高中数学 2.3.1 变量之间的相关关系学案 新人教A版必修3
- 格式:doc
- 大小:33.50 KB
- 文档页数:1
高中数学 2.3.1-2.3.2变量间的相关关系练习基础巩固一、选择题1.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^=bx +a ,那么下面说法不正确的是( )A .直线y ^=bx +a 必经过点(x -,y -)B .直线y ^=bx +a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y ^=bx +a 的斜率为∑i =1nx i y i -n x - y-∑i =1nx 2i -n x -2D .直线y ^=bx +a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑i =1n[y i -(bx i +a )]2是该坐标平面上所有直线与这些点的偏差中最小的直线.[答案] B[解析] 由a =y -b x 知y ^=y -b x +bx ,∴必定过(x ,y )点. 2.下列说法正确的是( )A .对于相关系数r 来说,|r |≤1,|r |越接近0,相关程度越大;|r |越接近1,相关程度越小B .对于相关系数r 来说,|r |≥1,|r |越接近1,相关程度越大;|r |越大,相关程度越小C .对于相关系数r 来说,|r |≤1,|r |越接近1,相关程度越大;|r |越接近0,相关程度越小D .对于相关系数r 来说,|r |≥1,|r |越接近1,相关程度越小;|r |越大,相关程度越大[答案] C3.两个变量成负相关关系时,散点图的特征是( )A .点从左下角到右上角区域散布B .点散布在某带形区域内C .点散布在某圆形区域内D .点从左上角到右下角区域散布[答案] D4.已知变量x 与y 正相关,且由观测数据算得样本的平均数x =2.5,y =3.5,则由观测的数据得线性回归方程可能为( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5D.y ^=-0.3x +4.4[答案] A[解析] ∵y ^=b ^x +a ^,正相关则b >0,∴排除C ,D.∵过中点心(x ,y )=(3,3.5),∴选A.5.某化工厂为预测某产品的回收率y ,需要研究它的原料有效成分含量x 之间的相关关素,现取了8对观测值,计算得:∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1849,则y 对x 的回归直线的方程是( ) A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47xD.y ^=11.47-2.62x[答案] A6.为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1、l 2,已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 和t ,那么下列说法中正确的是( )A .直线l 1、l 2一定有公共点(s ,t )B .直线l 1、l 2相交,但交点不一定是(s ,t )C .必有直线l 1∥l 2D .l 1、l 2必定重合 [答案] A[解析] 线性回归直线方程为y ^=bx +a ,而a ^=y -b ^x ,即a =t -bs ,t =bs +a ,所以(s ,t )在回归直线上,直线l 1、l 2一定有公共点(s ,t ). 二、填空题7.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.[答案] 0.254[解析] 由于y ^=0.254x +0.321知,当x 增加1万元时,年饮食支出y 增加0.254万元.8.某单位为了解用电量y (度)与气温x (℃)之间的关系,随机抽查了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y =b x +a 中b =-2,预测当气温为-4℃时,用电量约为________度.[答案] 68 [解析] x =18+13+10-14=10,y =24+34+38+644=40,因为回归方程一定过点(x ,y ),所以y =b ^x +a ^,则a ^=y -b ^x =40+2×10=60. 则y ^=-2x +60,当x =-4时,y ^=-2×(-4)+60=68. 三、解答题9.某种产品的广告费支出x 与销售额y 之间有如下对应数据(单位:百万元)(1)画出散点图;(2)从散点图中判断销售金额与广告费支出成什么样的关系?[解析] (1)以x 对应的数据为横坐标,以y 对应的数据为纵坐标,所作的散点图如下图所示:(2)从图中可以发现广告费支出与销售金额之间具有相关关系,并且当广告费支出由小变大时,销售金额也大多由小变大,图中的数据大致分布在某条直线的附近,即x 与y 成正相关关系.10.一台机器由于使用时间较长,生产的零件有一些缺损.按不同转速生产出来的零件有缺损的统计数据如下表所示:(1)(2)如果y 与x 线性相关,求出回归直线方程;(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?[解析] 先作出散点图,再根据散点图判断y 与x 呈线性相关,从而建立回归直线方程求解.解:(1)作散点图如图所示.(2)由散点图可知y 与x 线性相关.故可设回归直线方程为y ^=bx +a . 依题意,用计算器可算得:x =12.5,y =8.25,∑i =14x 2i =660,∑i =14x i y i =438.∴b =438-4×12.5×8.25660-4×12.52≈0.73,a =y -b x ≈8.25-0.73×12.5=-0.875. ∴所求回归直线方程为y ^=0.73x -0.875. (3)令y ^=10,得0.73x -0.875=10,解得x ≈15. 