逻辑连接词且或非
- 格式:ppt
- 大小:1.42 MB
- 文档页数:31
考点48 逻辑联结词及数学归纳法一.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词. (2)命题p 且q 、p 或q 、非p 的真假判断二.量词2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示. (2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定三.数学归纳法1.由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法. 2.用数学归纳法证明一个与正整数有关的命题时,其步骤如下: (1)归纳奠基:证明取第一个自然数n 0时命题成立;(2)归纳递推:假设n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3)由(1)(2)得出结论.知识理解考向一 命题的否定【例1】(2021·四川成都市·高三二模(理))命题“0x ∀>,210x x ++>”的否定为( )A .00x ∃≤,20010x x ++≤ B .0x ∀≤,210x x ++≤ C .00x ∃>,20010x x ++≤D .0x ∀>,210x x ++≤【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是:00x ∃>,20010x x ++≤.故选:C .【举一反三】1.(2021·全国高三月考(理))命题“0x R ∃∈,002ln 0x x +≤”的否定是( ) A .x R ∀∈,2ln 0x x+≥ B .x R ∀∈,2ln 0x x+> C .0x R ∃∈,002ln 0x x +≥ D .0002,0x R lnx x ∃∈+> 【答案】B【解析】命题“0x R ∃∈,002ln 0x x +≤”为特称命题,该命题的否定为“x R ∀∈,2ln 0x x+>”. 故选:B.2.(2021·湖南岳阳市)命题“()1,x ∀∈+∞,21x e x ≥+”的否定是( ) A .()1,x ∃∈+∞,21x e x ≥+ B .()1,x ∀∈+∞,21x e x <+ C .()1,x ∃∈+∞,21x e x <+ D .()1,x ∀∈+∞,21x e x ≥+【答案】C【解析】命题“()1,x ∀∈+∞,21x e x ≥+”为全称命题,该命题的否定为“()1,x ∃∈+∞,21x e x <+”. 故选:C.考向分析3.(2021·泰州市第二中学)巳知命题p :0x ∃>,10x e x --≤,则命题p 的否定为( ) A .0x ∀≤,10x e x --> B .0x ∀>,10x e x --> C .0x ∃>,10x e x --≥ D .0x ∃≤,10x e x -->【答案】B【解析】命题p :0x ∃>,10x e x --≤,则命题p 的否定为0x ∀>,10x e x -->. 故选:B考向二 逻辑连接词求参数【例2】(2021·全国高三专题练习)若命题“200[1,2],2x x a ∃∈--+”是假命题,则实数a 的范围是( ) A .2a > B .2a C .2a >- D .2a -【答案】A【解析】若命题“200[1,2],2x x a ∃∈--+”是假命题,则命题“2[1,2],2x x a ∀∈--+<”是真命题, 当0x =时,()2max22x -+=,所以2a >.故选:A. 【举一反三】1.(2021·天水市第一中学高三月考(理))已知命题():1,3p x ∃∈-,220x a --≤.若p 为假命题,则a 的取值范围为( ) A .(),2-∞- B .(),1-∞-C .(),7-∞D .(),0-∞【答案】A 【解析】p 为假命题,∴():1,3p x ⌝∀∈-,220x a -->为真命题,故22a x <-恒成立,22y x =-在()1,3x ∈-的最小值为2-,∴2a <-. 故选:A.2.(2020·北京人大附中高三月考)若命题“x R ∃∈,使得2210ax x ++<成立”为假命题,则实数a 的取值范围是( ) A .[1,+∞) B .[0,+∞)C .(-∞,1)D .(-∞,0]【答案】A 【解析】命题“x R ∃∈,使得2210ax x ++<成立”为假命题, 则它的否定命题: “x R ∀∈,2210ax x ++≥”为真命题所以0440a a >⎧⎨∆=-≤⎩ 解得1a ≥,所以实数a 的取值范围是[1,)+∞ 故选:A.3.(2020·江西高三期中(文))存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C【解析】由不等式230x mx m +-≥,可化为23x m x≤-,设()[]2,1,13x f x x x=∈--,则()()()2226(6)33x x x x f x x x ---'==--,当[1,0)x ∈-时,()0f x '<,()f x 单调递减; 当(0,1]x ∈时,()0f x '>,()f x 单调递增,又由()11(1),142f f -==,所以函数()f x 的最大值为()112f =, 要使得存在[1,1]x ∈-,使得230x mx m +-≥,则12m ≤,则m 的最大值为12. 故选:C.考向三 数学归纳法【例3-1】(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+12+13+…+121n -<n (n ∴N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是( ) A .2k -1 B .2k -1 C .2k D .2k +1【答案】C【解析】n k =时,左边=1111 (2321)k ++++-,而n =k +1时,左边=11111111 (232122121)k k k k +++++++++-+-,增加了1111 (22121)k k k +++++-,共(2k +1-1)-(2k -1)=2k 项, 故选:C.【例3-2】.(2020·全国高三专题练习)设等比数列{}n a 满足113,34n n a a a n +==-. (1)计算23,a a ,猜想{}n a 的通项公式并加以证明; (2)求数列{}2nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-+. 【解析】(1)由题意,等比数列{}n a 满足113,34n n a a a n +==-, 可得21345a a =-= ,323427a a =-⨯=,,猜想{}n a 的通项公式为21n a n =+,证明如下:(数学归纳法)当1,2,3n =时,显然成立; ∴ 假设n k =时,即21k a k =+成立;其中*(N )k ∈, 由134k k a a k +=-3(21)4k k =+-2(1)1k =++ ∴故假设成立,综上(1)(2),数列{}n a 的通项公式21n a n =+*()n N ∈.(2)令2(21)2n nn n b a n ==+,则前项和1212...3252...(21)2n n n S b b b n =+++=⨯+⨯+++ ∴由∴两边同乘以2得:23123252...(21)2(21)2n n n S n n +=⨯+⨯++-++ ∴由∴-∴的322112(12)3222...2(21)26(21)212n n n n n S n n -++--=⨯+⨯++-+=+-+-, 化简得1(21)22n n S n +=-+. 【举一反三】1.(2020·全国高三专题练习(理))用数学归纳法证明等式123(21)(1)(21)n n n +++++=++时,从n k=到1n k =+等式左边需增添的项是( ) A .22k + B .[]2(1)1k ++ C .[(22)(23)]k k +++ D .