信号与系统 冲激函数
- 格式:ppt
- 大小:1.83 MB
- 文档页数:21
信号与系统傅里叶变换对照表
傅里叶变换是信号与系统领域中非常重要的数学工具,它将一个时域信号转换为频域信号,可以帮助我们理解信号的频谱特性。
下面是一份傅里叶变换的对照表,列出了一些常见的信号和它们的傅里叶变换形式:
1. 单位冲激函数(单位脉冲):
时域表示,δ(t)。
频域表示,1。
2. 正弦函数:
时域表示,sin(2πft)。
频域表示,jπ[δ(f-f0) δ(f+f0)]
3. 余弦函数:
时域表示,cos(2πft)。
频域表示,1/2[δ(f-f0) + δ(f+f0)] 4. 矩形脉冲信号:
时域表示,rect(t/T)。
频域表示,T sinc(fT)。
5. 三角脉冲信号:
时域表示,tri(t/T)。
频域表示,T^2 sinc^2(fT)。
6. 高斯脉冲信号:
时域表示,exp(-πt^2/σ^2)。
频域表示,exp(-π^2f^2σ^2)。
7. 指数衰减信号:
时域表示,exp(-at)。
频域表示,1/(a+j2πf)。
8. 阶跃函数(单位阶跃函数):
时域表示,u(t)。
频域表示,1/(j2πf) + 1/2。
9. 周期方波信号:
时域表示,square(t/T)。
频域表示,(1/T)[δ(f-nf0) + δ(f+nf0)], n为整数。
以上仅列举了一些常见的信号及其傅里叶变换形式。
傅里叶变换对照表可以帮助我们在信号分析和系统设计中快速理解信号的频域特性,从而更好地理解信号与系统的行为和特性。
第一章 信号与系统1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为(3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
1 双端口网络:若网络有两个端口,则称为双口网络或二端口网络2 阶跃响应:当激励为单位阶跃函数时,系统的零状态响应3 冲激响应:当激励为单位冲激函数时,系统的零状态响应4 周期信号频谱的特点:①离散性》频谱是离散的②谐波性》频谱在频率轴上位置都是基波的整数倍③收敛性》谱线高度随着谐波次数的增高总趋势是减小的5 模拟离散系统的三种基本部件:数乘器·加法器·单位延迟器6 模拟连续系统的三种基本部件:数乘器·加法器·积分器7 线性系统:一个既具有分解特性,又具有零状态线性和零输入线性的系统8 通频带:我们把谐振曲线有最大值9 离散系统稳定的充分必要条件:∑︳h(n)︳〈∞(H(z)的极点在单位圆内时该系统必是稳定的因果系统)10网络函数:在正弦稳态电路中,常用响应向量与激励向量之比定义为网络函数,以H(jw)表示11 策动点函数:激励和响应在网络的同一端口的网络函数12 传输函数(转移函数):激励和响应在不同的端口的网络函数13 因果连续系统的充分必要条件:h(t)=0 t<0 (收敛域在S右半平面的系统均为因果系统)14 连续时间稳定系统的充分必要条件:∫︳h(t)︳dt≤M M:有界正实常数即h(t)满足绝对可积,则系统是稳定的15 傅里叶变换的时域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)*f2(t)↔F1(jw)F2(jw)16 傅里叶变换的频域卷积定理:若f1(t)↔F1(jw),f2(t)↔F2(jw)则f1(t)·f2(t)↔(1/2π)F1(jw)*F2(jw)17 稳定系统:18 系统模拟:对被模拟系统的性能在实验室条件下模拟装置模仿19 因果系统:未加激励不会产生零状态响应的系统20 稳定的连续时间系统:一个连续时间系统,如果激励f(t)是有界的,其零状态响应y f(t)也是有界的,则称该系统是稳定的连续时间系统21 H(s)(h(t))求法:由微分方程、电路、时域模拟框图,考虑零状态条件下取拉氏变换、画运算电路、作S域模拟框图,应用Y f(s)/F(s)糗大H(s)。
信号与系统试题附答案信科0801《信号与系统》复习参考练习题一、单项选择题:17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++=A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数 D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号 D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δD.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC.)(t f D.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t yzi 的形式为tt BeAe2--+,则其2个特征根为( )A。
第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。
2.来自元件伏安关系的约束:与元件的连接方式无关。
例2-1 如图2-1所示电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。
因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。
(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。
时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分方程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
冲激函数的定义冲激函数是一种特殊的函数,它在数学和工程领域有着广泛的应用。