即机器的运转速度应控制在15转/秒内.能力提升一、选择题1.根据如下样本数据得到的回归方程为y ^=bx +a ,则( )A.a >0,b [答案] A[解析] 由于x 增大y 减小知b <0,又x =3时y >0,∴a >0,故选A. 2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元[答案] B[探究] 由线性回归方程的图象过样本点的中心,可求得线性回归方程,然后结合该方程对x =6时的销售额作出估计.[解析] 样本点的中心是(3.5,42),则a ^=y -b ^x =42-9.4×3.5=9.1,所以线性回归方程是y ^=9.4x +9.1,把x =6代入得y ^=65.5. 3.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( ) A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′[答案] C[探究] 先由已知条件分别求出b ′,a ′的值,再由b ^,a ^的计算公式分别求解b ^,a ^的值,即可作出比较.4.某学生课外活动兴趣小组对两个相关变量收集到5组数据如下表:由最小二乘法求得回归方程为y =0.67x +54.9,现发现表中有一个数据模糊不清,请推断该数据的值为( )A .60B .62C .68D .68.3[答案] C[解析] 由题意可得x =30, 代入回归方程得y =75. 设看不清处的数为a ,则62+a +75+81+89=75×5,∴a =68.[点评] 表中所给的数据只反映x 与y 的线性关系,并非函数关系,因而不能直接代入线性方程求预报值y ^,应根据线性回归方程性质,即线性回归方程经过中心点(x ,y )求解.二、填空题5.广东部分地区流行手足口病,党和政府采取果断措施,防治结合,很快使病情得到控制.下表是某同学记载的2010年4月1日到2010年4月12日每天广州手足口病治愈出院者数据,根据这些数据绘制散点图如图.下列说法:①根据此散点图,可以判断日期与人数具有线性相关关系;②根据此散点图,可以判断日期与人数且有一次函数关系;③后三天治愈出院的人数占这12天治愈出院人数的30%多;④后三天治愈出院的人数均超过这12天内北京市治愈出院人数的20%.其中正确的个数是________. [答案] 26.改革开放30年以来,我国高等教育事业迅速发展,对某省1990~2000年考大学升学百分比按城市、县镇、农村进行统计,将1990~2000年依次编号为0~10,回归分析之后得到每年考入大学的百分比y 与年份x 的关系为:城市:y ^=2.84x +9.50; 县镇:y ^=2.32x +6.67; 农村:y ^=0.42x +1.80.根据以上回归直线方程,城市、县镇、农村三个组中,________的大学入学率增长最快.按同样的增长速度,可预测2010年,农村考入大学的百分比为________%.[答案] 城市 10.2[探究] 增长速度可根据回归直线的斜率来判断,斜率大的增长速度快,斜率小的增长速度慢.[解析] 通过题目中所提供的回归方程可判断,城市的大学入学率增长最快;2010年农村考入大学的百分比为0.42×20+1.80=10.2.三、解答题7.某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表(1)(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入,附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1nt i -ty i -y∑i =1nt i -t2,a ^=y -b^t .[解析] (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17(t i -t )2=9+4+1+0+1+4+9=28,∑i =17(t i -t)(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =1nt i -ty i -y∑i =1nt i -t2=1428=0.5, a ^=y -b ^t =4.3-0.5×4=2.3,所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b =0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元,将2015年的年份代号t =9代入(1)中的回归方程,得y ^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收人为6.8千元.8.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -nx -y∑i =1nx 2i -nx -2,a ^=y -b ^x ,其中x ,y 为样本平均值.[探究] (1)根据线性回归方程求相关的量后,代入公式即可求得回归方程;(2)观察线性回归方程的系数b ^可判断是正相关还是负相关;(3)将x =7代入线性回归方程即可求得预报变量,即该家庭的月储蓄.[解析] (1)由题意知n =10,x =1n ∑i =1nx i =8010=8,y =1n ∑i =1n y i =2010=2,又∑i =1nx 2i -nx -2=720-10×82=80,∑i =1nx i y i -nx -y =184-10×8×2=24,由此得b ^=∑i =1nx i y i -nx -y∑i =1nx 2i -nx -2=2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).。
