小学奥数:重叠问题1
- 格式:doc
- 大小:37.54 KB
- 文档页数:3
第一讲重叠问题2011.9 1.王老师将8块手帕用夹子夹在绳子上晾晒,每一块手帕的两边必须用夹子夹住,同一个夹子夹住相邻的2块手帕的两边,王老师一共要用()个夹子。
2.王阿姨把洗好的4床床单用夹子夹在绳子上晾晒,每一床床单两边都用夹子夹住,同一个夹子夹住相邻的两块床单,一共需要()个夹子。
3.王阿姨把洗好的床单用夹子夹在绳子上晾晒,每一床床单两边都用夹子夹住,同一个夹子夹住相邻的两块床单,一共用了20个夹子,绳子上晒了()块床单。
4.两块木板各长40厘米,把这两块木板钉起来的木板长70厘米,中间钉在一起的地方长是()厘米。
5.把两根各长30厘米的绳子结成了一根长50厘米的绳子,打结部分长是()厘米。
6.有两块一样长的木板,现在要把这两块木板钉在一起成一块木板,如果这两块木板各长40厘米,中间钉在一起的地方长是10厘米,这块钉起来的木板长()厘米。
7.有两块塑料板各长50厘米,把两块板钉成一个塑料板,中间钉在一起的重叠部分是10厘米,钉成的塑料板长是()厘米。
8.丁老师出了两组数学题给数学兴趣小组的18名同学做,做对第一组题有10名,做对第二组题有12名,两组都做对的有()名同学。
9.二(3)班有学生42人,期末考试语文得100分的有32人,数学得100分的有36人,语文、数学都得100分的有()人。
10.三(3)班有10位同学参加了趣味语文,有12位同学参加了趣味数学,有4位同学两个兴趣小组都参加了。
一共有()人参加了兴趣小组。
11.学校运动会了,三(3)班有12人报名参加田赛,15人报名参加径赛。
有5人田赛和径赛都参加了,一共有()人参加了运动会。
12.严老师的班级有28人订阅了《好儿童》和《儿童画报》,其中订阅《好儿童》的有16人,两种杂志都订有3人,订《儿童画报》有()人。
13.二(2)班有学生30人,期末考试中取得100分的有20人,语文、数学都得100分的有8人,语文得100分的有15人,数学得100分的有()人。
三年级奥数4种重叠问题三年级奥数4种重叠问题随着奥数热潮的兴起,越来越多的家长将孩子送进了奥数班。
而在奥数学习中,涉及到的重叠问题一直是让小学生头疼的难点之一。
下面,我们来分别介绍四种常见的重叠问题及其解法。
问题1:中国古代的皇帝有哪些名字?这是一道典型的排列组合重叠问题,因为存在不同的朝代和不同的皇帝名称,所以我们可以分类讨论。
假设有n个皇帝姓名,m个朝代,则总共可能的情况数为m的n次方。
例如,如果有2个朝代、3个不同的皇帝姓名,则总共可能的组合数为2的3次方,即8种。
问题2:小明手里有红、黄、蓝三个颜色的球各若干个,从中取出2个球,可能出现几种不同的颜色组合?这是一道组合问题,可以通过简单的计算得出答案。
假设红、黄、蓝三种颜色球的数量分别为a、b、c,则不同颜色组合的数量为ab+ac+bc。
问题3:在10个人中随机选取4个人,其中小明和小红不能同时被选中,有多少种可能?这是一道容斥原理的问题。
首先得出在10个人中任意选取4个人的可能组合数,即C(10,4),然后减去小明和小红都不在其中的可能组合数,即C(8,4),最后再加上小明和小红都在其中的组合数,即C(8,2)。
计算公式为C(10,4) - C(8,4) + C(8,2)。
问题4:现有红、黄、蓝、白四个颜色的球各m个,从中选取n个球,求使得四种颜色的球都被选中的组合数。
这是一道比较复杂的组合问题,需要采用容斥原理。
首先计算四个颜色都被选中的组合数,即C(m,1)^4,然后减去三个颜色被选中的组合数,即C(4,1)×C(m,1)^3。
但是这样计算仍然会有重复的情况,例如每个颜色都选中了两个球的情况,需要再次修正。
最终的计算公式为C(m,1)^4 - C(4,1)×C(m,1)^3 + C(4,2)×C(m,1)^2 - C(4,3)×C(m,1)。
综上所述,重叠问题在奥数中是十分常见的,但只要我们掌握了相应的解法,便能够轻松解决这些难点问题。
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集AB 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-1.容斥原理之重叠问题(一)1.先包含——A B +重叠部分AB 计算了2次,多加了1次; 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.例题精讲两量重叠问题【例 1】小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳。