[][](1)12(1)1k k ++++ 【答案】C【解析】当n k =时,左边123(21)k =+++++,共21k +个连续自然数相加,当1n k =+时,左边123(21)(22)(23)k k k =+++++++++,所以从n k =到1n k =+,等式左边需增添的项是[(22)(23)]k k +++. 故选:C.2.(2021·全国高三专题练习)设集合T n ={1,2,3,…,n }(其中n ≥3,n ∴N *),将T n 的所有3元子集(含有3个元素的子集)中的最小元素的和记为S n . (1)求S 3,S 4,S 5的值; (2)试求S n 的表达式.【答案】(1)S 3=1,S 4=5,S 5=15;(2)41n C + .【解析】(1)当n =3时,T 3={1,2,3},3元子集有:{1,2,3},∴S 3=1;当n =4时,T 4={1,2,3,4},3元子集有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},∴S 4=1×3+2=5;当n =5时,T 5={1,2,3,4,5},3元子集有:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},222543212315S C C C ∴=⨯+⨯+⨯=.(2)由S 3=1,S 4=5,S 5=15,S 6=35…归纳猜想出41n n S C +=(n ≥3).下面用数学归纳法证明猜想:∴当n =3时,S 3=1=44C ,结论成立;∴假设n =k (k ≥3,k ∴N *)时,结论成立,即S k =41k C +,则当n =k +1时,T k +1={1,2,3,4,…,k ,k +1},()()1111111232123...21k k k k k S S C C C k C k C +---⎡⎤=+++++-+-⎣⎦()()()(){}411111122112...21k k k C k C k C k k C k k C +--=+-+-++--+--⎡⎤⎡⎤⎣⎦⎣⎦ ()(){}4111111111211231...23...1k k k C k C C C C C C k C +--⎡⎤=++++-++++-⎣⎦ ()422311k k k k C kC kC C ++⎡⎤=+--⎣⎦ ()4341111k k k C C C ++++=+=∴当n =k +1时,结论成立. 综上:由∴∴可得()413n n S C n +=≥.1.(2021·涡阳县育萃高级中学)已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C .21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 【答案】B【解析】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B2.(2021·漠河市高级中学高三月考(文))下列说法正确的是( ) A .若p q ∨为真命题,则p q ∧为真命题B .命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y ≠”C .“0x <”是“20x x ->”的充要条件强化练习D .若p :x ∀∈R ,2320x x --<,则p ⌝:0x ∃∈R ,200320x x --.【答案】D【解析】对于A 选项,若p q ∨为真命题,可能p 真q 假,则p q ∧为假,故A 选项错误.对于B 选项,命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y =”,故B 选项错误. 对于C 选项,当2x =时,20x x ->,所以“0x <”不是“20x x ->”的充要条件,C 选项错误. 根据全称量词命题的否定的知识可知,D 选项正确. 故选:D3.(2021·全国高三专题练习)下列关于命题的说法中正确的是( )∴对于命题P :x R ∃∈,使得210x x ++<,则:P x R ⌝∀∈,均有210x x ++≥ ∴“1x =”是“2320x x -+=”的充分不必要条件∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠” ∴若p q ∧为假命题,则p 、q 均为假命题 A .∴∴∴ B .∴∴∴ C .∴∴∴∴ D .∴∴【答案】A【解析】∴对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈均有210x x ++,故∴正确;∴由“1x =”可推得“2320x x -+=”,反之由“2320x x -+=”可能推出2x =,则“1x =”是“2320x x -+=”的充分不必要条件,故∴正确;∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”,故∴正确; ∴若p q ∧为假命题,则p ,q 至少有一个为假命题,故∴错误. 则正确的命题的有∴∴∴. 故选:A4.(2021·河南高三其他模拟(文))命题:p “0,2sin 0x x x ∀≥-≥”的否定为( )A .0,2sin 0x x x ∀≥-<B .0,2sin 0x x x ∀<-<C .0000,2sin 0xx x ∃≥-< D .0000,2sin 0xx x ∃<-<【答案】C【解析】命题:p “0,2sin 0xx x ∀≥-≥”是全称命题,又全称命题的否定是特称命题,故“0x ∀≥,2sin 0x x -≥”的否定是“0000,2sin 0xx x ∃≥-<”.故选:C.5.(2021·山东菏泽市·高三一模)命题“2,0∈≥∀x R x ”的否定是( )A .2,0x R x ∃∈≥B .2,0x R x ∀∈<C .2,0x R x ∃∈<D .2,0x R x ∃∈≤【答案】C【解析】因为全称命题的否定是特称命题,所以命题:x R ∀∈,20x ≥的否定是:x R ∃∈,20x <.故选:C6.(2021·四川成都市·石室中学高三月考(理))设命题:0p x ∀≤x =-,则p ⌝为( ) A .0x ∀≤x ≠- B .00x ∃≤0x =- C .0x ∀>x =- D .00x ∃≤0x ≠-【答案】D【解析】命题p 为全称命题,该命题的否定为0:0p x ⌝∃≤0x ≠-. 故选:D.7.(2020·湖北武汉市·华中师大一附中高三期中)“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由题意,命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题” 可得命题“x R ∀∈,2(1)2(1)30m x m x -+-+>是真命题” 当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件, 故选:B.8.(2021·全国高三专题练习)若命题“∀[]1,4x ∈时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4,3]-- B .()-∞,-4 C .[4,)-+∞ D .[4,0]-【答案】D【解析】若命题“[1x ∀∈,4]时,240x x m --≠”是假命题, 则命题“[1x ∃∈,4]时,240x x m --=”是真命题, 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x -,则40m -. 故选:D .9.(2020·江苏海门市·高三月考)命题“[]21220x x a ∀∈-≤,,”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .4a ≤D .4a ≥【答案】D【解析】“[]21220x x a ∀∈-≤,,”为真命题,可得2a ≥,因为[)[)4,2,+∞⊂+∞ , 故选:D .10.(2021·全国高三专题练习)已知命题“02x ∃>,20040ax ax --<”是假命题,则a 的取值范围是( )A .[)2,+∞B .()2,+∞C .(],2-∞D .