泛函分析第七章答案
- 格式:ppt
- 大小:736.00 KB
- 文档页数:66
第七章习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。
(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。
第七章 习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U问),(0εx U 的闭包是否等于),(0εx S ?解 不一定。
例如离散空间(X ,d )。
)1,(0x U ={0x },而)1,(0x S =X 。
因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。
2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。
证明 (1)若),(g f d =0,则)()(1)()(max)()()()(t g t ft g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑=d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。
3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =⋂∞=1。
证明 令n n n o n nB x d Bo o .2,1},1),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1),(10<。
设,0),(110>-=x x d n δ则易验证n o x U ⊂),(0δ,这就证明了n o 是 开集 显然B o n n ⊃⋂∞=1。
若n n o x ∞=⋂∈1则对每一个n ,有B x n ∈使n x x d 1),(1<,因此)(∞−→−−→−n x x n 。
因B 是闭集,必有B x ∈,所以B o n n =⋂∞=1。
4. 设d (x ,y )为空间X 上的距离,证明),(1),(),(___y x d y x d y x d +=是X 上的距离。
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
第七章 度量空间和赋范线性空间复习题:1。
设(,)X d 为一度量空间,令0000(,){|,(,)},(,){|,(,)},U x x x X d x x S x x x X d x x εεεε=∈<=∈≤问0(,)U x ε的闭包是否等于0(,)S x ε?2.设[,]C a b ∞是区间[,]a b 上无限次可微函数的全体,定义()()()()01|()()|(,)max.21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑ 证明[,]C a b ∞按(,)d f g 成度量空间.3。
设B 是度量空间X 中闭集,证明必有一列开集12,,,,n O O O 包含B ,而且1.n n O B ∞==4.设(,)d x y 为空间X 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离.5。
证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f的各阶导数.6.设[,]B a b ⊂,证明度量空间[,]C a b 中的集 {|t , (t)=0}fB f ∈当时为[,]C a b 中的闭集,而集 {||()|}(0)A ft B f t a a =∈<>当时,为开集的充要条件是B 为闭集。
7。
设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。
8.设[,]B a b 表示[,]a b 上实有界函数全体,对[,]B a b 中任意两元素,[,]f g B a b ∈,规定距离为(,)sup |()()|.a t bd f g f t g t ≤≤=-证明[,]B a b 不是可分区间.9.设X 是可分距离空间,f 为X 的一个开覆盖,即f 是一族开集,使得对每个x X∈,有f 中开集O ,使x O ∈,证明必可从f 中选出可数个集组成X 的一个覆盖. 10。
1.}{ .1的极限是唯一的中的收敛列证明距离空间n x X *.** 0*)**,( )( 0*)*,(*),(*)**,(0)( *** x x x x n x x x x x x n x x x x n n n n ==∞→→+≤≤∞→→→,即所以,则,设ρρρρ第七章距离空间、赋范线性空间2.* }{* }{ .2x x X x x X n n 的任一子列收敛于收敛于中的序列试证距离空间⇔∈.* 0*),( 0*),(}{}{)( *x x x x x x x x n x x kkk n n n n n n →→→∞→→,所以,故的任一子列,依条件,是,设ρρ.*}{.*}{*),( }{}{*),(0*}{*}{000x x x x x x x x x x N n N x x x x n n n n n n n n k k k收敛于此与假设矛盾,故不收敛于显然使的一个子列,于是可选取,使,都存在,使对任意的自然数则必存在,不收敛于,如果的任一子列收敛于反之,设ερερε≥≥>>3),(),(|),(),(| )ii (),(|),(),(| )i ( .3w z y x w y z x y x z y z x X w z y x ρρρρρρρ+≤−≤−:中的任意四个点,证明是距离空间、、、设),(|),(),(|)2()1()2( ),(),(),( ),(),(),()1( ),(),(),( ),(),(),( )i (y x z y z x y x z x z y z x x y z y y x z y z x z y y x z x ρρρρρρρρρρρρρρρ≤−≤−+≤≤−+≤即得:、结合得再由得由),(),(|),(),(|)4()3()4( ),(),(),(),( ),(),(),(),()3( ),(),(),(),( ),(),(),(),(),(),( )ii (w z y x w y z x w z y x z x w y w z z x x y w y w z y x w y z x z w w y y x z y y x z x ρρρρρρρρρρρρρρρρρρρρρρ+≤−+≤−++≤+≤−++≤+≤即得:、结合得再由得由4距离吗?是定义在实数集合上的2)(),( .4y x y x −=ρ.,24120),(),(),(),(.)(),(2上式就不成立时,,,比如取满足、、不能对所有的因为的距离不是定义在实数集合上>===+≤⋅⋅−=z y x y z z x y x z y x y x y x ρρρρρ.),( }{}{ .5收敛中的基本列,证明是距离空间、设n n n n n y x X y x ρα=.Cauchy }{),(),( |),(),(|||),( 0),( ),( 0),(数列,故收敛是即知再由依条件:n m n m n m m n n m n m n m n y y x x y x y x m n y y m n x x αρρρρααρρ+≤−=−∞→→∞→→5的闭包是闭集。
第七章 习题解答1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U问),(0εx U 的闭包是否等于),(0εx S ?解 不一定。
例如离散空间(X ,d )。
)1,(0x U ={0x },而)1,(0x S =X 。
因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。
