一元非参数回归 (非参数统计 新)
- 格式:ppt
- 大小:1.45 MB
- 文档页数:39
非参数统计分析是指不需要任何假设的情况下,对数据进行分析和处理的方法。
相对于参数统计分析,更加灵活和适用于更广泛的数据集。
在中,我们通常使用基于排列和重抽样方法的统计分析,这些方法在处理离散和连续的数据集时都十分有效。
如何进行1. 非参数检验非参数检验方法不要求数据满足特定的分布,通常分为两类:①秩和检验秩和检验是比较两组数据的中位数是否相等。
对于小样本来说,一般采用Wilcoxon签名检验。
而对于大样本,通常会使用Mann Whitney U检验。
②秩相关检验秩相关检验是比较两个或多个变量的相关性关系。
这种类型的检验最常用的是Spearman秩相关系数和Kendall Tau秩相关测试。
2. 非参数估计器由于非参数统计方法不依赖于任何先验假设,因此非参数估计器在数据少或均值和方差无法准确估计的情况下较为常用。
在非参数估计器中,常用的方法有:①核密度估计核密度估计通常是数据分析和可视化的首选。
它能够获得不同分布的概率密度函数的非参数估计器。
②基于距离的方法基于距离的方法通常使用K近邻算法或半径最邻近算法来估计密度。
这种方法特别适合于计算高维数据的密度估计。
3. 非参数回归非参数回归是一种灵活的模型,他用于数据挖掘过程中的最复杂部分。
与标准回归技术不同,非参数回归方法不需要数据满足任何特定分布。
在非参数回归中,主要的方法有:①核回归在核密度估计和非参数回归中使用的是相同的核函数。
相对于线性回归方法,核回归更加灵活,适用于非线性分布的数据。
②局部回归局部回归的本质是计算小范围或子集内的平均值,并在这些平均值上拟合局部模型。
这种方法特别适用于非线性回归和数据样本集的大小不规则的情况。
非参数统计优势非参数统计方法的最大优势在于能够在没有特定假设下应用于任何样本集,这使得无需预先了解数据的分布和性质。
此外,非参数统计方法还有其他的优势,如:1. 不受异常数据的影响:统计方法通常受异常数据的影响较大,但非参数统计方法不会使结果发生显著的变化。
非参数回归模型非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。
它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。
它不需要先验知识,只需要有足够的历史数据即可。
它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。
该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。
非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。
尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。
并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。
能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。
随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。
非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为:()()∑==n i i i i n Y X W X g 1其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。
由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。
K 近邻法Friedman 于1977年提出了K 近邻法。
其并不是让所有的数据都参与预测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。
可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下:Wki(X:X1,...,Xn)=ki,i=1,..,n将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为:()()()()K t V t V g t V K i i ∑=+==+111其中,K为所选取最邻近元素的个数,取值大小依赖于数据。