高中数学23变量间的相关关系一二全册精品教案新人教A版必修3教案教案名称:高中数学23变量间的相关关系一、二全册精品教案教材版本:新人教A版必修3教学目标:1.掌握变量之间的相关关系的概念;2.理解相关系数的含义和计算方法;3.能够应用相关关系解决实际问题;4.培养学生分析和解决问题的能力。
教学重点:1.相关系数的计算方法;2.相关关系的实际应用。
教学难点:1.相关系数的计算和解释;2.相关关系在实际问题中的应用。
教学准备:1.教师准备板书工具,包括黑板、彩色粉笔等;2.教师准备教学用具,如教学课件、实验仪器等。
教学过程:第一课时:1.导入(5分钟)教师通过引入相关关系在日常生活中的例子,引起学生的思考和兴趣,如“你有没有觉得吃得越多睡得越香?”、“你觉得天气越热人们购买冷饮的数量会有什么变化?”等。
2.引入(10分钟)教师通过示意图和简单的计算,引导学生理解变量之间的相关关系,并介绍相关系数的定义和计算方法。
3.基础知识讲解(25分钟)3.1相关系数的含义和计算方法:教师通过示例和公式解释相关系数的含义和计算方法,让学生掌握相关系数的计算公式。
3.2相关系数的性质和意义:教师讲解相关系数的性质和意义,引导学生理解相关系数与变量之间的线性关系程度的关系。
4.练习(10分钟)教师布置一些相关系数的计算练习题,让学生进行个人或小组练习。
第二课时:5.复习(5分钟)回顾上节课学习的内容,教师提问学生相关系数的计算方法及其含义,并解答学生疑惑。
6.拓展(15分钟)6.1相关系数的解读:教师通过实例和图表解释如何解读相关系数的大小和正负号。
6.2相关系数的应用:教师介绍相关系数在实际问题中的应用,如市场调研、经济预测等。
7.实验(20分钟)教师组织学生进行相关系数实验,通过观察和数据统计,让学生进一步理解相关系数的计算方法和含义。
8.总结归纳(10分钟)教师引导学生总结相关系数的计算方法、含义和应用,并与学生一起完成相关关系的概念思维导图。
必修三 2.3.1 变量间的相关关系教学目标1、知识与技能(1)了解变量之间的相关关系。
(2)会区别变量之间的函数关系与变量相关关系。
(3)会举例说明现实生活中变量之间的相关关系。
(4)让学生了解产生变量之间的相关关系是由许多不确定的随机因素的影响。
2、过程与方法(1)通过复习变量之间的函数关系引出变量相关关系,有熟悉到生疏的过程便于学生理解。
(2)通过对变量之间的关系的学习让学生了解从总的变化趋势来看变量之间存在某种关系,但这种关系又不能用确定的函数关系精确表达出来,也让学生了解变量之间的不确定性关系是很普遍的,帮助学生树立科学的辨证唯物主义观点,感受自然的辩证法。
(3)通过对本课的学习,引导学生关注社会,关注生活,进一步学会观察、比较、归纳、分析等一般方法的运用。
3、情感、态度与价值观(1)通过引导学生观察生活中的例子,使学生由能直接找出变量之间的函数关系引出到无法直接找出变量之间的函数关系,即变量之间的相关关系,激发学生的求知欲。
(2)通过引导学生感受生活中实际问题转化为数学问题,学会查找资料,收取信息,学会用统计知识对实际问题进行数学分析。
教学重点1、变量之间的相关关系。
2、会区别变量之间的函数关系与变量相关关系。
3、会举例说明现实生活中变量之间的相关关系。
教学难点1、对变量之间的相关关系的理解。
2、变量之间的函数关系与变量相关关系的区别。
教辅手段教学过程一、情景设置问题1:将汽油以均匀的速度注入桶里,注入的时间t与注入的油量y的关系如下表:从表里数据得出油量y与时间t之间的函数关系式为:问题2、甲、乙两地相距150千米,某人骑车从甲地到乙地,则他的速度v(千米/时)和时间t(小时)的函数大致图象是怎样的?问题3、小麦的产量y千克每亩与施肥量x千克每亩之间的关系如下表:从表里数据能得出小麦的产量y与施肥量x之间的函数关系式吗?提问学生以下三个问题。
问题1:因为是以均匀的速度注入桶里,所以注入的油量y与注入的时间t成正比例关系,由数据表格知,注入的油量y与注入的时间t之间的函数关系式为y=2t(t 0)(实际问题,因此自变量的取值范围应该有意义)问题2:路程一定,所以走完全程所用的时间t与速度v成反比例关系所以其函数图象是反例函数图象。
2.3.1 变量之间的相关关系
学习目标:
1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。
2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。
知识要点:
阅读教材P84—P87内容
一.相关关系:
1.两个变量间除了函数关系外,还有相关关系。
2.相关关系:从总的变化趋势来看,变量间存在某种关系,但这种关系又不能用函数关系精确表达。
3.相关关系产生的原因:许多不确定的随机因素的影响。
4.需要通过样本来寻找变量间的相关关系。
二.散点图:
1.如果所有的样本点都落在某一函数曲线上,变量间就有函数关系,就用该函数来描述变量间的关系;
2.如果所有的样本点都落在某一函数曲线附近,变量间就有相关关系;
3.如果所有的样本点都落在某一直线附近,变量间就有关系,这条直线叫做;
4.正相关关系,散点图的特征是:点散布在;
5.负相关关系,散点图的特征是:点散布在。
典型例题:
1.举出三个现实生活中存在的相关关系的例子。
2.利用人体内的脂肪含量与年龄的关系的数据及散点图体会二者间的相关关系。
当堂检测
1.下列两个变量之间的关系,哪个不是函数关系()
A.角度和它的余弦值 B.正方形的边长和面积
C.正n边形的边数和内角度数之和 D.人的年龄与身高
2.下列两个变量中具有相关关系的是()
A.正方体的体积与边长B.匀速行驶的车辆的行驶距离与时间
C.人的身高与体重D.人的身高与视力
3.吸烟是否一定会引起健康问题?“健康问题不一定由吸烟引起,所以可以吸烟”对吗?
4.经统计,某村庄附近栖息的天鹅多,该村庄的婴儿出生率就高,天鹅少,婴儿出生率就低,结
论:天鹅能带来孩子。
这个结论可靠吗?如何证明这个结论的可靠性?
1。