电磁场与电磁波每章小结
- 格式:ppt
- 大小:2.44 MB
- 文档页数:66
可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。
2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。
其中四指指向还可以理解为:感应电动势高电势处。
*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。
②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。
③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。
④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。
*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。
(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。
3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。
三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
已经将文本间距加为24磅,第18章:电磁场与电磁波一、知识网络二、重、难点知识归纳1.振荡电流和振荡电路(1)大小和方向都随时间做周期性变化的电流叫振荡电流。
能够产生振荡电流的电路叫振荡电路。
自由感线圈和电容器组成的电路,是一种简单的振荡电路,简称LC 回路。
在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。
(2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小(3)LC 电路中能量的转化 :a 、电磁振荡的过程是能量转化和守恒的过程.电流变大时,电场能转化为磁场能,LC 回路中电磁振荡过程中电荷、电场。
电路电流与磁场的变化规律、电场能与磁场能相互变化。
分类:阻尼振动和无阻尼振动。
振荡周期:LC T π2=。
改变L 或C 就可以改变T 。
电磁振荡 麦克斯韦电磁场理论 变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为3.0×108m/s 电磁波 电磁场与电磁波 发射接收 应用:电视、雷达。
目的:传递信息 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。
原理:电磁波遇到导体会在导体中激起同频率感应电流 选台:电谐振 检波:从接收到的电磁波中“检”出需要的信号。
接收电路:接收天线、调谐电路和检波电路电流变小时,磁场能转化为电场能。
b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大.c 、理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。
回路中电流越大时,L 中的磁场能越大。
极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。
第一章一、矢量代数 A ∙B =AB cos θA B⨯=ABe AB sin θ A ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ + e ϕr sin θ d ϕ矢量面元d S = e r r 2sin θ d θ d ϕ体积元ϕθθd d r r dV sin 2= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r rr θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x zA A A x y z11()zA A A zϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(s i n )s i n s i n ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z ∂∂∂∇⨯=∂∂∂e e e A x y zx y z A A A1z zz A A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A21sin sin rr zr rA r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y z u u u u u n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u uu x y z1∂∂∂∇=++∂∂∂e e e z u u uu zρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e ru u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A 2. 