2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义)()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑证明],[b a C ∞按),(g f d 成度量空间。
证明 (1)若),(g f d =0,则)()(1)()(max)()()()(t g t ft g t f r r r r bt a -+-≤≤=0,即f=g(2))()(1)()(max 21),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞=∑ )()(1)()()()(1)()(max 21)()()()()()()()(0t g t h t g t h t g t f t g t f r r r r r r r r b t a r r -+-+-+-≤≤≤∞=∑ )()(1)()(max 21)()(1)()(max 21)()()()(0)()()()(0t g t h t g t h t g t f t g t f r r r r b t a r r r r r r b t a r r -+-+-+-≤≤≤∞=≤≤∞=∑∑=d (f ,g )+d (g ,h )因此],[b a C ∞按),(g f d 成度量空间。
3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =⋂∞=1。
习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。
(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。
泛函分析长安大学智慧树知到答案2024年第一章测试1.距离函数满足的三个基本条件是正定性,对称性和三角不等式。
()A:对 B:错答案:A2.距离空间的完备性是指基本列都不是收敛列。
()A:错 B:对答案:A3.压缩映射原理是设X是一个完备的度量空间,T是映X到自身的压缩映射,则T在X上存在唯一的不动点。
()A:对 B:错答案:A4.距离空间的可分是指不存在可数稠密子集。
()A:对 B:错答案:B5.紧集上的连续函数具有什么性质。
()A:有界 B:达到上、下确界 C:将开集映成开集D:一致连续答案:ABD第二章测试1.设某线性空间中有一组线性无关的向量,则从中任意抽取一部分向量够的向量组一定是线性无关的。
()A:对 B:错答案:A2.有穷维线性空间上定义的任何两个范数是不等价的。
()A:错 B:对答案:A3.当空间X是严格凸的赋范线性空间,则任意指定元素在给定有穷维子空间上的最佳逼近元存在唯一。
()A:错 B:对答案:B4.若赋范线性空间任意有界集是列紧的,则该空间是有穷维的。
()A:对 B:错答案:A5.Schauder不动点定理:设C是赋范线性空间X中的一个闭凸子集,T是映C到自身的连续映射且T的值域列紧,则T在C上必有一个不动点。
()A:错 B:对答案:B第三章测试1.为了在赋范线性空间上引入内积,当且仅当范数满足四边形等式。
()A:对 B:错答案:B2.内积空间X上的两个元素x与y称为是正交的是指x与y的内积为1。
()A:错 B:对答案:A3.Zorn引理:设X是一个半序集,如果它的每一个全序子集都有一个上界,那么X有一个极大元。
()A:对 B:错答案:A4.为了Hilbert空间X是可分的,当且仅当存在至多可数的正交规范基。
()A:错 B:对答案:B5.如果C是Hilbert空间X中的闭凸子集,那么在C上存在唯一元素取到最大模。
()A:错 B:对答案:A第四章测试1.若线性算子在其定义域的某一点连续则它在定义域上处处连续。
泛函分析答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--泛函分析答案:1、 所有元素均为0的n ×n 矩阵2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。
子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。
3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。
4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。
5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件:(1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x)(3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }Td 2(x,y)=(21||ni i i x y =-∑)1/2d 1(x,y)=1||ni i i x y =-∑d p (x,y) = (1||np i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i nx y ≤≤-6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n?∞),这时记作0lim nn xx -->∞=,或简单地记作x n ?x 07、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数(3)||x+y||≤||x||+||y||,for every x,y ∈E8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。
P46:第一章习题:1.验证(),()d m 满足距离定义。
解:设{}i x ξ=,{}i y η=属于X ,α是数,()1,sup .j j j d x y ξη≥=-(1)对j ∀,有0j j ξη-≥,所以1sup j j j ξη≥-,(),0d x y ≥,且1sup 00j j j j j j j ξηξηξη≥-=⇔-=⇔=,即(),0d x y =当且仅当.x y =(2) ()()11,sup sup ,j j j j j j d x y d y x ξηηξ≥≥=-=-=;(3)设{}i z ζ=()()1111,sup sup ()()sup sup ,(,)j j j j j j j j j j j j j j d x z d x y d y z ξζηξξζηξξζ≥≥≥≥=-≤-+-≤-+-=+综上(1),(2),(3),(),d 满足距离定义。
3.试证明:在空间()s 中的收敛等价于坐标收敛。
证:设{}()(),1,2,n n jx s n ξ=∈=,{}()(0)0jx s ξ=∈,()⇒若0n x x →,则必有()(0)lim ,1,2,n j j n j ξξ→∞==,否则,j N +∃∈,00ε>,与正整数列的子序列{}1k k n ∞=,使()(0)0,1,2,k n j j k ξξε-≥=,因为()1tf t t=+是单调递增, 所以()()(0)0()(0)11,,1,2,2211k k k n j j n j j n j j d x x k ξξεεξξ-≥⋅≥⋅=++-,这与()0,0k n d x x →矛盾, 故()s 中的收敛可推出坐标收敛。
()⇐若()(0)lim ,1,2,n j j n j ξξ→∞==,则对j ∀,0ε∀>,0N N +∃∈,0n N ∀>,()(0)2n j jεξξ-<,()()(0)0()(0)1111,,1,2,2211n j j n j j n j j j j d x x k ξξεεξξ∞∞==-=⋅<⋅=++-∑∑,由ε的任意性得()0,0.n d x x → 故命题得证。