎩⎨⎧x 2,x ∈[0,1],1x ,x ∈(1,e ](e 为自然对数的底数),则⎠⎛0e f (x )dx 的值为________.解析:因为f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e ],所以⎠⎛0e f (x )dx =⎠⎛01x 2dx +⎠⎛1e 1x dx=13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+ln e =43.答案:43定积分的计算[典例引领]利用微积分基本定理求下列定积分: (1)⎠⎛12(x 2+2x +1)dx ;(2)⎠⎛0π(sin x -cos x )dx ; (3)⎠⎛02|1-x |dx ;(4)⎠⎛12⎝ ⎛⎭⎪⎫e 2x +1x dx . 【解】 (1)⎠⎛12(x 2+2x +1)dx=⎠⎛12x 2dx +⎠⎛122xdx +⎠⎛121dx=x 33⎪⎪⎪21+x 2⎪⎪⎪21+x ⎪⎪⎪21=193. (2)⎠⎜⎛π(sin x -cos x )dx=⎠⎜⎛0πsin xdx -⎠⎜⎛0πcos xdx =(-cos x )⎪⎪⎪⎪π0-sin x ⎪⎪⎪⎪π0=2. (3)⎠⎛02|1-x |dx =⎠⎛01(1-x )dx +⎠⎛12(x -1)dx=⎝ ⎛⎭⎪⎫x -12x 2|10+⎝ ⎛⎭⎪⎫12x 2-x |21 =⎝ ⎛⎭⎪⎫1-12-0+⎝ ⎛⎭⎪⎫12×22-2-⎝ ⎛⎭⎪⎫12×12-1=1. (4)⎠⎛12⎝⎛⎭⎪⎫e 2x +1x dx =⎠⎛12e 2x dx +⎠⎛121x dx=12e 2x ⎪⎪⎪21+ln x ⎪⎪⎪21=12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln 2.若本例(3)变为“⎠⎛03|x 2-1|dx ”,试求之.解:⎠⎛03|x 2-1|dx=⎠⎛01(1-x 2)dx +⎠⎛13(x 2-1)dx=⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪31 =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫6+23=223.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[通关练习]1.⎠⎛-11e |x |dx 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎜⎛-11e |x |dx =⎠⎜⎛-1e -x dx +⎠⎛01e x dx =-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C .2.若⎠⎛01(x +mx )dx =0,则实数m 的值为( )A .-13B .-23C .-1D .-2解析:选B.由题意知⎠⎛01(x 2+mx )dx =⎝ ⎛⎭⎪⎫x 33+m x 22|10=13+m2=0,得m =-23.3.(优质试题·泉州模拟)⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =________.解析:⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =⎠⎛011-x 2dx +⎠⎛0112xdx ,⎠⎛0112xdx =14,⎠⎛011-x 2dx 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分计算平面图形的面积(高频考点)利用定积分计算平面图形的面积是近几年高考考查定积分的一个重要考向;主要以选择题、填空题的形式出现,一般难度较小.高考对定积分求平面图形的面积的考查有以下两个命题角度: (1)根据条件求平面图形的面积;(2)利用平面图形的面积求参数.[典例引领]角度一 根据条件求平面图形的面积(优质试题·新疆第二次适应性检测)由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( ) A .3 B.103 C.73D.83【解析】 由题可知题中所围成的图形如图中阴影部分所示,由⎩⎨⎧y =x 2+1y =-x +3,解得⎩⎨⎧x =-2y =5(舍去)或⎩⎨⎧x =1,y =2,即A (1,2),结合图形可知,所求的面积为⎠⎛01(x 2+1)dx +12×22=⎝ ⎛⎭⎪⎫13x 3+x |10+2=103,选B .【答案】B角度二 利用平面图形的面积求参数已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.【解析】 f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)dx =112a 4=112,所以a =-1. 