无旋场 ()0∇⨯∇=u -u =∇F六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zy y y x x x z z z x y z u u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理)d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε ==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场电荷守恒定律:⎰⎰-=-=⋅Vsdv dtddt dq ds J ρ 0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σ ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ (安培环路定理)d 0⋅=⎰SB S 0∇⨯=BJ μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:=-BH M μ m 00(1)=+B H =H =H r χμμμμ m =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lCdv B dldt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t tρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性em e m em e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体: 112ne iii W qφ==∑ 连续分布: 12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ 边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩n n φφφφεε 12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E S SSU R G I d d σ (L R =σS) 4. 静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE l S S d d qC Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lSS d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感2211⋅⋅===⋅⋅⎰⎰⎰⎰D SE S E lE lS S d d q C Ud d ε定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ 连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ(2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。
主要内容o第一章矢量分析o第二章电磁场的基本规律o第三章静态电磁场o第四章静态场的边值问题o第五章平面电磁波o第六章平面电磁波的反射与折射o第七章导行电磁波o第八章电磁波的辐射第一章矢量分析1.梯度、散度、旋度的定义2.梯度、散度、旋度的计算。
记住直角坐标系、圆柱坐标系和球坐标系的拉米系数。
(广义坐标系中的梯度、散度、旋度公式不必记)3.散度定理、斯托克斯定理单位体积内发出的通量 环量最大面密度2.梯度、散度、旋度的计算。
记住直角坐标系、圆柱坐标系和球坐标系的拉米系数。
(广义坐标系中的梯度、散度、旋度公式不必记)sin ,,1321r h r h h 1231,,1h h h 1231,1,1h hh直角坐标系圆柱坐标系球坐标系,,x y z,,z ,,r第二章电磁场的基本规律1.麦克斯韦方程组的微分形式和积分形式。
记住并理解每一方程的物理意义。
2.电磁场的边界条件3.本构方程4.极化电荷和磁化电流分布的计算5.电磁能量和电磁传输功率的计算3.本构方程各向同性线性介质EP E D 0HM H B 0EJ H)(H M 1r m EE P 0r 0)1( e4.极化电荷和磁化电流分布的计算P PM J mP e nPSMeJ nmSPS12n)(PPemS12n)(JMMe第三章静态电磁场1.静电位、矢量磁位的概念及方程2.电位满足的边界条件第四章静态场的边值问题1. 理想导体平面和球面镜像法。
2. 分离变量法。
会由通解公式根据边界条件确定问题的特解。
第四章静态场的边值问题在给定的边界条件下求解泊松方程或拉普拉斯方程。
方法:1. 镜像法在所求解场区域以外的空间中适当位置上,设置适当的像电荷来替代界面上的电荷的效果,像电荷与源电荷共同作用结果满足场域边界面上给定的边界条件,从而可以将界面移去,使所求解的边值问题转化为无界空间的问题。
导体平面的镜像:q = – q,q , q 的位置关于平面对称。
导体球面的镜像:q = – aq/d,q , q 的位置关于球面反演。
电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
2024年电磁场与电磁波学习心得在____年,电磁场与电磁波学习已经成为高中物理课程的一部分,让我有机会更深入地了解这一重要的物理学科。
通过学习过程,我积累了大量的知识和经验,对电磁场与电磁波的原理和应用有了更深入的理解。
下面是我在学习电磁场与电磁波过程中的心得体会。
首先,我意识到电磁场是一个基本的物理概念,它贯穿于我们生活的各个方面。
电磁场是由电荷产生的,当电荷发生运动时,就会形成电磁场。
通过学习电磁场的产生和性质,我了解到电磁场具有方向性和强度的概念。
电磁场的方向性是指电磁场具有一个特定的方向,可以通过箭头来表示;而电磁场的强度则表示电磁场的大小,通常用矢量表示。
理解了这些概念后,我就能更好地理解电磁场如何影响周围的物体和其他电荷了。
其次,我学习了电磁波的理论和特性。
电磁波是由震动的电场和磁场组成的,通过学习电磁波的产生和传播过程,我了解到电磁波具有波长和频率的概念。
波长是指电磁波的一个完整周期的长度,而频率则表示电磁波的波动次数。
通过波长和频率,我们可以计算出电磁波的速度,即光速。
这让我惊讶,因为光速是一个巨大的数字,它的速度非常快,几乎接近无限大。
此外,我还学习了电磁波的不同类型,包括射线、无线电波、可见光、紫外线和X射线等。
