第四版非参数统计第四章课后习题答案
- 格式:doc
- 大小:293.50 KB
- 文档页数:2
统计学第四章课后题及答案解析统计学第四章课后题及答案解析以下是为大家整理的统计学第四章课后题及答案解析的相关范文,本文关键词为统计学,第四章,课后,答案,解析,第四章,练习题,单项选择,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
第四章练习题一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量b.质量指标c.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数b.比较相对数c.结构相对数D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%b.95.45%c.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%b.95%c.5%D.114.5%5.在一个特定总体内,下列说法正确的是()A.只存在一个单位总量,但可以同时存在多个标志总量b.可以存在多个单位总量,但必须只有一个标志总量c.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的b.同质的c.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率b.平均增长水平c.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3b.13c.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差b.极差c.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是()A.两个总体的标准差应相等b.两个总体的平均数应相等c.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数b.加权算术平均数c.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nx x i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nxx i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
第4章-3.一项关于销售茶叶的研究报告说明销售方式可能和售出率有关,三种方式为:在商店内等待,在门口销售和当面表演炒制茶叶,对一组商店在一段时间的调查结果列在下表中(单位为购买者人数)。
销售方式购买率(%)商店内等待20 25 29 18 17 22 18 20 门口销售26 23 15 30 26 32 28 27 表演炒制53 47 48 43 52 57 49 56 利用检验回答下面的问题,是否购买率不同?存在单调趋势吗?如果只分成表演炒制和不表演炒制两种,结论又如何?N i: 8 8 8R i: 50 86 164R: 6.25 10.75 20.5iK-W检验即拒绝零假设。
J-T检验U12=7+6+0+8+7+8+7+7=50U13=64U23=64J=50+64+64=178n较大Ф(0.2295)=2.413>0.05拒绝零假设初中物理知识点复习填空第一章声现象复习一、基础过关1.声音是由物体的产生的,一切发声的物体都在,振动,发生才停止。
2.声音是以的形式在中传播,气体、液体和都可以传播声音,声音在中传播的最慢,15℃的空气中声音的传播速度是,但不能传播声音。
3.声音通过头骨、颌骨也能传到听觉神经,引起听觉。
声音的这种传导方式叫。
4.声音具有三个显著的特性,分别是、和。
其中,与振动的频率(每秒钟物体振动的次数)有关,且频率越大,越高;与物体振动的振幅有关,且振幅越大,越大,它还与距离发生体的有关;不同的发声体不同。
5.人耳的听觉频率是。
频率高于的声叫波,频率低于的声叫波,生活中用B超检查身体及胎儿的发育情况用的是波,地震、火山、台风、海啸及一些动物交流时用的是波。
6.物理学中,把发声体做____________振动时发出的声音叫做噪声;从环保的角度,凡是影响人们正常的、和的声音都是噪声,人们用为单位来表示声音强弱的等级,符号是。
7.对噪声的控制可以在三个阶段进行减弱,分别是在_________处减弱;在___________减弱;在____________减弱。
课后习题参考答案第一章p23-252、(2)有两组学生,第一组八名学生的成绩分别为x 1:100,99,99,100,99,100,99,99;第二组三名学生的成绩分别为x 2:75,87,60。
我们对这两组数据作同样水平a=0.05的t检验(假设总体均值为u ):H 0:u=100 H 1:u<100。
第一组数据的检验结果为:df=7,t 值为3.4157,单边p 值为0.0056,结论为“拒绝H 0:u=100。
”(注意:该组均值为99.3750);第二组数据的检验结果为:df=2,t 值为3.3290,单边p值为0.0398;结论为“接受H 0:u=100。
”(注意:该组均值为74.000)。
你认为该问题的结论合理吗?说出你的理由,并提出该如何解决这一类问题。
答:这个结论不合理(6分)。
因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。
(4分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。
实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。
本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。
(4分)第三章p68-713、在某保险种类中,一次关于1998年的索赔数额(单位:元)的随机抽样为(按升幂排列): 4632,4728,5052,5064,5484,6972,7596,9480,14760,15012,18720,21240,22836,52788,67200。
已知1997年的索赔数额的中位数为5064元。
(1)是否1998年索赔的中位数比前一年有所变化?能否用单边检验来回答这个问题?(4分) (2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。
第四章统计数据的概括性描述4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:(1)(2)(3)(4)说明汽车销售分部的特征答:10名销售人员的在5月份销售的汽车数量较为集中。
4.2 随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数:()l g 25l g ()1.3981115.64l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:4.3 某银行为缩短顾客到银行办理业务等待的时间。