【答案】 -1用定积分求平面图形面积的四个步骤(优质试题·山西大学附中第二次模拟)曲线y =2sinx (0≤x ≤π)与直线y =1围成的封闭图形的面积为________. 解析:令2sin x =1,得sin x =12, 当x ∈[0,π]时,得x =π6或x =5π6,所以所求面积S =⎠⎜⎛π65π6 (2sin x -1)dx =(-2cos x -x ) ⎪⎪⎪5π6π6=23-2π3.答案:23-2π3定积分在物理中的应用[典例引领]设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J (x 的单位:m ;力的单位:N ).【解析】 变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )dx =⎠⎛110(x 2+1)dx=⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J ). 【答案】342定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )dt .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )dx .以初速40 m /s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 m C.403 mD.203 m解析:选A.由v =40-10t 2=0, 得t 2=4,t =2.所以h =⎠⎛02(40-10t 2)dt =⎝ ⎛⎭⎪⎫40t -103t 3⎪⎪⎪20=80-803=1603(m).求定积分的方法(1)利用微积分基本定理求定积分步骤如下: ①求被积函数f (x )的一个原函数F (x ); ②计算F (b )-F (a ).(2)利用定积分的几何意义求定积分.求曲边多边形面积的步骤(1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分.易错防范(1)若积分式子中有几个不同的参数,则必须先分清谁是积分变量. (2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积为正,而定积分的结果可以为负.1.定积分⎠⎛01(3x +e x )dx 的值为( )A .e +1B .eC .e -12D .e +12。
《定积分与微积分基本定理》教案章节一:定积分的概念1.1 引入定积分的概念1.2 定积分的几何意义1.3 定积分的性质1.4 定积分的计算方法章节二:定积分的计算2.1 定积分的换元法2.2 定积分的分部积分法2.3 定积分的三角函数法2.4 定积分的特殊函数法章节三:定积分的应用3.1 定积分在几何中的应用3.2 定积分在物理中的应用3.3 定积分在经济学中的应用3.4 定积分在其他领域的应用章节四:微积分基本定理4.1 微积分基本定理的引入4.2 微积分基本定理的证明4.3 微积分基本定理的应用4.4 微积分基本定理的拓展章节五:定积分的进一步应用5.1 定积分的双重积分5.2 定积分的三重积分5.3 定积分的线积分5.4 定积分的面积分《定积分与微积分基本定理》教案(续)章节六:定积分的数值计算6.1 梯形法则6.2 辛普森法则6.3 柯特斯法则6.4 蒙特卡洛方法章节七:定积分的误差分析7.1 梯形法则的误差分析7.2 辛普森法则的误差分析7.3 柯特斯法则的误差分析7.4 蒙特卡洛方法的误差分析章节八:微积分基本定理的应用8.1 微积分基本定理在求解不定积分中的应用8.2 微积分基本定理在求解定积分中的应用8.3 微积分基本定理在求解极限中的应用8.4 微积分基本定理在求解导数中的应用章节九:定积分的优化问题9.1 利用定积分求解最大值和最小值9.2 利用定积分求解极值问题9.3 利用定积分求解最值问题的应用实例9.4 利用定积分求解实际问题中的优化问题章节十:定积分与微积分基本定理的综合应用10.1 利用定积分和微积分基本定理解决实际问题10.2 定积分和微积分基本定理在工程中的应用10.3 定积分和微积分基本定理在科学研究中的应用10.4 定积分和微积分基本定理在其他领域的应用《定积分与微积分基本定理》教案(续)章节十一:定积分的物理意义11.1 定积分在物理学中的作用11.2 定积分与力学中的功11.3 定积分与电磁学中的电场强度11.4 定积分在热力学中的应用章节十二:定积分在工程中的应用12.1 定积分在土木工程中的应用12.2 定积分在机械工程中的应用12.3 定积分在电子工程中的应用12.4 定积分在生物医学工程中的应用章节十三:定积分在经济与管理中的应用13.1 定积分在经济学中的优化问题13.2 定积分在金融学中的应用13.3 定积分在运筹学中的应用13.4 定积分在管理科学中的应用章节十四:定积分在现代科技中的应用14.1 定积分在计算机科学中的应用14.2 定积分在数据科学中的应用14.3 定积分在中的应用14.4 定积分在其他现代科技领域的应用章节十五:定积分与微积分基本定理的复习与提高15.1 定积分的基本概念与性质的复习15.2 微积分基本定理的复习与应用15.3 定积分的计算方法的巩固与提高15.4 定积分在实际问题中的应用案例分析重点和难点解析重点:1. 