(),2-∞【答案】A【解析】因为命题“02x ∃>,20040ax ax --<”是假命题,所以240ax ax --≥对2x >恒成立, 所以()242a x x x≥>-恒成立.因为2x >, 所以22x x ->,则242x x<-, 故2a ≥. 故选:A11.(2020·全国高三专题练习)用数学归纳法证明“(1)(2)()213(21)nn n n n n ++⋅⋅⋅⋅⋅+=⋅⋅⋅⋅⋅⋅⋅-”,从“k到1k +”左端需增乘的代数式为( ) A .21k + B .2(21)k +C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,等式的左边(1)(2)()k k k k =++⋅⋅⋅⋅⋅+,当1n k =+时,等式的左边(11)(12)()(1)(2)k k k k k k k k =++++⋅⋅⋅⋅⋅+++++, 所以当从“k 到1k +”左端增乘的代数式为(1)(2)2(21)1k k k k k k ++++=++.故选:B.12.(多选)(2021·恩施市第一中学)下列命题正确的有( ) A .命题“x R ∀∈,20x ≥”的否定是“x R ∃∈,20x <”. B .函数()cos f x x =向右平移2π个单位得到函数解析式为()sin g x x =. C .函数()21f x x =-的零点为()1,0-,()1,0.D .1弧度角表示:在任意圆中,等于半径长的弦所对的圆心角. 【答案】AB【解析】对A ,根据全称命题的否定性质,A 为正确的; 对B ,()cos f x x =向右平移2π个单位得到函数()cos()sin 2g x x x π=-=;对C ,函数零点是数而不是点,故C 错误;对D ,1弧度角表示为在任意圆中,等于半径长的弧所对的圆心角,故D 错误; 故选:AB.13.(多选)(2021·全国高三专题练习)下列命题中正确的是( ) A .(0,)x ∃∈+∞,23x x >B .(0,1)x ∃∈,23log log x x <C .(0,)x ∀∈+∞,121()log 2xx >D .1(0,)3x ∀∈,131()log 2xx < 【答案】BD【解析】对于选项A :当0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,所以23x x <恒成立,故选项A 不正确;对于选项B :当(0,1)x ∈时,23log lg lg 3lg 31log lg 2lg lg 2x x x x =⨯=>,且3log 0x <,所以23log log x x <,故选项B 正确;对于选项C :当12x =时,1211()()222x ==,11221log log 12x ==,则121log ()2x x >,故选项C 不正确; 对于选项D :当13x =时,131log 13=,由对数函数和指数函数的性质可知,当1(0,)3x ∈时,131()1log 2x x <<,故选项D 正确; 故选:BD14.(多选)(2021·全国高三专题练习)若01,22x ⎡⎤∃∈⎢⎥⎣⎦,使得200210x x λ-+<成立是假命题,则实数λ可能取值是( ) A .32B.C .3 D .92【答案】AB【解析】由条件可知1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥是真命题, 即22112x x x xλ+≤=+,即min 112,,22x x x λ⎛⎫⎡⎤≤+∈ ⎪⎢⎥⎝⎭⎣⎦,设()112,22f x x x x ⎡⎤=+≥=∈⎢⎥⎣⎦等号成立的条件是112,222x x x ⎡⎤=⇒=∈⎢⎥⎣⎦,所以()f x的最小值是即λ≤AB. 故选:AB15.(2021·江西高三其他模拟(文))已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是___________. 【答案】18a >【解析】因为命题“存在x ∈R ,使220ax x -+≤”是假命题, 所以命题“R x ∀∈,使得220ax x -+>”是真命题,当0a =时,得2x <,故命题“R x ∀∈,使得220ax x -+>”是假命题,不合题意;当0a ≠时,得0180a a >⎧⎨∆=-<⎩,解得18a >.故答案为:18a >16.(2021·全国高三专题练习)若“存在x ∴[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.【答案】9(,)2-+∞【解析】存在x ∴[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数, 所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞.17.(2020·江西高三其他模拟(文))若命题:p x R ∃∈,210x mx -+<为假命题,则m 的取值范围是______. 【答案】[]22-,【解析】命题:p x R ∃∈,210x mx -+<为假命题,p ∴⌝:x R ∀∈,210x mx -+≥为真命题,则240m ∆=-≤,解得22m -≤≤,即m 的取值范围是[]22-,. 故答案为:[]22-,. 18.(2020·北京密云区·高三期中)若“01x ∃>,使得11x a x +<-.”为假命题,则实数a 的最大值为___________. 【答案】3【解析】由“∴x 0>1,使得11x a x +<-.”为假命题,可知,“11,1x x a x ∀>+≥-”为真命题, 11a x x ∴≤+-恒成立,由11111311x x x x +=-++≥=--,当且仅当2x =时取等号, 即a 的最大值为3. 故答案为:3.19.(2021·湖南永州市·高三二模)若对[]1,2x ∀∈,都有20ax x -≤,则实数a 的取值范围是___________. 【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】解:因为[]1,2x ∀∈,都有20ax x -≤,所以[]1,2x ∀∈,都有1a x≤,令()1g x x =,[]1,2x ∈,因为()1g x x=,在[]1,2x ∈上单调递减,所以()()min 122g x g ==,所以12a ≤,即实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦;故答案为:1,2⎛⎤-∞ ⎥⎝⎦20.(2020·全国高三月考(文))已知命题():0,p x ∀∈+∞,2230x mx -+>,命题:q m a <;若p 是q 的充分不必要条件,则实数a 的取值范围为______.【答案】()+∞【解析】设命题():0,p x ∀∈+∞,2230x mx -+>成立对应的m 的范围为集合A ,{}|B m m a =<若()0,x ∀∈+∞,223x mx +>,则32x m x +>,所以min 32m x x ⎛⎫<+ ⎪⎝⎭而32x x +≥32x x =,即x =时等号成立,所以min32x x ⎛⎫+= ⎪⎝⎭m <{|A m m =<,因为p 是q 的充分不必要条件,所以A B,所以a > 即实数a的取值范围为()+∞.故选答案为:()+∞21.(2020·凌海市第二高级中学高三月考)命题“2,1x R x t ∀∈>+”为真命题,则实数t 的取值范围是__________. 【答案】(),1-∞- 【解析】命题“2,1x R x t ∀∈>+”为真命题,且20x ≥,10t ∴+<,则1t <-,故实数t 的取值范围是(),1-∞-.故答案为:(),1-∞-.22.(2020·上海徐汇区·高三一模)用数学归纳法证明()2511222n n N -*++++∈能被31整除时,从k 到1k +添加的项数共有__________________项(填多少项即可). 【答案】5【解析】当n k =时,原式为:251122...2k -++++,当1n k =+时,原式为251551525354122...222222k k k k k k -+++++++++++++, 比较后可知多了55152535422222k k k k k ++++++++,共5项. 