第四章一、单项选择题1、由反映总体单位某一数量特征的标志值汇总得到的指标就是( )A、总体单位总量B、质量指标C、总体标志总量D、相对指标2、各部分所占比重之与等于1或100%的相对数( )A.比例相对数B.比较相对数C.结构相对数D.动态相对数3、某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为( )A、104、76%B、95、45%C、200%D、4、76%4、某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14、5%,则产品成本计划完成程度( )A、14、5%B、95%C、5%D、114、5%5、在一个特定总体内,下列说法正确的就是( )A、只存在一个单位总量,但可以同时存在多个标志总量B、可以存在多个单位总量,但必须只有一个标志总量C、只能存在一个单位总量与一个标志总量D、可以存在多个单位总量与多个标志总量6、计算平均指标的基本要求就是所要计算的平均指标的总体单位应就是( )A、大量的B、同质的C、有差异的D、不同总体的7、几何平均数的计算适用于求( )A、平均速度与平均比率B、平均增长水平C、平均发展水平D、序时平均数8、一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数就是( )A、3B、13C、7、1D、79、某班学生的统计学平均成绩就是70分,最高分就是96分,最低分就是62分,根据这些信息,可以计算的测度离散程度的统计量就是( )A、方差B、极差C、标准差D、变异系数10、用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件就是( )A、两个总体的标准差应相等B、两个总体的平均数应相等C、两个总体的单位数应相等D、两个总体的离差之与应相等11、已知4个水果商店苹果的单价与销售额,要求计算4个商店苹果的平均单价,应采用( )A、简单算术平均数B、加权算术平均数C、加权调与平均数D、几何平均数12、算术平均数、众数与中位数之间的数量关系决定于总体次数的分布状况。
非参数统计分析习题四答案非参数统计分析习题四答案在统计学中,非参数统计方法是一种不依赖于总体分布形态的统计分析方法。
与参数统计方法相比,非参数方法更加灵活,适用范围更广。
本文将针对一些非参数统计分析习题提供详细的答案和解析。
1. 问题描述:某研究人员对一批新药进行了测试,得到了一组数据:[25, 30, 32, 28, 35, 27, 29, 31, 26, 34]。
现在需要对这组数据进行非参数的中位数检验,以验证该新药是否具有显著效果。
解答:中位数检验是一种常用的非参数检验方法,用于判断两个样本的中位数是否存在显著差异。
首先,我们需要对原始数据进行排序,得到:[25, 26, 27, 28, 29, 30, 31, 32, 34, 35]。
接下来,我们需要计算两组数据的中位数。
在这个例子中,我们只有一组数据,因此只需计算一次中位数。
根据数据的个数,中位数的计算方法有所不同。
当数据个数为奇数时,中位数即为排序后的中间值;当数据个数为偶数时,中位数为排序后的中间两个数的平均值。
根据以上方法,我们可以得到该组数据的中位数为29.5。
接下来,我们需要进行中位数检验。
中位数检验的零假设是两组数据的中位数相等,备择假设是两组数据的中位数不相等。
在这个例子中,我们只有一组数据,因此无法进行中位数检验。
2. 问题描述:某超市对两种不同品牌的牛奶进行了销售额的统计,得到了以下数据:品牌A:[120, 130, 110, 140, 150, 130, 160, 140, 150, 130]品牌B:[110, 120, 130, 140, 130, 150, 140, 160, 130, 150]现在需要对这两组数据进行非参数的Wilcoxon秩和检验,以验证两个品牌的销售额是否存在显著差异。
解答:Wilcoxon秩和检验是一种常用的非参数检验方法,用于判断两个相关样本之间的差异是否显著。
首先,我们需要对两组数据进行合并,并进行排序,得到:[110, 110, 120, 130, 130, 130, 130, 140, 140, 150, 150, 160]。
统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别姆鞘中褪荩嵌允挛锝蟹掷嗟慕峁荼硐治啾穑梦淖掷幢硎觯唬ǘㄐ允荩┧承蚴荩褐荒芄橛谀骋挥行蚶啾鸬姆鞘中褪荨K彩怯欣啾鸬模庑├啾鹗怯行虻摹#渴荩┦敌褪荩喊词殖叨炔饬康墓鄄熘担浣峁硐治咛宓氖怠?统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同 1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
1.8 统计应用实例人口普查,商场的名意调查等。
附录:教材各章习题答案第1章统计与统计数据1.1〔1〕数值型数据;〔2〕分类数据;〔3〕数值型数据;〔4〕顺序数据;〔5〕分类数据。
1.2〔1〕总体是该城市所有的职工家庭〞,样本是抽取的2000个职工家庭〞;〔2〕城市所有职工家庭的年人均收入,抽取的“2000b家庭计算出的年人均收入。
1.3〔1〕所有IT从业者;〔2〕数值型变量;〔3〕分类变量;〔4〕观察数据。
1.4〔1〕总体是所有的网上购物者〞;〔2〕分类变量;〔3〕所有的网上购物者的月平均花费;〔4〕统计量;〔5〕推断统计方法。
1.5〔略〕。
1.6〔略〕。
第2章数据的图表展示2.1 〔1〕届丁顺序数据。
〔2〕频数分布表如下效劳质量等级评价的频数分布效劳质量等级家庭数/频率频率/%A1414B2121C3232D1818E1515合计100100条形图〔略〕〔4〕帕累托图〔略〕2.2 〔1〕频数分布表如下40按销售收入分组/万元企业数/个频率/%向上累积向下累积企业数频率企业数频率100以下512.5512.540100.0 100〜110922.51435.03587.5 110 〜1201230.02665.02665.0 120 〜130717.53382.51435.0 130 〜140410.03792.5717.5 140以上37.540100.037.5合计40100.0————某管理局下届个企分组表按销售收入分组/万元企业数/个频率/%先进企业1127.5良好企业1127.5一般企业922.5落后企业922.5合计40100.0频数分布表如下按销售额分组/万元频数/天频率/%25 〜30410.030 〜35615.035 〜401537.540 〜45922.545 〜50615.0合计40100.0直方图(略)。
2.4茎叶数据个数18 8 9320 1 1336888999123 1 3 5 6 954 1 2 3 6 6 7650 12 742.5 (1)排序略。
统计课后思考题答案第一章思考题什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
解释分类数据,顺序数据和数值型数据答案同举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计应用实例人口普查,商场的名意调查等。