定积分的概念和几何意义2. 定积分的计算方法:梯形法则、辛普森法则、柯特斯法则和蒙特卡洛方法3. 定积分的应用领域:几何、物理、经济学等4. 微积分基本定理的引入、证明和应用5. 定积分的数值计算和误差分析6. 定积分在不同学科中的应用:物理学、工程学、经济与管理、现代科技等难点:1. 定积分的换元法和分部积分的具体操作2. 定积分的三角函数法和特殊函数法的应用3. 微积分基本定理的证明过程中的理解和应用4. 定积分的数值计算方法的误差分析5. 定积分在实际问题中的优化问题和应用实例6. 定积分在不同学科中的应用:物理学、工程学、经济与管理、现代科技等,这些应用领域的理解和实际问题解决能力的培养。
定积分与微积分基本定理定积分与微积分基本定理知识点一:定积分的概念如果函数在区间上连续,用分点将区间分为n个小区间,在每个小区间上任取一点(i=1,2,3…,n),作和式,当时,上述和式无限趋近于某个常数,这个常数叫做在区间上的定积分.记作.即,,这里,与分别叫做积分下限与积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式.说明:(1)定积分的值是一个常数,可正、可负、可为零;(2)用定义求定积分的四个基本步骤:?分割;?近似代替;?求和;?取极限.知识点二:定积分的几何意义设函数在区间上连续.在上,当时,定积分在几何上表示由曲线以及直线与轴围成的曲边梯形的面积;在上,当时,由曲线以及直线与轴围成的曲边梯形位于轴下方,定积分在几何上表示曲边梯形面积的相反数;在上,当既取正值又取负值时,曲线的某些部分在轴的上方,而其他部分在轴下方,如果我们将在轴上方的图形的面积赋予正号,在轴下方的图形的面积赋予负号;在一般情形下,定积分的几何意义是曲线,两条直线与轴所围成的各部分面积的代数和.知识点三:定积分的性质(1)(为常数),(2),(3)(其中),(4)利用函数的奇偶性求积分:若函数在区间上是奇函数,则;若函数在区间上是偶函数,则.知识点四:微积分基本定理微积分基本定理(或牛顿,莱布尼兹公式):如果在上连续,且,则。
其中叫做的一个原函数.注意:求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数.由此,求导运算与求原函数运算互为逆运算.由于也是的原函数,其中c为常数.知识点五:应用定积分求曲边梯形的面积1. 如图,由三条直线,,轴(即直线)及一条曲线()围成的曲边梯形的面积:2(如图,由三条直线,,轴(即直线)及一条曲线()围成的曲边梯形的面积:3(由三条直线轴及一条曲线(不妨设在区间上,在区间上)围成的图形的面积:,,.4. 如图,由曲线及直线,围成图形的面积: 知识点六:定积分在物理中的应用变速直线运动的路程作变速直线运动的物体所经过的路程,等于其速度函数在时间区间上的定积分,即.变力作功物体在变力的作用下做直线运动,并且物体沿着与相同的方向从移动到,那么变力所作的功.规律方法指导1(如何正确理解定积分的概念定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即(称为积分形式的不变性),另外定积分与积分区间[a,b]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如与的值就不同。
3.4 定积分与微积分基本定理一、选择题1.与定积分∫d x 相等的是( ). 3π01-cos x A.∫sin d x B.∫d x 23π0x 223π0|sin x 2|C. D .以上结论都不对|2∫3π0sin x 2d x |2. 已知f (x )为偶函数,且f(x)d x =8,则f(x)d x =( )6∫0⎰-66A .0 B .4 C .8 D .163.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ).A. mB. mC. mD. m 16038034032034.一物体以v =9.8t +6.5(单位:m /s )的速度自由下落,则下落后第二个4 s 内经过的路程是( )A .260 mB .258 mC .259 mD .261.2 m 5.由曲线y =,直线y =x -2及y 轴所围成的图形的面积为 x ( ).A. B .4 C. D .6 1031636.已知a =2,n ∈N *,b =x 2d x ,则a ,b 的大小关系是( ). n ∑i =11n (i n )1∫0A .a >bB .a =bC .a <bD .不确定 7.下列积分中①d x ; ②; ③d x ; ④d x ,积分值等于1的个数是( ). e ∫11x ⎰-22xdx 2∫04-x 2π()⎰-20sin cos 22cos πx x x A .1 B .2 C .3 D .4二、填空题8.