故答案为:523.(2020·浙江高三其他模拟)用数学归纳法证明:111111111234212122n n n n n-+-++-=+++-++,第一步应验证的等式是__________;从“n k =”到“1n k =+”左边需增加的等式是_________.【答案】11122-=()()1121121k k -+-+ 【解析】当1n =时,应当验证的第一个式子是11122-=,从“n k =”到“1n k =+”左边需增加的式子是()()1121121k k -+-+24.(2021·全国高三专题练习)设数列{}n a 满足11a =,12(23)n n a a n +=--. (1)计算2a ,3a .猜想{}n a 的通项公式并利用数学归纳法加以证明; (2)记2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)23a =,35a =,21n a n =-;证明见解析;(2)1(23)26n n S n +=-⨯+.【解析】(1)由题意可得2121213a a =+=+=,3221615a a =-=-=, 由数列{}n a 的前三项可猜想数列{}n a 是以1为首项,2为公差的等差数列, 即21n a n =-, 证明如下:当1n =时,12111a =⨯-=成立; 假设n k =时,21k a k =-成立.那么1n k =+时,12(23)2(21)(23)212(1)1k k a a k k k k k +=--=---=+=+-也成立. 则对任意的*n ∈N ,都有21n a n =-成立;(2)因为(21)2n n b n =-.∴23123252(21)2n n S n =⨯+⨯+⨯++-⨯,∴ 23412123252(21)2n n S n +=⨯+⨯+⨯++-⨯,∴∴-∴得:2341222222222(21)2n n n S n +-=+⨯+⨯+⨯++⨯--⨯()211122122(21)26(23)212n n n n n -++⨯-=+--⨯=---⨯-.∴1(23)26n n S n +=-⨯+.25.(2020·全国高三专题练习)已知数列{}n a 满足:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)2343,7,15a a a ===,21n n a =-;(2)证明见解析.【解析】(1)因为点()()*1,n n a a n N +∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(2)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21nn a =-.26.(2020·黑龙江哈尔滨市·高三月考(理))已知数列{}n a 满足1a m =,2n a ≠,11210n n n a a a ++-⋅-=. (1)求2a ,3a ,4a ;(2)猜想{}n a 的通项公式,并用数学归纳法加以证明. 【答案】(1)212a m =-,3232m a m -=-,43243ma m-=-;(2)()()()121n n n m a n n m ---=--;证明见解析.【解析】1)因为11210n n n a a a ++-⋅-=,2n a ≠,所以112n na a +=-,又因为1a m = 211122a a m ==--,3212232m a a m -==--,43132243ma a m-==-- (2)()()()121n n n ma n n m---=--证明:1n =时,()1011ma m --==,结论成立 假设n k =时,结论成立,即()()()121k k k ma k k m---=--当1n k =+时:()()()()()()()()()11111122211221211k kk k m a k k m k k m k k m a k km k k m k k m+--====-------+--+------ 结论成立.综上,数列通项为()()()121n n n m a n n m---=-- 27(2020·云南师大附中高三月考(理))设数列{}n a 满足11a =,23a =,当()11112n n n n n a a a n a a -+-+=+++.(1)计算3a ,4a ,猜想{}n a 的通项公式,并加以证明. (2)求证:()()()2221244474111n a a a +++<+++. 【答案】(1)35a =,47a =,21n a n =-,证明见解析;(2)证明见解析. 【解析】(1)解:由11a =,23a =, 所以()123121225a a a a a +=++=+,()234231327a a a a a +=++=+. 猜想:21n a n =-,证明:当2n =时,由11a =,23a =,故成立;假设n k =(2k ≥)时成立,即21k a k =-, 所以()()1111221211k k k k k a a a k k k a a -+-+=++=+=+-+,即当1n k =+时成立,综上所述,21n a n =-. (2)证明:由(1)知,()22411n n a =+, 所以()()()22212444111n a a a ++++++22222211111111221311n n =+++<++++--- ()()1111132411n n =++++⨯⨯-+111111111111232435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭11117112214n n ⎛⎫=++--< ⎪+⎝⎭,证毕.。
逻辑连接词逻辑连接词,也被称为连词、连接词或连接词汇,是用来连接两个句子、短语或单词的词语。
它们在句子中起到连接和衔接关系的作用,使得文章更加连贯和通顺。
在写作中,正确使用逻辑连接词非常重要,可以使句子之间的关系更加明确,使文章结构更加清晰。
下面我将介绍一些常用的逻辑连接词,并给出使用示例。
1. 并列连接词:并列连接词用来连接并列的句子、短语或单词,表示相同、相似或并列的关系。
例如:- 而且(用来连接两个或多个陈述意见或事实的句子):我喜欢旅行,而且我认为旅行可以增长见识。
- 或者(用来表示选择):你可以选择去看电影或者去逛商场。
- 并且(用来连接两个相似的陈述或动作):她努力工作,并且她总是取得好成绩。
2. 递进连接词:递进连接词用来表示递进或增加的关系,表明后面的内容与前面的内容相比更进一步或更加详细。
例如:- 而且(用来表示进一步补充):他不仅会弹钢琴,而且还会演奏吉他。
- 此外(用来表示另外增加的信息):我喜欢旅行。
此外,我也喜欢尝试不同的美食。
- 而且还(用来进一步增加信息):这座城市不仅风景优美,而且还有许多历史名胜古迹。
3. 转折连接词:转折连接词用来表示转折或对比的关系,表明后面的内容与前面的内容相比有所不同。
例如:- 但是(用来表示转折):我很喜欢运动,但是我不太擅长游泳。
- 然而(用来表示转折或对比):他刚开始很有信心,然而最后还是失败了。
- 尽管(用来表示让步):尽管下雨了,但是我们还是决定去露营。
4. 因果连接词:因果连接词用来表示因果关系,表明前面的内容是后面内容的原因或结果。
例如:- 因为(用来表示原因):我昨天没有上课,因为我生病了。
- 所以(用来表示结果):她努力学习,所以她考试取得了好成绩。
- 由于(用来表示原因):由于天气不好,比赛被取消了。
5. 条件连接词:条件连接词用来表示条件关系,表明后面的内容是前面内容的条件。
例如:- 如果(用来表示假设或条件):如果你明天有时间,我们可以一起去看电影。
二元逻辑连接词在中国,作为一个文学传统丰富的国家,语言是我们最重要的工具之一。
在日常生活中,我们经常使用逻辑连接词,并将它们应用到我们的语言中。
这些连接词可以用于连接单个单词,短语或者句子,从而为我们提供更加清晰和连贯的语言表达。
以下是一些常用的中文二元逻辑连接词。
1. 不仅...而且(bù jǐn...ér qiě) - 表示两个事物并存,用于加强语句中的语气。