冲激函数在信号处理、控制理论、线性系统、微积分和物理学等领域都起着重要的作用。
本文将对冲激函数进行详细的定义和解释,以便读者更好理解其概念和应用。
1、什么是冲激函数冲激函数是数学中的一种特殊函数,也称为Dirac函数或Dirac delta函数。
冲激函数是在除零点外均为0,在零点附近无限大的函数。
冲激函数通常表示为δ(x),其中x为自变量。
冲激函数在x=0处的值无限大,但在除零点外的其他点的值都为0。
在物理学和工程领域,冲激函数可以通过一个实验来理解它的概念。
如果我们在时间轴上以极短的时间间隔内向电路中输入一个短暂的电压脉冲,那么电路将会产生一个极短的电流脉冲,这个电流脉冲就可以用一个冲激函数来描述。
2、冲激函数的重要性冲激函数在数学中的重要性很大。
它可以用在微积分、偏微分方程、傅里叶分析、抽象代数和泛函分析等领域。
在控制系统和信号处理领域,冲激函数也是非常重要的。
它可以用来描述系统的 impulse response(冲击响应)函数,冲激响应是控制系统和信号处理中非常常见的一种概念。
冲激函数还可以用来分析和设计滤波器和信号处理系统。
在物理学中,冲激函数可以用来描述质点、电荷或电流的瞬间变化情况。
冲激函数也可以用来描述物理学中的波函数,比如在量子力学中,波函数可以在测量时间点上采用Delta函数的形式。
冲激函数有一些非常重要的性质。
下面我们将对其中的一些最主要的进行介绍。
3.1 奇异性冲激函数在所有除零点外的点上取值为0,但在零点处取值为无穷大。
冲激函数在数学上是一个奇异函数,可能常常忽略它在除零点外的任何部分。
3.2 瞬时能量3.3 单位冲激函数3.4 积分性质冲激函数的积分性质十分重要。
因为冲激函数在所有除零点外的点上都为0,所以对于任意函数f(x),有:∫f(x)δ(x)dx=f(0)这意味着冲激函数的积分可以用来计算f(x)在零点处的值。
离散时间单位冲激函数1.引言1.1 概述离散时间单位冲激函数是信号与系统领域中的重要概念。
它在离散时间系统中起着至关重要的作用,被广泛应用于数字信号处理、通信系统、控制系统等领域。
离散时间单位冲激函数是指在离散时间轴上的一种特殊信号,其幅度在零时刻为1,其他时刻全为0。
这个信号的形状类似于一个短暂的脉冲,它具有非常特殊的性质和重要的数学特点。
离散时间单位冲激函数的定义和特点是我们研究离散时间信号和系统的基础。
通过对离散时间单位冲激函数的研究,我们可以了解信号和系统在各个时刻的响应情况,可以描述信号的频谱特性,并且可以分析系统的稳定性、可控性和可观性等重要属性。
离散时间单位冲激函数的应用领域非常广泛。
在数字信号处理中,离散时间单位冲激函数常被用来表示信号的频谱内容,通过对不同频率的冲激响应进行叠加,可以还原出原始信号。
在通信系统中,离散时间单位冲激函数可以用来描述信道的传输特性,通过对冲激响应的分析,可以评估信道的带宽、衰减和失真情况。
在控制系统中,离散时间单位冲激函数可以用来描述系统的响应特性,通过对系统的冲激响应进行分析,可以设计出稳定性良好的控制器。
总之,离散时间单位冲激函数是信号与系统领域中不可或缺的重要概念。
它具有独特的数学特点和广泛的应用价值。
通过深入研究和理解离散时间单位冲激函数,我们可以更好地理解信号与系统的本质,为数字信号处理、通信系统和控制系统的设计与优化提供理论基础和实践指导。
1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文将按照以下结构进行讲述离散时间单位冲激函数的相关内容:第二章为正文部分,主要介绍离散时间单位冲激函数的定义和特点。
在这一章节中,将详细解释离散时间单位冲激函数的含义,探讨其特点和基本性质。
通过对其数学描述和示例的分析,读者将对离散时间单位冲激函数有更深入的理解。
第三章将探讨离散时间单位冲激函数的应用领域。
离散时间单位冲激函数作为信号处理领域中的重要工具,具有广泛的应用。
..信号与系统复习题1.(32)t dt δ∞-∞-=⎰1/2 。
(解题思路:冲激函数偶函数和尺度变换的性质及冲激函数的定义)2.已知信号()()(),0x t t a u t b a b δ=-->>,则'()x t = '()t a δ- 。
(解题思路:冲激函数和阶跃函数的特点和性质)3.[(1)2(1)]()t t u t δδ++-*= (1)2(1)u t u t ++- 。
(解题思路:冲激函数卷积积分的性质)4.已知{}()()F x t X j ω=,则{}(5)F x t -= 5()j X j e ωω- 。
(解题思路:傅里叶变换时移的性质)5.已知信号的频谱函数为()Sa ω,则该信号时域表达式为 1[(1)(1)]2u t u t +-- 。
(解题思路:矩形脉冲的傅里叶变换)6.无失真传输系统的时域特性的数学表达式为 ()()d h t K t t δ=- ,频域特性的数学表达式为 -()dj t H j Keωω= 。
(解题思路:无失真传输系统的定义)7.信号()sin(2)cos(3)3x t t t πππ=++的周期T= 2 s 。
(解题思路:P18 1-2 12=mT nT T =)8.信号()23[]k j x k eππ-=的周期N= 4 。
(解题思路:()23=cos()+sin()2323k j kk ej ππππππ---,=2πΩ,周期22===4/2N πππΩ) 9.信号()()x t u t =的偶分量()e xt = 0.5 。
10.已知某系统的冲激响应如下图所示,则该系统的阶跃响应为 (1)()te u t -- 。
(解题思路:-()()d tg t h ττ∞=⎰)11.已知某系统的阶跃响应如题11图所示,则该系统的冲激响应为2(2)2(3)t t δδ--- 。
(解题思路:'()()h t g t =)12. 若()f t 的波形如题12图所示,试画出(0.51)f t --的波形。