1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-3.幾何中的重疊問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 把長38釐米和53釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長4釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 因為焊接部分為兩根鐵條的重合部分,所以,由包含排除法知,焊接後這根鐵條長3853487+-=(釐米).【答案】87釐米【巩固】 把長23釐米和37釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長3釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 焊接部分為兩根鐵條的重合部分,由包含排除法知,焊接後這根鐵條長:2337357+-=(釐米).【答案】57釐米【例 2】 兩張長4釐米,寬2釐米的長方形紙擺放成如圖所示形狀.把它放在桌面上,覆蓋面積有多少平方釐米?【考點】幾何中的重疊問題 【難度】1星 【題型】解答例題精講圖中小圓表示A 的元素的個數,中圓表示B 的元素的個數,大圓表示C 的元素的個數.1.先包含:A B C ++ 重疊部分A B 、B C 、C A 重疊了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重疊部分A B C 重疊了3次,但是在進行A B C ++- A B B C A C --計算時都被減掉了. 3.再包含:A B C A B B C A C A B C ++---+.图32厘米4厘米【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為2釐米的正方形,如果利用兩個42⨯的長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,被覆蓋面積=長方形面積之和-重疊部分.於是,被覆蓋面積4222212=⨯⨯-⨯=(平方釐米).【答案】12釐米【巩固】 如圖3,一張長8釐米,寬6釐米,另一個正方形邊長為6釐米,它們中間重疊的部分是一個邊長為4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答图3【解析】 兩個圖形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用長方形和正方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在長方形和正方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積+正方形面積-重疊部分.於是,組合圖形的面積:86664468⨯+⨯-⨯=(平方釐米).【答案】68平方釐米【巩固】 一個長方形長12釐米,寬8釐米,另一個長方形長10釐米,寬6釐米,它們中間重疊的部分是一個邊長4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用兩個長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積之和-重疊部分.於是,組合圖形的面積12810644140=⨯+⨯-⨯=(平方釐米).【答案】140平方釐米【例 3】三個面積均為50平方釐米的圓紙片放在桌面上(如圖),三個紙片共同重疊的面積是10平方釐米.三個紙片蓋住桌面的總面積是100釐米.問:圖中陰影部分面積之和是多少?【考點】幾何中的重疊問題【難度】2星【題型】解答C BA10【解析】將圖中的三個圓標上A、B、C.根據包含排除法,三個紙片蓋住桌面的總面積=(A圓面積B+圓面積C+圓面積-)(A與B重合部分面積A+與C重合部分面積B+與C重合部分面積+)三個紙片共同重疊的面積,得:100505050A=++-()(與B重合部分面積A+與C重合部分面積B+與C重合部分面積10+),得到A、B、C三個圓兩兩重合面積之和為:16010060-=平方釐米,而這個面積對應於圓上的那三個紙片共同重疊的面積的三倍與陰影部分面積的和,即:60103=⨯+陰影部分面積,則陰影部分面積為:603030-=(平方釐米).【答案】30平方釐米【巩固】如圖,已知甲、乙、丙3個圓的面積均為30,甲與乙、乙與丙、甲與丙重合部分的面積分別為6,8,5,而3個圓覆蓋的總面積為73.求陰影部分的面積.【考點】幾何中的重疊問題【難度】2星【題型】解答【解析】設甲圓組成集合A,乙圓組成集合B,丙圓組成集合C.A B C===30,A B=6,B C=8,A C=5,A B C=73,而A B C=A B C+--A B B C A C A B C--+.有73=30×3-6-8-5+A B C,即A B C=2,即甲、乙、丙三者的公共面積(⑧部分面積)為2.那麼只是甲與乙(④),乙與丙(⑥),甲與丙(⑤)的公共的面積依次為6-2=4,8-2=6,5-2=3,所以有陰影部分(①、②、③部分之和)的面積為73-4-6-3-2=58.【答案】58【例 4】如圖,三角形紙板、正方形紙板、圓形紙板的面積相等,都等於60平方釐米.陰影部分的面積總和是40平方釐米,3張板蓋住的總面積是100平方釐米,3張紙板重疊部分的面積是多少平方釐米?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】了三次.所以三張紙重疊部分的面積60310040220()(平方釐米).=⨯--÷=【答案】20平方釐米【巩固】如圖所示,A、B、C分別是面積為12、28、16的三張不同形狀的紙片,它們重疊在一起,露在外面的總面積為38.若A與B、B與C的公共部分的面積分別為8、7,A、B、C這三張紙片的公共部分為3.求A與C公共部分的面積是多少?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】設A與C公共部分的面積為x,由包含與排除原理可得:⑴先“包含”:把圖形A、B、C的面積相加:12281656++=,那麼每兩個圖形的公共部分的面積都重複計算了1次,因此要排除掉.⑵再“排除”:5687x---,這樣一來,三個圖形的公共部分被全部減掉,因此還要再補回.⑶再“包含”:56873x---+,這就是三張紙片覆蓋的面積.根據上面的分析得:5687338x=.x---+=,解得:6【答案】6。