例如:这位艺术家不仅在音乐上很出色,而且在绘画方面也有很高的才华。
2. 无论...还是(wú lùn...hái shì) - 表示两个或多个选项不重要,可以任选其一。
例如:无论你选择去看电影还是做运动,我都会支持你。
3. 虽然...但是(suī rán...dàn shì) - 表示一种让步关系,用于表达对一个现象或事实的承认,并对其进行转折或反驳。
例如:虽然这件事让我很难过,但是我不会放弃我的梦想。
4. 既然...就(jì rán...jiù) - 表示某种前提条件,意为“如果…,那么就…”。
例如:既然你已经买了机票,那么就来探望我吧。
5. 或者...或者(huò zhě...huò zhě) - 表示两个或多个选项之间的“或”的关系。
例如:你可以选择在家里看电影,或者到电影院观看大银幕。
以上是一些常用的中文二元逻辑连接词,它们能够帮助我们在语言表达中更好地传递信息,使得文章、讲话等等更加高效和有条理。
学习和掌握这些连接词,对提升我们的写作水平和语言表达能力非常有帮助。
简单的逻辑联结词、全称量词与存在量词自主梳理1.逻辑联结词命题中的或,且,非叫做逻辑联结词.“p且q”记作p∧q,“p或q”记作p∨q,“非p”记作┑p.2.命题p∧q,p∨q,綈p的真假判断3.(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题,可用符号简记为∀x∈M,p(x),它的否定∃x∈M,綈p(x).(2)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在性命题,可用符号简记为∃x∈M,p(x),它的否定∀x∈M,綈p(x).自我检测1.命题“∃x∈R,x2-2x+1<0”的否定是__________________2.若命题p:x∈A∩B,则非p是________________3.命题“若x>0,则x2>0”的否命题是________命题.(填“真”或“假”)4.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x的取值范围是________.5.下列4个命题:①∃x ∈(0,+∞),(12)x <(13)x ;②∃x ∈(0,1),log 12x >log 13x ;③∀x ∈(0,+∞),(12)x >log 12x ;④∀x ∈(0,13),(12)x <log 13x .其中的真命题是________(填序号).探究点一 判断含有逻辑联结词的命题的真假例1 写出由下列各组命题构成的“p ∨q ”、“p ∧q ”、“非p ”形式的复合命题,并判断真假.(1)p :1是素数;q :1是方程x 2+2x -3=0的根;(2)p :平行四边形的对角线相等;q :平行四边形的对角线互相垂直;(3)p :方程x 2+x -1=0的两实根的符号相同;q :方程x 2+x -1=0的两实根的绝对值相等.变式迁移1 已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题,其中正确的是________(填序号).. 探究点二 全称(存在性)命题及真假判断 例2 判断下列命题的真假. (1)∀x ∈R ,都有x 2-x +1>12.(2)∃α,β使cos(α-β)=cos α-cos β. (3)∀x ,y ∈N ,都有x -y ∈N . (4)∃x 0,y 0∈Z ,使得2x 0+y 0=3.变式迁移2若命题“∃x ∈R ,使得x 2+(1-a )x +1<0”是真命题,则实数a 的取值范围为__________________.探究点三 全称命题与存在性命题的否定 例3 写出下列命题的“否定”,并判断其真假. (1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x ∈R ,x 2+2x +2≤0; (4)s :至少有一个实数x ,使x 3+1=0.变式迁移3 已知命题p :∃x ∈R ,x 2+2ax +a ≤0.若命题p 是假命题,则实数a 的取例 已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,求实数a 的取值范围.一、填空题(每小题6分,共48分)1.已知命题p:∃x∈R,x2-3x+3≤0,则綈p为________.2.已知命题p:∀x∈R,ax2+2x+3>0,如果命题綈p是真命题,那么实数a的取值范围是________.3.已知条件p:|x+1|>2,条件q:x>a,且綈p是綈q的充分不必要条件,则a的取值范围是________.4.已知命题“∀a,b∈R,如果ab>0,则a>0”,则它的否命题是________.5.下列有关命题的说法中正确的有________(填序号).①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=-1”是“x2-5x-6=0”的必要不充分条件;③命题“∃x∈R,使得x2+x+1<0”的否定是“∀x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.6.命题“对∀x∈R,|x-2|+|x-4|>3”的否定是______________.7.已知命题p:“∀x∈R,∃m∈R使4x-2x+1+m=0”,若命题綈p是假命题,则实数m的取值范围为__________.8.命题“存在x∈R,使得x2+2x+5=0”的否定是______________________.二、解答题9.(14分)分别指出由下列命题构成的“p∨q”“p∧q”“綈p”形式的命题的真假.(1)p:4∈{2,3},q:2∈{2,3};(2)p:1是奇数,q:1是质数;(3)p:0∈∅,q:{x|x2-3x-5<0}⊆R;(4)p:5≤5,q:27不是质数.10.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3-2a)x 是增函数,若p或q为真,p且q为假,求实数a的取值范围.11.已知p:x2+mx+1=0有两个不等的负根,q:4x2+4(m-2)x+1=0无实根.若p 或q为真,p且q为假,求m的取值范围.。
1.3简单的逻辑联结词一、教学目标 【核心素养】培养学生的数学抽象,构建基本的数学逻辑体系. 【学习目标】(1)通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义; (2)能正确地利用“或”、“且”、“非”表述相关的数学内容; (3)知道命题的否定与否命题的区别. 【学习重点】逻辑联结词“或”、“且”、“非”的含义; 【学习难点】逻辑联结词“或”的含义; 二、教学设计 (一)课前设计 1.预习任务任务1:阅读教材P 14—P 17,,思考:“或”“且”“非”的含义 任务2:“p ∧q ”、“p ∨q ”、“非p ”形式命题的真假如何判断 2.预习自测1.已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( ) A .()p q ⌝∨ B .p q ∨ C .p q ∧ D .()()p q ⌝∧⌝ 答案:B解析:由已知得命题p 是真命题,命题q ⌝是真命题,所以命题q 是假命题,根据复合命题的真假判断p q ∨是真命题,其他选项都是假命题,故选B . 考点:复合命题真假的判断.2.已知命题:p 若π6α=,则1sin 2α=;命题:q 若1sin 2α=,则π6α=.下面四个结论中正确的是( ) A .p q ∧是真命题 B .p q ∨是真命题 C .p ⌝是真命题 D .q ⌝是假命题 答案:B解析:由题意可知,命题p 为真命题,命题q 为假命题,所以p q ∨是真命题,故选B .考点:复合命题的真假判断. 3.下列说法错误的是( )A .若命题“p q ∧”为真命题,则“p q ∨”为真命题B .若命题“p q ⌝∨”为假命题,则“p q ∧⌝”为真命题C .命题“若a b >,则22ac bc >”的否命题为真命题D .