曲柄连杆机构的组成和作用
- 格式:docx
- 大小:48.34 KB
- 文档页数:2
曲柄连杆机构的组成和主要作用曲柄连杆机构的组成和主要作用1. 引言曲柄连杆机构是一种常见且重要的机械传动装置,被广泛应用于各种机械设备中。
它由曲柄、连杆和活塞三部分组成,通过这三个部件的联动与协作,实现了能量转换和运动传递的功能。
本文将从组成和主要作用两方面详细介绍曲柄连杆机构。
2. 组成2.1 曲柄曲柄是曲柄连杆机构的核心组成部分,通常是一个旋转的轴。
它具有一个固定的中心位置,并通过与其他部件的连接来完成动力传递。
曲柄的主要作用是将旋转运动转化为往复直线运动或反之。
它通常呈现出螺旋状或弧形,使得连杆能够随曲柄的旋转而产生往复运动。
2.2 连杆连杆是曲柄连杆机构的连接部件,连接曲柄与活塞。
它通常由一根刚性杆件组成,在曲柄的旋转作用下,连杆产生往复运动。
连杆的长度和形状设计决定了活塞行程的大小和运动轨迹的特性。
连杆还可通过改变其角度来调整活塞的速度和力的传递。
2.3 活塞活塞是曲柄连杆机构的末端部件,负责在连杆的带动下沿直线方向运动。
它通常是一个圆柱形的密封器件,用于在气缸或缸体内形成气密密封。
通过与连杆的连接,活塞能够将曲柄旋转运动的能量转化为直线运动的能量,并将其传递给执行部件,从而实现了更高级别的机械运动。
3. 主要作用3.1 能量转换曲柄连杆机构的主要作用之一是实现能量的转换。
曲柄通过旋转运动将输入的能量转化为连杆的往复运动,再由连杆传递给活塞。
活塞通过直线运动将能量传递给执行部件,如发动机中的气缸,从而推动车辆或驱动其它机械设备。
曲柄连杆机构在能量转换中起到了至关重要的作用。
3.2 运动转换曲柄连杆机构还具有运动转换的作用。
通过曲柄的旋转运动,连杆可将旋转运动转化为直线往复运动,也可以将直线往复运动转化为旋转运动。
这种运动转换的能力使得曲柄连杆机构在各种机械设备中非常有用,例如内燃机、发电机、泵浦等。
它能够将不同形式的运动转化为客户需要的特定运动形式。
4. 个人观点和理解曲柄连杆机构作为一种传统的机械传动装置,在工程领域中已存在了很长时间。
曲柄连杆机构的工作原理曲柄连杆机构是一种常见的机械传动装置,其主要作用是将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
曲柄连杆机构由曲柄、连杆和活塞组成,其中曲柄是一个旋转的轴,连杆是连接曲柄和活塞的杆状物,活塞则是一个可在直线方向上运动的零件。
曲柄连杆机构的工作原理可以简单地概括为:曲柄的旋转运动通过连杆传递到活塞上,使活塞在直线方向上做往复运动。
曲柄连杆机构的工作原理可以从以下几个方面来详细阐述:1. 曲柄的旋转运动曲柄是曲柄连杆机构的核心部件,其作用是将旋转运动转化为直线运动。
曲柄的旋转运动可以通过电机、发动机等动力源来提供。
当曲柄开始旋转时,连杆就会跟随着曲柄的运动而做出相应的运动。
2. 连杆的运动连杆是连接曲柄和活塞的杆状物,其作用是将曲柄的旋转运动转化为连杆的直线运动。
当曲柄开始旋转时,连杆就会跟随着曲柄的运动而做出相应的运动。
连杆的运动轨迹是一个椭圆形,其两个端点分别与曲柄和活塞相连。
3. 活塞的运动活塞是曲柄连杆机构中的一个重要部件,其作用是将连杆的直线运动转化为活塞的往复运动。
当连杆开始运动时,活塞就会跟随着连杆的运动而做出相应的往复运动。
活塞的运动轨迹是一个直线,其运动方向与连杆的方向相同。
4. 工作循环曲柄连杆机构的工作循环可以分为四个阶段:进气、压缩、燃烧和排气。
在进气阶段,活塞向下运动,使气门打开,进入空气和燃料混合物。
在压缩阶段,活塞向上运动,将气门关闭,并将混合物压缩到燃烧室中。
在燃烧阶段,混合物被点燃,产生高温高压气体,推动活塞向下运动。
在排气阶段,活塞向上运动,将废气排出燃烧室。
总之,曲柄连杆机构是一种重要的机械传动装置,其工作原理是将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
曲柄、连杆和活塞是曲柄连杆机构的三个核心部件,它们之间的协调运动使得机构能够完成各种工作任务。
了解曲柄连杆机构的工作原理对于机械工程师和机械制造工作者来说是非常重要的,因为它们可以通过对机构的设计和优化来提高机械设备的性能和效率。