【小学三年级奥数讲义】重叠问题一、知识要点三( 1)班准备给参加班级绘画比赛的 16 位同学和参加朗读比赛的 12 位同学每人发一份纪念品,当中队长玲玲将 28 份纪念品发下去时,却多出 5 份,这是怎么回事?对了,因为有 5 位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了 5 份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题 1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第 8 面;从后数起,红旗是第 10 面。
这行彩旗共多少面?练习 1:1、小朋友排队做操,小明从前数起排在第 4 个,从后数起排在第7 个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12 个,从右数起是第21 个。
这一行座位有多少个?【例题 2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第 4 个,从右数起是第 3 个,从前数起是第 5 个,从后数起是第 6 个。
做操的同学共有多少个?练习 2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第 4 个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2 个,从右数第 4 个;从前数第3 个,从后数第 5 个。
鲜花队共多少人?【例题 3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长 120 厘米,中间重叠部分是 16 厘米,这两块木板各长多少厘米?练习 3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30 厘米,中间重叠部分是 6 厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35 厘米的木板。
三年级奥数专题第一讲重叠问题【一】25个小朋友排队,从左边数起小林是第12个,从右边数小刚是第9个。
小林和小刚之间隔着几个小朋友?练习1、同学们排队做操,一排有18个小朋友,从前面数起青青是第6个,从后面数起兰兰是第7个。
青青和兰兰之间有多少个小朋友?2、有30个工人排成一行,其中有两个工人戴帽子,从左往右数,第7个戴红帽子,从右往左数,第8个戴蓝帽子。
戴帽子的两个工人中间有几个人?【二】一群小朋友排成一队,从前往后数,小乐是第7个,从后往前数,小乐是第8个。
这群小朋友有多少个?练习1、13个小朋友站成一队,小明站在从前面数第8个,那么从后面数他排在第几个?2、鱼妈妈带着一群鱼宝宝在水中散步,不管从前往后数,还是从后往前数,鱼妈妈都是第5个。
鱼妈妈一共带了多少个鱼宝宝散步呢?【三】三年级组同学参加“六一”节团体操表演,每组排人数同样多,每竖排人数也同样多。
小微的位置从左数是第10人,从右数第8人,从前数第9人,从后数第7人。
参加表演的三年级同学有多少人?练习1、庆祝“六一”,同学们排成方形的鲜花队,无论从前、从后数,还是从左、从右数,李丽都在第4个。
鲜花队共有多少人?2、一共有360名学生做操,小林站在右起第6列,左起第13列。
如果每行人数同样多,小林前面7人,他后面有多少人?【四】把两块一样长的木板,钉在一起,成了一块长木板。
如果这块钉在一起的长木板长45厘米,中间重叠部分是5厘米。
这两块木板各长多少厘米?练习1、把长38厘米和53厘米的两根铁条焊接成一根铁条。
已知焊接部分长4厘米,焊接后这根铁条有多长?2、把两条一样长的彩带扎在一起,形成一条更长的彩带。
这条彩带长27厘米,扎的部分每条彩带都用了3厘米。
原来这两条彩带各长多少厘米?【五】三年级科技活动组共有63人。
在一次定时科技活动比赛中,剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人,每个同学都至少完成了一项活动。
问:同时完成这两项活动的同学有多少人?练习1、三(1)班有学生52人,订《语文导报》的有36人,订《数学报》的有42人,没有学生不订的。
第四讲重叠问题(一)
例题一
小朋友排队,Bob从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?