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为______.9.曲线y =与直线y =x ,x =2所围成的图形的面积为____________.1x10.若(2x -3x 2)d x =0,则k 等于_________.k ∫11. |3-2x |d x =________.2∫112.抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________.三、解答题13.如图在区域Ω={(x,y)|-2≤x≤2,0≤y≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数.14.如图所示,直线y=kx分抛物线y=x-x2与x轴所围图形为面积相等的两部分,求k的值.(12,0)15.曲线C:y=2x3-3x2-2x+1,点P,求过P的切线l与C围成的图形的面积.16. 已知二次函数f(x)=3x2-3x,直线l1:x=2和l2:y=3tx(其中t为常数,且0<t<1),直线l2与函数f(x)的图象以及直线l1、l2与函数f(x)的图象所围成的封闭图形如图K15-3,设这两个阴影区域的面积之和为S(t).(1)求函数S(t)的解析式;(2)定义函数h(x)=S(x),x∈R.若过点A(1,m)(m≠4)可作曲线y=h(x)(x∈R)的三条切线,求实数m的取值范围.3.4 定积分与微积分基本定理一、选择题1.与定积分∫d x 相等的是( ). 3π01-cos x A.∫sin d x B.∫d x 23π0x223π0|sin x 2|C. D .以上结论都不对|2∫3π0sin x 2d x |解析 ∵1-cos x =2sin 2,∴∫d x = x23π01-cos x ∫|sin |d x =∫|sin |d x .3π02x 223π0x 2答案 B 2. 已知f (x )为偶函数,且f(x)d x =8,则f(x)d x =( ) 6∫0⎰-66A .0 B .4 C .8 D .16解析 -6f(x)d x =2f(x)d x =2×8=16.6∫6∫0答案 D3.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ). A. m B. m C. m D. m 1603803403203解析 v =40-10t 2=0,t =2,(40-10t 2)d t =Error!=40×2-×8=(m). 2∫020*******答案 A4.一物体以v =9.8t +6.5(单位:m /s )的速度自由下落,则下落后第二个4 s 内经过的路程是( )A .260 mB .258 mC .259 mD .261.2 m解析 (9.8t +6.5)d t =(4.9t 2+6.5t)Error!=4.9×64+6.5×8-4.9×16-6.5×4=313.6+8∫452-78.4-26=261.2.答案 D 5.由曲线y =,直线y =x -2及y 轴所围成的图形的面积为x ( ).A. B .4 C. D .6 103163解析 由y =及y =x -2可得,x =4,所以由y =及y =x -2及y 轴所围成的封闭图形面积为x x 4∫0(-x +2)d x =Error!=. 答案 C x (23x 32-12x 2+2x )1636.已知a =2,n ∈N *,b =x 2d x ,则a ,b 的大小关系是( ). n ∑i =11n (i n )1∫0A .a >bB .a =bC .a <bD .不确定答案 A7.下列积分中①d x ; ②; ③d x ; ④d x ,积分值等于1的个数是( ). e ∫11x ⎰-22xdx 2∫04-x 2π()⎰-20sin cos 22cos πx x x A .1 B .2 C .3 D .4 解析 ①Error!=1,②Error!=0, e 12-2③d x =(π22)=1, 2∫04-x 2π1π14④∫0d x =∫0(cos x +sin x )d x π2cos 2x 2 cos x -sin x 12π2=(sin x -cos)|0=1. 12π2答案 C二、填空题8.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为______.解析 由F(x)=kx ,得k =100,F(x)=100x ,100x d x =0.18(J ).W =∫0.060答案 0.18 J9.曲线y =与直线y =x ,x =2所围成的图形的面积为____________. 1x答案 -ln 2 3210.若(2x -3x 2)d x =0,则k 等于_________.k ∫0解析 (2x -3x 2)d x =2x d x -3x 2d x =x 2=k 2-k 3=0,k ∫0k ∫0k∫0|k 0-x 3|k 0∴k=0或k =1.