3《汽车构造》电子教案-曲柄连杆机构教案章节一:曲柄连杆机构概述教学目标:1. 让学生了解曲柄连杆机构的作用和组成。
2. 让学生掌握曲柄连杆机构的工作原理。
教学内容:1. 曲柄连杆机构的作用:将往复直线运动转化为旋转运动,实现内燃机的做功。
2. 曲柄连杆机构的组成:曲轴、连杆、活塞、气缸、轴承等。
3. 曲柄连杆机构的工作原理:通过活塞在气缸内的往复直线运动,驱动连杆旋转,从而实现曲轴的旋转。
教学方法:1. 采用多媒体课件进行讲解,结合实物图片和动画演示。
2. 引导学生参与讨论,提问解答。
教学评价:1. 学生能准确描述曲柄连杆机构的作用和组成。
2. 学生能理解并解释曲柄连杆机构的工作原理。
教案章节二:曲轴的设计与制造教学目标:1. 让学生了解曲轴的设计要求和制造工艺。
2. 让学生掌握曲轴的结构特点和强度计算。
教学内容:1. 曲轴的设计要求:满足力学性能、耐磨性、疲劳强度等要求。
2. 曲轴的制造工艺:铸造、锻造、机械加工等。
3. 曲轴的结构特点:曲轴轴线、曲拐、曲柄等。
4. 曲轴的强度计算:扭转强度计算、弯曲强度计算。
教学方法:1. 采用多媒体课件进行讲解,结合图纸和实物图片。
2. 案例分析,让学生参与讨论。
教学评价:1. 学生能描述曲轴的设计要求和制造工艺。
2. 学生能分析曲轴的结构特点和强度计算。
教案章节三:连杆的设计与制造教学目标:1. 让学生了解连杆的设计要求和制造工艺。
2. 让学生掌握连杆的结构特点和强度计算。
教学内容:1. 连杆的设计要求:满足力学性能、耐磨性、疲劳强度等要求。
2. 连杆的制造工艺:铸造、锻造、机械加工等。
3. 连杆的结构特点:连杆小头、连杆大头、连杆身等。
4. 连杆的强度计算:扭转强度计算、弯曲强度计算。
教学方法:1. 采用多媒体课件进行讲解,结合图纸和实物图片。
2. 案例分析,让学生参与讨论。
教学评价:1. 学生能描述连杆的设计要求和制造工艺。
2. 学生能分析连杆的结构特点和强度计算。
简述曲柄连杆机构的作用及组成。
曲柄连杆机构是一种机械传动装置,由曲柄、连杆和活塞构成。
其作用是将往复直线运动转换为旋转运动或将旋转运动转换为往复直线运动,常用于内燃机、汽车、船舶等机械中。
其组成包括:
1.曲柄:是一个能够转动的轴,通常呈圆形或者正方形,它通过连杆连接活塞,将往复的直线运动转换成为旋转运动。
2.连杆:是连接曲柄和活塞的机构,可以将曲柄旋转运动转换成为直线往复运动,或者将活塞的直线往复运动转换成为曲柄的旋转运动。
3.活塞:是内燃机、汽车、船舶等机械中的一个重要部件。
它是一个长方形的柱形零件,通过与连杆的连接来实现对曲柄的传动。
以上三个部件构成曲柄连杆机构,是机械中重要的传动装置。
第四章曲柄连杆机构第一节概述一、功用与组成曲柄连杆机构是内燃机完成工作循环、实现能量转换的传动机构。
它在作功行程中把活塞的往复运动转变成曲轴的旋转运动;而在进气、压缩、排气行程中又把曲轴的旋转运动转变为活塞的往复直线运动。
因此曲柄连杆机构的功用是:将燃料燃烧时产生的热能转变为活塞往复运动的机械能,再通过连杆将活塞的往复运动变为曲轴的旋转运动而对外输出动力。
曲柄连杆机构由以下3部分组成:机体组主要包括气缸盖、气缸垫、气缸体、气缸套、曲轴箱和油底壳等不动件。
活塞连杆组主要包括活塞、活塞环、活塞销和连杆等运动件。
曲轴飞轮组主要包括曲轴、飞轮和扭转减振器、平衡轴等机构。
二、工作条件及受力分析曲柄连杆机构是在高温、高压、高速以及有化学腐蚀的条件下工作的。
在发动机作功时,气缸内的最高温度可达2 500k以上,最高压力可达5 MPa~9MPa,现代汽车发动机最高转速可达3 000r/min~6 000r/min,则活塞每秒钟要行经约100~200个行程,可见其线速度是很大的。
此外,与可燃混合气和燃烧废气接触的机件(如气缸、气缸盖,活塞等)还将受到化学腐蚀。
由于曲柄连杆机构是在高压下作变速运动,因此它在工作时的受力情况是很复杂的。
在此只对受力情况作简单分析。
曲柄连杆机构受的力主要有气体压力,往复惯性力,旋转运动件的离心力以及相对运动件接触表面的摩擦力。
1.气体压力在每个工作循环的四个行程中,气缸内气体压力始终存在而且是不断变化的。