命题“若0m >,则方程20x x m +-=有实根”的逆命题为真命题 答案:D解析:对于A :若“p q ∧”为真命题,则p ,q 都是真命题,所以“p q ∨”为真命题,故A 正确; 对于B :若“p q ⌝∨”为假命题,则,p q ⌝都是假命题,∴p 是真命题,q ⌝是真命题,所以“p q ∧⌝”为真命题,故B 正确;对于C :“若a b >,则22ac bc >”的否命题为“若a b ≤,则22ac bc ≤”,∵c 2≥0,∴由a b ≤可得到22ac bc ≤,故C 正确;对于D :命题“若0m >,则方程20x x m +-=有实根”的逆命题为“若方程20x x m +-=有实根,则0m >”,方程20x x m +-=有实数根只需1140,,4m m ∆=+≥≥-所以不一定得到0m >,所以D 错.故选D .(二)课堂设计1.知识回顾(1)学生自己写两个命题p,q,并判断其真假.(2)再将两个命题用“或、且、非”联结,能否判断真假?2.问题探究问题探究一:逻辑连接词观察与思考:想一想:从串联电路A B C之间的一些关系,我们能得到什么样的启示?阅读与举例:请大家阅读教材中P14所举例的例子,并试着举一些类似的命题.探究:考察下列命题:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3不是有理数;想一想:这些命题的构成各有什么特点?1.逻辑连结词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2.三种命题构成形式的表示常用小写拉丁字母p、q、r、s……表示命题1.用联结词“且(and)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.2.用联结词“或(or)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.3.对一个命题p全盘否定(not),就得到一个新命题,记作__________,读作_________或__________.问题探究二:三种命题真假判断1.“p且q”形式的复合命题真假:2.“p或q”形式的复合命题真假:3.“非p”形式的复合命题真假:3.课堂总结【知识梳理】1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3.“p∧q”“p∨q”“非p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“¬p”命题的真假.【重难点突破】含有逻辑联结词的命题的真假判断规律(1)p∨q:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q 为假.(一真必真)(2)p∧q:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q 为假.(一假必假)(3)非p:当p为真时,非p为假;当p为假时,非p为真(真假相反)4.随堂检测1.“xy≠0”是指()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0解析:【知识点:逻辑联结词】答案:A2.下列命题:①矩形的对角线相等且互相平分;②10的倍数一定是5的倍数;③方程x2=1的解为x=±1;④3∉{1,2}.其中使用逻辑联结词的命题有()A.1个B.2个C.3个D.4个答案:C解析:【知识点:逻辑联结词】①中有“且”;②中没有;③中有“或”;④中有“非”.故选C.3.若条件p:x∈A∩B,则¬p是()A.x∈A且x∉BB.x∉A或x∉BC.x∉A且x∉BD.x∈A∪B答案:B解析:【知识点:逻辑联结词,四种命题】由p:x∈A∩B,得p:x∈A且x∈B,∴¬p是x∉A或x∉B.4.设命题p:函数y=sin2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真答案:C解析:【知识点:逻辑联结词,命题真假的判断】因周期T=2π2=π,故p为假命题.因函数y=cos x的对称轴为x=kπ(k∈Z),故q也为假命题,所以p∧q为假.5.已知P:2+2=5,Q:3>2,则下列判断正确的是()A.“P∨Q”为假,“¬Q”为假B.“P∨Q”为真,“¬Q”为假C.“P∧Q”为假,“¬P”为假D.“P∧Q”为真,“P∨Q”为假答案:B解析:【知识点:逻辑联结词,命题真假的判断】由题意可知,P假、Q真,所以P或Q为真,P且Q为假,非Q为假,非P为真,故选B.(三)课后作业★基础型自主突破1.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.⌝p是真命题D.⌝q是真命题答案:D解析:【知识点:逻辑联结词,命题真假的判断】2.若命题“p∧(¬q)”为真命题,则()A.p∨q为假命题B.q为假命题C.q为真命题D.(¬p)∧(¬q)为真命题答案:B解析:【知识点:逻辑联结词,命题真假的判断】p∧(¬q)为真命题,故¬q为真命题,所以q为假命题.3.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假q真答案:B解析:【知识点:逻辑联结词,命题真假的判断】“p或q”的否定是:“¬p且¬q”是真命题,则¬p、¬q都是真命题,故p、q都是假命题.4.命题p:2不是质数,命题q:2是无理数,在命题“p∧q”、“p∨q”、“¬p”、“¬q”中,假命题是__________________,真命题是__________________.答案:“p∧q”“¬q”;“p∨q”“¬p”解析:【知识点:逻辑联结词,命题真假的判断】因为命题p假,命题q真,所以命题“p∧q”假,命题“p∨q”真,“¬p”真,“¬q”假.5.已知p:x2-x≥6,q:x∈Z.若“p∧q”,“¬q”都是假命题,则x的值组成的集合为_____________.答案:{-1,0,1,2}解析:【知识点:逻辑联结词,命题真假的判断】 因为“p ∧q ”为假,“¬q ”为假,所以q 为真,p 为假.故⎩⎨⎧ x 2-x <6x ∈Z ,即⎩⎨⎧-2<x <3x ∈Z,因此x 的值可以是-1,0,1,2. 6.如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“p 或q ”是假命题. 其中正确的结论是( ) A .①③ B .②④ C .②③ D .①④解析:【知识点:逻辑联结词,命题真假的判断】 答案:A“非p 或非q ”是假命题⇒“非p ”与“非q ”均为假命题⇒p 与q 均为真命题. 7.分别指出下列各组命题构成的“p ∧q ”、“p ∨q ”形式的命题的真假. (1)p :6<6,q :6=6;(2)p :梯形的对角线相等,q :梯形的对角线互相平分;(3)p :函数y =x 2+x +2的图象与x 轴没有公共点,q :不等式x 2+x +2<0无解; (4)p :函数y =cos x 是周期函数,q :函数y =cos x 是奇函数. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)∵p 为假命题,q 为真命题,∴p ∧q 为假命题,p ∨q 为真命题. (2)∵p 为假命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为假命题. (3)∵p 为真命题,q 为真命题,∴p ∧q 为真命题,p ∨q 为真命题. (4)∵p 为真命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为真命题. 8.写出下列命题的否定: (1)若a >b >0,则1a <1b ;(2)a 、b ∈N ,若ab 可被5整除,则a 、b 中至少有一个能被5整除;(3)若x2-x-2=0,则x≠-1且x≠2.答案:见解析解析:【知识点:命题的否定】(1)若a>b>0,若1a≥1b.(2)正方形的四条边不全相等.(2)a、b∈N,若ab可以被5整除,则a、b都不能被5整除;(3)若x2-x-2=0,则x=-1或x=2.★★能力型师生共研9.