统计学中的非参数统计统计学是一门研究数据收集、分析和解释的学科,旨在分析和理解现实世界中的各种现象和关系。
统计学可以分为参数统计和非参数统计两大类。
本文将重点介绍非参数统计。
一、非参数统计概述非参数统计是一种不依赖于总体分布的统计方法,也称为分布自由统计。
所谓分布自由,就是在假设条件不明确的情况下,仍能对总体特征进行推断。
与之相对的是参数统计,参数统计需要对总体分布的形状、参数进行明确的假设。
非参数统计的优点在于对总体假设不敏感,能够应对较为复杂的数据,不受分布形状的限制。
它的缺点在于效率较低,需要更多的样本才能达到相同的置信水平。
二、“秩次”在非参数统计中的应用在非参数统计中,秩次(rank)是一个重要的概念,它将原始数据转换为相对顺序。
使用秩次可以在不知道总体分布情况下进行有关统计推断。
1. Wilcoxon秩和检验Wilcoxon秩和检验是一种常见的非参数检验方法,用于比较两样本之间的差异。
它将样本数据转化为秩次,并比较两组秩和的大小来进行统计推断。
Wilcoxon秩和检验被广泛应用于医学、社会科学等领域的研究中。
2. Mann-Whitney U检验Mann-Whitney U检验也是一种用于比较两组样本差异的非参数方法。
它将样本数据转换为秩次,并通过比较秩和的大小来进行统计推断。
该方法适用于两组样本独立的情况,常用于实验研究和社会科学领域。
三、非参数统计中的假设检验假设检验是统计学中常用的方法,用于判断观察到的样本结果是否与假设相符。
在非参数统计中,假设检验同样发挥着重要的作用。
1. 单样本中位数检验单样本中位数检验是一种常见的非参数假设检验方法,用于检验总体中位数是否等于某个特定值。
它通过比较样本中位数的位置来进行推断。
当原始数据不满足正态分布假设,或者数据有明显偏离时,单样本中位数检验是一种可靠的统计方法。
2. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数假设检验方法,用于比较三个以上独立样本之间的差异。
非参数回归与局部回归非参数回归(Nonparametric regression)和局部回归(Local regression)是统计学中常用的两种回归分析方法。
它们都不依赖于特定的概率分布形式,能够较好地处理数据的非线性关系和异方差性等问题。
一、非参数回归非参数回归是一种灵活的回归分析方法,可以用于各种数据的拟合。
与传统的参数回归方法不同,非参数回归不需要对模型进行假设,而是通过对数据进行拟合和逼近来获得回归函数。
在非参数回归中,最常用的方法是核密度估计法,即通过在每个数据点周围放置一个核函数,来估计数据的概率密度分布。
核函数通常选择高斯核函数或Epanechnikov核函数等。
非参数回归的步骤如下:1. 选择合适的核函数和核窗宽。
2. 针对每个数据点,计算该点的核密度估计值,并进行加权平均。
3. 得到回归函数,即通过计算每个数据点的核密度估计值的加权平均来逼近数据的真实分布。
非参数回归的优点在于对数据的分布形式没有要求,且能够较好地处理数据中的非线性关系。
然而,非参数回归也存在一些问题,如需要选择合适的核函数和核窗宽、计算复杂度较高等。
二、局部回归局部回归方法是一种改进的非参数回归方法,旨在解决非参数回归中的一些问题。
与非参数回归不同,局部回归在拟合回归函数时引入了权重,使得模型能够更加关注附近的数据点,减小远离数据点的影响。
局部回归的核心思想是根据数据点的距离来赋予不同的权重。
通常,离数据点较近的点被赋予较高的权重,而离数据点较远的点则被赋予较低的权重。
常用的权重函数有高斯权重函数、二次指数权重函数等。
局部回归的步骤如下:1. 选择合适的权重函数和带宽。
2. 针对每个数据点,计算该点周围数据点的权重并进行加权平均。
3. 得到局部回归函数,即通过计算每个数据点周围数据点的加权平均来逼近数据的真实分布。
局部回归的优点在于能够更好地适应数据的局部特征,避免了全局回归平滑带来的信息损失。
然而,局部回归也有一些问题,如对带宽的选择较为敏感、计算复杂度较高等。
统计学中的非参数统计方法及其应用统计学是一门研究数据收集、分析和解释的学科,而统计方法则是用来处理和分析数据的工具。
在统计学中,有两种主要的统计方法:参数统计方法和非参数统计方法。
本文将着重介绍非参数统计方法及其应用。
一、什么是非参数统计方法?非参数统计方法是一种不依赖于总体分布特征的统计方法,它不对总体的分布形式做出任何假设。
相比之下,参数统计方法需要对总体的分布形式做出一定的假设,例如正态分布或均匀分布等。