答案 0或111. |3-2x |d x =________.2∫1解析 ∵|3-2x |=Error!∴|3-2x |d x =∫1(3-2x )d x +(2x -3)d x 2∫1322∫32=Error!1+(x 2-3x )|2=. 323212答案 1212.抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________. 解析 如图所示,因为y ′=-2x +4,y ′|x =1=2,y ′|x =3=-2,两切线方程为y =2(x -1)和y =-2(x -3).由Error!得x =2.所以S =[2(x -1)-(-x 2+4x -3)]d x +[-2(x -3)-(-x 2+4x -3)]d x2∫13∫2=(x 2-2x +1)d x +(x 2-6x +9)d x2∫13∫2=Error!+Error!=. 213223答案 23三、解答题13.如图在区域Ω={(x ,y )|-2≤x ≤2,0≤y ≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数.解析 区域Ω的面积为S 1=16.图中阴影部分的面积S 2=S 1-Error!=. 2-2323设落在阴影部分的豆子数为m , 由已知条件=, m 900S 2S 1即m ==600. 900S 2S 1因此落在图中阴影部分的豆子约为600粒.14.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =(x -x 2)d x =Error!=.又Error! 1∫01016由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,=∫(x -x 2-kx )d x S 21-k 0=Error! 1-k 0=(1-k )3.又知S =, 1616所以(1-k )3=, 12于是k =1- =1-. 31234215.曲线C :y =2x 3-3x 2-2x +1,点P ,求过P 的切线l 与C 围成的图形的面积. (12,0)解析 设切点坐标为(x0,y0)y ′=6x 2-6x -2,则y ′|x =x 0=6x -6x 0-2, 20切线方程为y =(6x -6x 0-2), 20(x -12)则y 0=(6x -6x 0-2), 20(x 0-12)即2x -3x -2x 0+1=(6x -6x 0-2). 302020(x 0-12)整理得x 0(4x -6x 0+3)=0, 20解得x 0=0,则切线方程为y =-2x +1.解方程组Error!得Error!或Error!由y =2x 3-3x 2-2x +1与y =-2x +1的图象可知S =∫0[(-2x +1)-(2x 3-3x 2-2x +1)]d x 32=∫0(-2x 3+3x 2)d x =. 32273216. 已知二次函数f(x)=3x 2-3x ,直线l 1:x =2和l 2:y =3tx(其中t 为常数,且0<t<1),直线l 2与函数f(x)的图象以及直线l 1、l 2与函数f(x)的图象所围成的封闭图形如图K 15-3,设这两个阴影区域的面积之和为S(t).(1)求函数S(t)的解析式;(2)定义函数h(x)=S(x),x ∈R .若过点A (1,m )(m ≠4)可作曲线y =h (x )(x ∈R )的三条切线,求实数m 的取值范围.解析 (1)由Error!得x 2-(t +1)x =0,所以x1=0,x 2=t +1.所以直线l 2与f(x)的图象的交点的横坐标分别为0,t +1.因为0<t<1,所以1<t +1<2.所以S(t)=∫[3tx -(3x 2-3x)]d x +t +1[(3x 2-3x)-3tx]d x t +102∫=Error!+Error!=(t +1)3-6t +2. t +102t +1(2)依据定义,h(x)=(x +1)3-6x +2,x ∈R ,则h ′(x )=3(x +1)2-6.因为m ≠4,则点A (1,m )不在曲线y =h (x )上.过点A 作曲线y =h (x )的切线,设切点为M (x 0,y 0),则3(x 0+1)2-6=, x 0+1 3-6x 0+2-m x 0-1化简整理得2x -6x 0+m =0,其有三个不等实根. 30设g (x 0)=2x -6x 0+m ,则g ′(x 0)=6x -6. 3020由g ′(x 0)>0,得x 0>1或x 0<-1;由g ′(x 0)<0,得-1<x 0<1,所以g (x 0)在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,所以当x 0=-1时,函数g (x 0)取极大值;当x 0=1时,函数g (x 0)取极小值.因此,关于x 0的方程2x -6x 0+m =0有三个不等实根的充要条件是Error! 30即Error!即-4<m <4. 故实数m 的取值范围是(-4,4).。