每一种电磁波都有其特定的特性和应用,这让我对电磁波的广泛应用有了更深入的了解。
另外,学习电磁场和电磁波的过程中,我也掌握了一些重要的公式和定律。
其中,最重要的是麦克斯韦方程组。
这是一个描述电磁场和电磁波行为的一系列方程,它们之间相互关联,形成了一个完整的理论体系。
通过解析麦克斯韦方程组,我可以计算出电磁场和电磁波的各种性质,如电场强度、磁感应强度、电磁波的传播速度等。
同时,我还了解到安培定律、法拉第电磁感应定律和高斯定律等重要定律,它们都是电磁场和电磁波理论的重要基础。
在学习电磁场与电磁波的过程中,我也进行了一些实验和观察,来进一步加深对理论知识的理解。
其中,最有趣的实验是利用磁场对电荷进行偏转。
电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:面积元:,体积元:(2)柱坐标系长度元:,面积元,体积元:(3)球坐标系长度元:,面积元:,体积元:2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系(2)直角坐标系与球坐标系的关系(3)柱坐标系与球坐标系的关系3、梯度(1)直角坐标系中:(2)柱坐标系中:(3)球坐标系中:4。
散度(1)直角坐标系中:(2)柱坐标系中:(3)球坐标系中:5、高斯散度定理:,意义为:任意矢量场的散度在场中任意体积内的体积分等于矢量场在限定该体积的闭合面上的通量。
6,旋度(1)直角坐标系中:(2)柱坐标系中:(3)球坐标系中:两个重要性质:①矢量场旋度的散度恒为零,②标量场梯度的旋度恒为零,7、斯托克斯公式:第二章静电场和恒定电场1、静电场是由空间静止电荷产生的一种发散场。
描述静电场的基本变量是电场强度、电位移矢量和电位。
电场强度与电位的关系为:。
2、电场分布有点电荷分布、体电荷分布、面电荷分布和线电荷分布.其电场强度和电位的计算公式如下:(1)点电荷分布(2)体电荷分布(3)面电荷分布(4)线电荷分布3、介质中和真空中静电场的基本方程分别为在线性、各向同性介质中,本构方程为:4、电介质的极化(1)极化介质体积内的极化体电荷密度为:。
(2)介质表面的极化面电荷密度为:5、在均匀介质中,电位满足的微分方程为泊松方程和拉普拉斯方程,即6、介质分界面上的边界条件(1)分界面上的边界条件(为分界面上的自由电荷面密度),当分界面上没有自由电荷时,则有:,它给出了的法向分量在介质分界面两侧的关系:(I)如果介质分界面上无自由电荷,则分界面两侧的法向分量连续;(II)如果介质分界面上分布电荷密度,的法向分量从介质1跨过分界面进入介质2时将有一增量,这个增量等于分界面上的面电荷密度。
用电位表示:(2)分界面上的边界条件(切向分量),电场强度的切向分量在不同的分界面上总是连续的.由于电场的切向分量在分界面上总连续,法向分量有限,故在分界面上的电位函数连续,即.电力线折射定律:。
电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=∙=∙∇=∙=∙∇∙∂∂-=∙∂∂-=⨯∇∙∂∂+=∙∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=∙=∙∇=∙=∙∇=∙=⨯∇=∙=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-∙=-=-⨯=-=-∙==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-∙==-⨯==-∙==-⨯(((1)基本方程0022=∙==∇-=∇=∙=∙∇=∙=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。
● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。
(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。
2024年电磁场与电磁波学习心得范文____年电磁场与电磁波学习心得随着科技的快速发展,电磁场与电磁波成为了现代社会中不可或缺的一部分。
作为一名电子工程专业的学生,我在____年对电磁场与电磁波进行了深入的学习,并且收获了很多。
在学习电磁场与电磁波的过程中,我首先对电磁场的概念有了更加深入的了解。
电磁场是由电荷所产生的物理场,通过观察电荷在空间中的行为,我们可以推导出电磁场的特性。
电磁场包括磁场和电场两个部分,它们相互作用并且相互依赖。
磁场是由电流所产生的,而电场则是由电荷产生的。
电磁场的研究不仅可以解释许多电磁现象的发生原理,还可以应用于电子工程中的电路设计和无线通信等领域。
在学习电磁波的过程中,我对电磁波的产生和传播原理有了更加深入的认识。
电磁波是由电场和磁场相互耦合所产生的波动现象。
当电场和磁场变化时,它们会相互作用并且互相激发,从而形成电磁波。
电磁波可以自由传播,在空间中以光的速度传播。
电磁波的频率和波长决定了它的性质,不同频率的电磁波具有不同的用途。
例如,射频电磁波可以用于电台和无线电通信,可见光电磁波可以用于照明和显示等。
学习电磁场与电磁波的过程中,我也了解到了一些重要的应用。
无线通信是一个重要的应用领域之一。
通过电磁波的传播,我们可以实现无线电话、手机、卫星通信等技术。
电磁波的吸收和散射也可以用于医学诊断和治疗。
医学成像技术中的X射线、核磁共振和超声等都利用了电磁波与物质的相互作用来获取人体内部结构和功能信息。
另外,雷达和卫星导航系统等技术也广泛应用了电磁场与电磁波的原理。
学习电磁场与电磁波不仅帮助我理解了许多现实生活中的现象,还让我对电子工程相关的知识有了更深入的了解。
在电路设计中,我们需要考虑电磁场的影响,例如电磁干扰和屏蔽等问题。
对电磁场与电磁波的理解也加深了我对无线通信和电磁兼容等方面的认识。
此外,学习电磁场与电磁波还培养了我分析和解决问题的能力,提高了我对工程实践的理解。