非参数统计方法的优势在于它的灵活性和广泛适用性。
由于不对总体分布做出假设,非参数统计方法可以应用于各种类型的数据,包括有偏数据和离群值。
此外,非参数统计方法还可以用于小样本数据,而参数统计方法通常需要大样本才能保证结果的可靠性。
二、非参数统计方法的应用领域1. 排序检验排序检验是一种常见的非参数统计方法,用于比较两个或多个样本的中位数或分位数。
例如,Wilcoxon秩和检验可以用于比较两个独立样本的中位数是否相等,而Friedman秩和检验可以用于比较多个相关样本的中位数是否相等。
排序检验在医学研究、心理学和社会科学等领域得到广泛应用。
它可以帮助研究人员判断不同治疗方法的有效性,或者比较不同群体的特征差异。
2. 非参数回归非参数回归是一种用于建立变量之间关系的统计方法,它不依赖于线性或非线性关系的假设。
相比之下,参数回归方法通常需要对变量之间的关系形式做出假设,例如线性回归模型。
非参数回归方法可以更灵活地建立变量之间的关系,适用于各种类型的数据。
它可以帮助研究人员探索变量之间的复杂关系,发现非线性模式或异常值。
3. 生存分析生存分析是一种用于分析时间至事件发生的统计方法,例如研究患者生存时间或产品的寿命。
生存分析中常用的非参数方法包括Kaplan-Meier曲线和Log-rank检验。
生存分析在医学研究和生物统计学中得到广泛应用。
它可以帮助研究人员评估治疗方法的效果、预测患者的生存时间,以及研究风险因素对生存的影响。
非参数统计相关概念
非参数统计是一种统计分析方法,与参数统计相对。
非参数统计方法不假设总体数据服从特定概率分布,而是通过对数据的排序、秩次转换或其他无需假设总体概率分布的方法来进行统计推断。
以下是一些非参数统计中常用的概念:
1. 秩次转换:将原始数据按照大小排序,并用其在排序后的位置作为新的数值。
这种转换方法通常用于处理偏态分布或存在极端值的数据。
2. 中位数:数据的中间值,即将数据按照大小排序后的中间值。
与均值不同,中位数不受极端值的影响,更能反映数据的中心趋势。
3. 分位数:将数据按照大小排序后,将其分为若干等份,每个等份的数值即为相应分位数。
常见的分位数包括四分位数(将数据分为四份)、十分位数(将数据分为十份)等。
4. 核密度估计:利用核函数对数据的概率密度函数进行估计。
核密度估计是一种非参数统计中常用的数据平滑方法,可以帮助研究者更好地了解数据分布。
5. 非参数假设检验:利用秩次统计或基于排列方法的检验来进行统计推断。
非参数假设检验不依赖于总体数据的分布假设,可以在数据分布未知或偏离常用分布的情况下使用。
6. 重采样方法:通过从原始样本中重复抽样构建新的样本,用于得到估计量的分布或进行假设检验。
重采样方法包括自助法(bootstrap)、交叉验证等。
非参数统计方法的优点是对总体分布的假设较少,更加灵活;但也有一些缺点,例如样本量要求较大,计算复杂度较高等。
在处理实际问题时,需要根据具体情况选择合适的统计方法。
第11章⾮参数回归(⾮参数统计,西南财⼤)第⼗⼆章⾮参数回归及其相关问题第⼀节参数回归问题的回顾在线性回归模型中,我们总是假定总体回归函数是线性的,即多元线性回归模型⼀般形式为:i Ki K i i i X X X Y µββββ+++++= 33221总体回归函数(PRF )Ki K i i ki i i i X X X X X X Y E X m ββββ++++== 3322132),,,()(但是,经验和理论都证明,当)(X m 不是线性函数时,基于最⼩⼆乘的回归效果不好,⾮参数回归就是在对)(X m 的形式不作任何假定的前提下研究估计)(X µ。
例设⼆维随机变量,其密度函数为≤≤≤≤+=其它10,10),(y x yx y x f ,求)/(x X Y E =.解:1021),()(1≤≤+==x x dy y x f x f x==1)(),()/(dy x f y x f yx X Y E x ?++=1021dy x y x y ?++=10)(211dy y x y x )()321(122x m x x =++= 从例可知,)/(x X Y E =仅与x 有关,条件期望)/()(x X Y E x m y ===表明Y 与X 在条件期望的意义下相关。
由样本均值估计总体均值的思想出发,假设样本),(11Y X ,),(22Y X ,…,),(n n Y X 中有相当i X 恰好等于x ,()(/)m x E Y x =,不妨记为1i X ,2i X ,…,k i X ,⾃然可取相应的Y 的样本1i Y ,2i Y ,…,k i Y ,⽤他们的平均数∑=k在实际问题中,⼀般不会有很多i X 的值恰好等于x 。