○○○●○○○○○○
练习题一
1、【题目】学校组织看文艺演出,玛丽的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?
2、【题目】同学们排队去参观展览,无论从前数还是从后起起,HK 都排在第8个。
这一排共有多少个同学?
同学们排队跳舞,每行、每列人数同样多。
RT的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?
练习题二
1、【题目】为庆祝“六一”,同学们排成每行人数相同的鲜花队,BV的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?
2、【题目】三(4)班排成每行人数相同的队伍入场参加校运动会,KD的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。
三(4)班共有学生多少人?
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
练习题三
1、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重合部分长11厘米,这两块木板各长多少厘米?
2、两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长多少厘米?。
【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1.小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2.学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?3.同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。
这一排共有多少个同学?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?3.三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。
三(4)班共有学生多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2.把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重合部分长11厘米,这两块木板各长多少厘米?3.两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长多少厘米?【例题4】一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。
问两道聪明题都做对的有几人?练习4:1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
第19讲重叠问题一、知识要点三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将28份纪念品发下去时,却多出5份,这是怎么回事?对了,因为有5位同学既参加了绘画比赛,又参加了朗读比赛,所以奖品就多出了5份。
数学中,我们将这样的问题称为重叠问题。
解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1、小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2、学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?【例题2】同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?练习2:1、同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
小学三年级奥数专题十五:重叠问题专题简析:解答重叠问题时要用到一个重要原理——包含与排除原理即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
把两个部分合在一起减重叠,把两个部分分开加重叠。
例题1:六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?思路:从前数起红旗是第8面,从后数起是第10面,有一面红旗就数了两次,应减去重复数的部分,所以这行彩旗共有8+10-1=17面。
试一试1:同学们排队去参观展览,无论从前数还是从后数起,李华都排在第8个。
这一排共有多少个同学?例题2:同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?思路:小明的位置从左数第4个,右数第3个,说明横行有4+3-1=6个人;从前数第5个,从后数第6个,说明竖行有5+6-1=10人,所以做操的同学共有:6×10=60人。
试一试2:三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。
三(4)班共有学生多少人?例题3:把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?思路:把重叠在一起两块木板分开,先加上重叠的部分16厘米,即这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
试一试3:把两块一样长的木板钉在一起,钉成一块长35厘米的木板。
中间重合部分长11厘米,这两块木板各长多少厘米?。
第十三讲重叠问题解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。
例1 六一儿童节,学校门口挂了一行彩旗。
小张从前数起,红旗是第8面;从后数起,红旗是第10面。
这行彩旗共多少面?练习1:1.小朋友排队做操,小明从前数起排在第4个,从后数起排在第7个。
这队小朋友共有多少人?2.学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。
这一行座位有多少个?例2 同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。
做操的同学共有多少个?【思路导航】根据题意,画出下图:练习2:1.同学们排队跳舞,每行、每列人数同样多。
小红的位置无论从前数从后数,从左数还是从右数起都是第4个。
跳舞的共有多少人?2.为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。
鲜花队共多少人?例3 把两块一样长的木板像下图这样钉在一起成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。
这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?3.两根木棍放在一起(如图),从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。
另一根木棍长多少厘米?例4 一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。
问两道聪明题都做对的有几人?【思路导航】根据题意,画出下图:练习4:1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。
三年级奥数4种重叠问题
以下是三年级奥数中的 4 种重叠问题:
1. 鸡兔同笼问题:假设有若干只鸡和若干只兔子,它们共有若干只脚。
如果假设其中的一些鸡变成了兔子,那么脚的总数会增加;如果假设其中的一些兔子变成了鸡,那么脚的总数会减少。
问有多少只鸡和兔子?