作功行程压力最高,其瞬间最高压力汽油机可达3MPa~5MPa;柴油机可达5MPa~9MPa,这意味着作用在曲柄连杆机构上的瞬间冲击力可达数万牛顿(N)。
下面分析各机件作功行程的受力情况。
如图4-1a所示,气体压力对气缸盖和活塞顶作用有大小相等,方向相反的力,分别用P'和P p表示。
作用力P p经活塞传到活塞销上,分解为N p和S p两个力。
N p垂直于集中力p气缸壁,它使活塞的一个侧面压向气缸壁,称为侧压力。
曲柄连杆机构一、曲柄连杆机构的功用及组成曲柄连杆机构是发动机的要紧运动机构。
其功用是将活塞的往复运动转变成曲轴的旋转运动,同时将作用于活塞上的力转变成曲轴对外输出的转矩,以驱动汽车车轮转动。
曲柄连杆机构由活塞组、连杆组和曲轴飞轮组的零件组成。
二、活塞组(一)活塞1.活塞的功用及工作条件活塞的主要功用是承受燃烧气体压力,并将此力通过活塞销传给连杆以推动曲轴旋转。
此外活塞顶部与气缸盖、气缸壁共同组成燃烧室。
活塞是发动机中工作条件最严酷的零件。
作用在活塞上的有气体力和往复惯性力。
活塞顶与高温燃气直接接触,使活塞顶的温度很高。
活塞在侧压力的作用下沿气缸壁面高速滑动,由于润滑条件差,因此摩擦损失大,磨损严重。
2.活塞材料现代汽车发动机不论是汽油机仍是柴油机普遍采纳铝合金活塞,只在极少数汽车发动机上采纳铸铁或耐热钢活塞。
3.活塞构造活塞可视为由顶部、头部和裙部等3部分构成。
1)活塞顶部。
汽油机活塞顶部的形状与燃烧室形状和压缩比大小有关。
大多数汽油机采用平顶活塞,其优点是受热面积小,加工简单。
采用凹顶活塞,可以通过改变活塞顶上凹坑的尺寸来调节发动机的压缩比。
柴油机活塞顶部形状取决于混合气形成方式和燃烧室形状。
在分隔式燃烧室柴油机的活塞顶部设有形状不同的浅凹坑,以便在主燃烧室内形成二次涡流,增进混合气形成与燃烧。
柴油机还有另一类燃烧室,称为直喷式燃烧室。
其全部容积都集中在气缸内,且在活塞顶部设有深浅不一、形状各异的燃烧室凹坑。
在直喷式燃烧室的柴油机中,喷油器将燃油直接喷入燃烧室凹坑内,使其与运动气流相混合,形成可燃混合气并燃烧。
2)活塞头部。
由活塞顶至油环槽下端面之间的部份称为活塞头部。
在活塞头部加工有效来安装气环和油环的气环槽和油环槽。
在油环槽底部还加工有回油孔或横向切槽,油环从气缸壁上刮下来的多余机油,经回油孔或横向切槽流回油底壳。
活塞头部应该足够厚,从活塞顶到环槽区的断面转变要尽可能圆滑,过渡圆角 R 应足够大,以减小热流阻力,便于热量从活塞顶经活塞环传给气缸壁,使活塞顶部的温度不致太高。
1.曲柄连杆机构的组成和作用;
曲柄连杆机构
曲柄连杆机构
曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。
它由机体组、活塞连杆组和曲轴飞轮组等组成。
在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。
而在进气、压缩和排气行程中,飞
轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。
2.活塞组、连杆组和曲轴组的组成、作用及连部件特征、作用和制造材料;
活塞组由活塞、活塞环、活塞销等组成。
活塞呈圆柱形,上面装有活塞环,借以在活塞往
复运动时密闭气缸。
上面的几道活塞环称为气环,用来圭寸闭气缸,防止气缸内的气体漏泄,下面的环称为油环,用来将气缸壁上的多余的润滑油刮下,防止润滑油窜入气缸。
活塞销
呈圆筒形,它穿入活塞上的销孔和连杆小头中,将活塞和连杆联接起来。
连杆大头端分成两
半,由连杆螺钉联接起来,它与曲轴的曲柄销相连。
连杆工作时,连杆小头端随活塞作往复
运动,连杆大头端随曲柄销绕曲轴轴线作旋转运动,连杆大小头间的杆身作复杂的摇摆运动。
曲轴飞轮组主要由曲轴、买办和扭转减振器等组成。
曲轴一般采用优质中碳钢或中碳合金钢等强度、冲击韧性和耐磨性较好的材料模锻而成。
曲轴的作用是将活塞的往复运动转换为旋转运动,并将膨胀行程所作的功,通过安装在曲轴后端上的飞轮传递出去。
飞轮能储存能量,使活塞的其他行程能正常工作,并使曲轴旋转均匀。
为了平衡惯性力和减轻内燃机的振动,在曲轴的曲柄上还适当装置平衡质量。