已知命题p:偶函数的图象关于y轴对称,命题q:正数的对数都是正数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)答案:D解析:【知识点:逻辑联结词,命题真假的判断】∵p为真命题,q为假命题,∴p∧(¬q)为真命题,故选D.10.已知命题p:x2-4x+3<0与q:x2-6x+8<0;若“p且q”是不等式2x2-9x +a<0成立的充分条件,则实数a的取值范围是()A.(9,+∞)B.{0}C.(-∞,9]D.(0,9]解析:【知识点:逻辑联结词,充分必要条件】答案:C11.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.q为真C .p ∧q 为假D .p ∨q 为真 答案:C解析:【知识点:逻辑联结词,命题真假的判断】 命题p ,q 均为假命题,故p ∧q 为假命题.12.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .(⌝p )∨q B .p ∧q C .(⌝p )∧(⌝q ) D .(⌝p )∨(⌝q ) 答案:D解析:【知识点:逻辑联结词,命题真假的判断】命题p 为真命题,命题q 为假命题,所以¬p 为假命题,¬q 为真命题,所以(¬p )∨(¬q )为真命题.13.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .⌝p 为假命题D .⌝q 为假命题 答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎨⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.14.已知命题p :函数f (x )=|lg x |为偶函数,q :函数g (x )=lg|x |为奇函数,由它们构成的“p ∨q ”“p ∧q ”和“¬p ”形式的新命题中,真命题是________________. 解析:【知识点:逻辑联结词,命题的否定,命题真假的判断】答案:¬p函数f (x )=|lg x |为非奇非偶函数,g (x )=lg|x |为偶函数,故命题p 和q 均为假命题,从而只有“¬p ”为真命题.15.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2) ⌝p 是⌝q 的充分不必要条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎨⎧ x 2-x -6≤0,x 2+2x -8>0,解得⎩⎨⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3. 所以q 为真时,2<x ≤3. 若p ∧q 为真,则⎩⎨⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},因为¬p 是¬q 的充分不必要条件,所以A ⊆B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].16.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断,一元二次方程解的讨论】 由2x 2+ax -a 2=0,得(2x -a )(x +a )=0,∴x =a 2或x =-a ,∴当命题p 为真命题时, ⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p∨q”为真命题时,|a|≤2.∵命题“p∨q”为假命题,a>2,或a<-2.∴a>2或a<-2.即a的取值范围为{a|}★★★探究型多维突破17.设a、b、c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)解析:【知识点:逻辑联结词,命题真假的判断】答案:A取a=c=(1,0),b=(0,1)知,a·b=0,b·c=0,但a·c≠0,∴命题p为假命题;∵a∥b,b∥c,∴存在λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p∨q为真命题.18.在一次篮球投篮比赛中,甲、乙两球员各投篮一次.设命题p:“甲球员投篮命中”;q:“乙球员投篮命中”,则命题“至少有一名球员投中”可表示为()A.p∨qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨(¬q)解析:【知识点:逻辑联结词,命题的否定】答案:A至少有一名球员投中为p∨q.19.已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式x2-ax +1>0对x∈R恒成立.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】∵函数y=a x在R上单调递增,∴a>1,∴p :a >1.∵不等式x 2-ax +1>0时x ∈R 恒成立,∴Δ=a 2-4<0,∴-2<a <2. ∴q :0<a <2.又∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧ a >1a ≥2,∴a ≥2.当p 假q 真时,⎩⎪⎨⎪⎧ 0<a ≤10<a <2,∴0<a ≤1,综上可知,实数a 的取值范围是(0,1]∪[2,+∞)20.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】若方程x 2+mx +1=0有两个不等的负根x 1,x 2,则⎩⎨⎧ Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎨⎧Δ=m 2-4>0,m >0. 解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3. ∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴⎩⎨⎧ m >2,m ≤1或m ≥3或⎩⎨⎧m ≤2,1<m <3.解得m ≥3或1<m ≤2. ∴m 的取值范围是(1,2]∪[3,+∞).(四)自助餐1.已知命题p :1∈{x |(x +2)(x -3)<0},命题q :∅={0},则下列判断正确的是( )A .p 假q 假B .“p 或q ”为真C .“p 且q ”为真D .p 假q 真答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵{x|(x+2)(x-3)<0}={x|-2<x<3},∴1∈{x|(x+2)(x-3)<0},∴p真.∵∅≠{0},∴q假.故“p或q”为真,“p且q”为假,故选B.2.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对.答案:B解析:【知识点:逻辑联结词,命题真假的判断】命题p为真命题,命题q为假命题,故“p∨q”为真命题.3.已知命题p、q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:【知识点:逻辑联结词,命题真假的判断,充分必要条件】p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真⇒/p∧q为真.4.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是()A.a>0B.a≥0C.a>1D.a≥1解析:【知识点:逻辑联结词,命题真假的判断】答案:B当p真时,Δ=4-4a≥0,解得a≤1.当q真时a2-a>0,解得a<0或a>1.∵p ∧q 为假命题,p ∨q 为真命题,∴p,q 中一真一假.(1)当p 真q 假时,得0≤a ≤1.(2)当p 假q 真时得a>1,由(1)(2)得所求a 的取值范围是a ≥0.故选B .5.