这个估计式,仿佛是⼀个加权平均数,对于所有的i X ,如果等于x ,则赋予k1的权,如果不等于x ,则赋予零权。
由此可启发我们在思路上产⽣了⼀个飞跃。
即对于任⼀个x ,⽤n Y Y Y ,,,21 的加权和去估计()m x ,即∑==ni i i n Y W x m1)(?,其中n i W i ,,2,10 =≥,,1=∑i W 估计)/()(X Y E X =µ。
第四章 非参数统计实验参数统计学中的许多统计分析方法的应用对总体都有严格的假定,例如,t 检验要求总体服从正态分布,F 检验要求误差呈正态分布且各组方差为齐性的等等,然而在现实生活中,有许多总体的分布我们却是一无所知或知之甚少,所以在参数模型中所建立的统计推断就会失效,于是,人们希望在不假定总体分布的情况下,尽量从数据本身来获得所需要的信息。
这就是非参数统计的宗旨。
非参数统计方法简便,适用性强,但检验效率较低,应用时应加以考虑。
实验一 卡方检验(Chi-square test )实验目的:掌握卡方检验方法。
实验内容:一、2χ拟合优度检验 二、2χ独立性检验 三、2χ齐性检验 实验工具:SPSS 非参数统计分析菜单项和Crosstabs 菜单项。
知识准备:一、卡方拟合优度检验2χ检验(Chi —Square Test) 适用于拟合优度检验,适用于定类变量的检验问题,用来检验实际观察数目与理论期望数目是否有显著差异。
当检验问题是实际分布是否与理论分布相符合时,在大样本时也可以用分类数据的卡方检验来解决,这时的卡方检验也称为分布拟合的卡方检验。
若样本分为k 类,每类实际观察频数为k f f f ,,,21 ,与其相对应的期望频数为ke e e ,,,21 ,则检验统计量2χ可以测度观察频数与期望频数之间的差异。
其计算公式为:∑∑-=-==期望频数期望频数实际频数2122)()(ki ii i e e f χ很显然,实际频数与望频数越接近,2χ值就越小,若2χ=0,则上式中分子的每—项都必须是0,这意味着k 类中每一类观察频数与期望频数完全一样,即完全拟合。
2χ统计量可以用来测度实际观察频数与期望频数之间的拟合程度。
在H 0成立的条件下,样本容量n 充分大时,2χ统计量近似地服从自由度df =k-1的2χ分布,因而,可以根据给定的显著性水平α,在临界值表中查到相应的临界值)1(2-k αχ。
若)1(22-≥k αχχ,则拒绝H 0,否则不能拒绝H 0。
非参数统计方法概述非参数统计方法是一种在统计学中常用的方法,它不依赖于总体分布的具体形式,而是根据样本数据的秩次或距离来进行推断。
非参数统计方法的应用领域非常广泛,包括但不限于医学、经济学、生态学等各个领域。
本文将对非参数统计方法进行概述,介绍其基本概念、常用方法和应用场景。
一、基本概念非参数统计方法是指在统计推断中,不对总体分布做出任何假设的一类方法。
相对于参数统计方法,非参数统计方法更加灵活,适用于各种类型的数据分布。
在非参数统计方法中,常用的统计量包括秩次统计量、中位数、分位数等,通过这些统计量来进行推断。
二、常用方法1. 秩次检验秩次检验是非参数统计方法中常用的一种方法,它将样本数据按大小排序,用秩次代替原始数据,然后根据秩次的大小来进行推断。
秩次检验包括Wilcoxon秩和检验、Mann-Whitney U检验等,适用于两组或多组样本的比较。
2. 核密度估计核密度估计是一种非参数的概率密度估计方法,它通过在每个数据点周围放置一个核函数,来估计总体的概率密度函数。
核密度估计在密度估计、异常值检测等领域有着广泛的应用。
3. Bootstrap方法Bootstrap方法是一种通过重复抽样来估计统计量的方法,它不依赖于总体分布的假设,可以用于计算统计量的置信区间、标准误差等。
Bootstrap方法在参数估计、假设检验等方面有着重要的应用。
4. 分位数回归分位数回归是一种非参数的回归方法,它通过估计不同分位数下的回归系数,来研究自变量对因变量的影响。
分位数回归在经济学、社会学等领域有着重要的应用。
三、应用场景1. 医学研究在医学研究中,由于数据的复杂性和样本量的限制,非参数统计方法常常被用于分析临床试验数据、生存分析数据等。
例如,Kaplan-Meier曲线的绘制和Log-rank检验就是非参数统计方法在生存分析中的应用。
2. 生态学研究生态学研究中常常涉及到样本数据的非正态性和异方差性,非参数统计方法可以有效地应对这些问题。