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真答案:C【知识点:逻辑联结词,命题真假判断】y =log a (ax +2a )=log a a (x +2)=1+log a (x +2),当x =-1时,log a (x +2)=0, ∴函数y =log a (ax +2a )(a >0且a ≠1)的图象过定点(-1,1),故p 真;如果函数y =f (x )的图象关于点(3,0)对称,则函数y =f (x -3)的图象关于点(6,0)对称,故q 假,∴选C .6.p :函数f (x )=lg x +1有零点;q :存在α、β,使sin(α-β)=sin α-sin β,在p ∨q ,p ∧q ,¬p ,¬q 中真命题有( )A .1个B .2个C .3个D .4个答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵f ⎝ ⎛⎭⎪⎫110=0,∴p 真;∵α=β时,sin(α-β)=0=sin α-sin β,∴q 真,故p ∨q 为真,p ∧q 为真,¬p 为假,¬q 为假.7.分别用“p ∧q ”、“p ∨q ”填空.(1)命题“0是自然数且是偶数”是__________________形式;(2)命题“5小于或等于7”是__________________形式;(3)命题“正数或0的平方根是实数”是__________________形式.答案: p ∧q ;p ∨q ;p ∨q解析:【知识点:逻辑联结词】8.设命题p :a 2<a ,命题q :对任何x ∈R ,都有x 2+4ax +1>0,命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围是__________________.答案:-12<a ≤0或12≤a <1解析:【知识点:逻辑联结词】由a 2<a 得0<a <1,∴p :0<a <1;由x 2+4ax +1>0恒成立知Δ=16a 2-4<0,∴-12<a <12,∴q :-12<a <12,∵p ∧q 为假,p ∨q 为真,∴p 与q 一真一假,p 假q 真时,-12<a ≤0,p 真q 假时,12≤a <1,∴实数a 的取值范围是-12<a ≤0或12≤a <1.9.已知命题p :不等式x 2+x +1≤0的解集为R ,命题q :不等式x -2x -1≤0的解集为{x |1<x ≤2},则命题“p ∨q ”“p ∧q ”“¬p ”“¬q ”中为真命题是__________________. 解析:【知识点:逻辑联结词,命题真假的判断】答案:p ∨q ,¬p∴∀x ∈R ,x 2+x +1>0,∴命题p 为假,¬p 为真;∵x -2x -1≤0⇔⎩⎨⎧(x -2)(x -1)≤0x -1≠0⇔1<x ≤2.∴命题q 为真,p ∨q 为真,p ∧q 为假,¬q 为假.10.已知命题p :1x -1<1,命题q :x 2+(a -1)x -a >0,若¬p 是¬q 的充分不必要条件,则实数a 的取值范围是__________________.答案:(-∞,-2)解析:【知识点:逻辑联结词,充分必要条件】命题p :1x -1<1,∴x >2或x <1. 命题q :x 2+(a -1)x -a >0,∴(x +a )(x -1)>0.∵¬p 是¬q 的充分不必要条件,∴q 是p 的充分不必要条件.∴-a >2,∴a <-2.11.已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;命题q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0. 所以-2<a <2,所以命题p :-2<a <2;又f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. ∵p ∨q 为真命题,p ∧q 为假命题,∴p 和q 一真一假.(1)若p 为真命题,q 为假命题,则⎩⎨⎧ -2<a <2a ≥2,此不等式组无解. (2)若p 为假命题,q 为真命题,则⎩⎨⎧a ≤-2或a ≥2a <2,解得a ≤-2. 综上,实数a 的取值范围是(-∞,-2].12.已知p :|3x -4|>2;q :1x 2-x -2>0;r :(x -a )(x -a -1)<0. (1)¬p 是¬q 的什么条件;(2)若¬r 是¬p 的必要不充分条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,充分必要条件】(1)p :|3x -4|>2⇒x >2或x <23,q :1x 2-x -2>0⇒x >2或x <-1, ¬p :23≤x ≤2,¬q :-1≤x ≤2,∴¬p ⇒¬q ,¬q ⇒/ ¬p ,∴¬p 是¬q 的充分不必要条件.(2)r :a <x <a +1,¬r :x ≥a +1或x ≤a .∵¬r 是¬p 的必要不充分条件,∴a ≥2或a +1≤23,即a ≥2或a ≤-13.数学视野建立逻辑的语言,使逻辑学象数学那样也有一套完美的、通用的符号,其思想也可以追溯到莱布尼茨.他认为,我们可以建立一种普遍的、没有歧义的语言,通过这种语言,就可以把推理转变为演算.一旦发生争论,我们只要坐下来,拿出纸和笔算一算就行了.这里,他实际上提出了数理逻辑的两个基本思想:构造形式语言和建立演算.但是,对于他所设想的语言,他要求:“它能这样地形成和排列符号,使得它能表达一些思想,或者说使得它们之间具有和这些思想之间的关系相同的关系.一个表达式是一些符号的组合,这些符号能表象被表示的事物,表达式的规律如下:如果被表示的那个事物的观念是由一些事物的一些观念组成的,那么那个事物的表达式也是由这些事物的符号组成的.”(张家龙,第46-47 页)莱布尼茨的这些论述,实际上就是要将逻辑形式化.不过莱布尼茨没有实现他的两个设想.1879年,逻辑学家弗雷格发表了名著的《概念文字——一种模仿算术语言构造的纯思维的形式语言》.在这本书中,弗雷格借鉴了两种语言,一种是传统逻辑使用的语言,另一种是算术的语言.从而成功地构造了一种逻辑的形式语言,即:一种表意的符号语言,并且用这种语言建立了一个一阶谓词演算系统,实现了莱布尼茨提出建立一种普遍语言的思想.其实,在莱布尼茨之前,从亚里士多德开始,对逻辑学的研究所使用的语言就是一种半形式化的语言.这种半形式化的语言就是用字母表达一般概念.。
数学逻辑连接词数学逻辑连接词:因为、所以、当且仅当、若、或者、不然、只要、除非、无论、即使因为数学逻辑连接词的存在,我们能够清晰地表达数学推理中的关系、条件和结论。
这些逻辑连接词不仅能帮助我们建立论证的逻辑链条,还能使我们的数学论述更加准确和严谨。
因为是一个常用的数学逻辑连接词。
当我们在数学问题中使用因为时,通常是为了引述已知条件或前提。
例如,在证明一个几何问题时,我们可以说:“因为三角形ABC是等边三角形,所以它的三条边相等。
”所以是一个表示推理结果的数学逻辑连接词。
当我们在数学问题中使用所以时,通常是为了得出结论或推理的结果。
例如,在证明一个数学定理时,我们可以说:“已知a=b且b=c,所以a=c。
”当且仅当是一个表示充分必要条件的数学逻辑连接词。
当我们在数学问题中使用当且仅当时,通常是为了表达两个条件是等价的。
例如,在判断一个数是偶数的充分必要条件时,我们可以说:“一个整数是偶数当且仅当它能被2整除。
”若是一个用于表示条件的数学逻辑连接词。
当我们在数学问题中使用若时,通常是为了表达一个条件或假设。
例如,在证明一个数学命题时,我们可以说:“若n是一个质数,则n不能被任何小于n的正整数整除。
”或者是一个表示选择关系的数学逻辑连接词。
当我们在数学问题中使用或者时,通常是为了表达两个或多个条件中的至少一个成立。
例如,在判断一个方程有解时,我们可以说:“方程x^2-3x+2=0有解,或者方程x^2-5x+6=0有解。
”不然是一个表示否定关系的数学逻辑连接词。
当我们在数学问题中使用不然时,通常是为了表达一个条件的否定。
例如,在证明一个数学猜想时,我们可以说:“如果存在一个正整数n,使得n^2+1是一个完全平方数,那么这个猜想是错误的。
”只要是一个表示充分条件的数学逻辑连接词。
当我们在数学问题中使用只要时,通常是为了表达一个条件的充分性。
例如,在判断一个数是质数的充分条件时,我们可以说:“只要一个整数n不能被任何小于n的正整数整除,那么n是一个质数。