2. 重叠盒子问题:有若干个盒子,每个盒子都可以容纳若干只小动物。
现在要根据每个盒子的容量,将小动物平均分到每个盒子中。
问有多少个盒子和小动物?
3. 重叠蛋糕问题:有若干个蛋糕,每个蛋糕都可以切成若干份。
现在要根据每个蛋糕的切块数,将蛋糕平均分到每个小朋友手中。
问有多少个蛋糕和小朋友?
4. 重叠排队问题:有若干个小朋友,每个小朋友都可以排在若干种位置。
现在要根据每个小朋友的位置,将小朋友排队。
问有多少个小朋友和排队方式?。
二年级创新思维春季班讲义:第九讲重叠问题(一)姓名:【例1】小朋友排队做操,从前面数平平在第三位,从后往前数平平排第9位,这一排共有多少人在排队做操?答:这一排共有()人在排队做操。
练一练(一)1、小青和同学们排成一队做游戏,小青的位置,从前往后数是第5个,从后往前数是第13个,他们一共有多少人在做游戏?答:他们一共有()人在做游戏。
2、迎新年超市门口挂了一串不同颜色的彩灯,无论是从左边数还是从右边数,第16盏灯都是红灯,这一行挂了多少盏灯?答:这一行挂了()盏灯。
3、40个小朋友排成一队,从左数起小华是第11个,从右数起小刚是地16个,小华和小刚之间隔着几个人?答:小华和小刚之间隔着()个人。
4、在一个环行的赛车的跑道上,马克驾驶的赛车从前往后看在第5个,从后往前看也在第5个,有多少人在进行比赛?答:有()人在进行比赛。
5、二(1)班学生做操,排成人数相等的两行,小名所站的那行从前往后数,小名排11个,从后往前数排第15个,问:这个班有多少人在排队?答:这个班有()人在排队。
【例2】同学们进行队列操排练,排成“十”字形,,无论从前面数、后面数,还是从左面数、右面数,小君都是第8个,每行人数相等,问:排队列操的有多少人?答:排队列操的有()人。
练一练(二)1、学校军鼓队的同学在训练时排成一个“十”字形,指挥的同学恰好站在中间,无论从前面数、后面数,还是从左面数、右面数,指挥的同学都是第13个,学校军鼓队有多少名学生?答:学校军鼓队有()名学生。
2、同学们做操,排成方正形的队伍,无论从前面数、后面数,还是从左面数、右面数,小君都是第5个,这个方正队伍共有多少人?答:这个方正队伍共有()人。
3、一年级三个班到小剧院看电影,坐成方正形位置,凯凯的位置无论从前面数、后面数,还是从左面数、右面数,都是第6个,共有多少个小朋友在看电影?答:共有()个小朋友在看电影。
【例3】幼儿园李老师将8块手帕用夹子夹在绳子上晾晒,每一块手帕的两边必须用夹子夹住,同一个夹子夹住相邻的2块手帕的两边,李老师一共要用多少个夹子?答:李老师一共要用()个夹子。
教案:重叠问题年级:四年级上册教材:奥数人教版教学目标:1. 让学生理解重叠问题的概念,能够识别和解决重叠问题。
2. 培养学生的观察能力、分析能力和逻辑思维能力。
3. 培养学生运用重叠问题的方法解决实际问题的能力。
教学重点:1. 理解重叠问题的概念和解决方法。
2. 解决重叠问题的实际应用。
教学难点:1. 重叠问题的解决方法的理解和运用。
2. 解决实际问题中的重叠问题。
教学准备:1. 教学课件或黑板、粉笔。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的物品,如书本、文具等,让学生发现重叠现象。
2. 提问:你们在生活中还见过哪些重叠现象?让学生举例并说明。
二、新课导入(10分钟)1. 引入重叠问题的概念,解释重叠问题是指在图形、物体或数据中存在部分相同或重复的情况。
2. 通过举例,让学生理解重叠问题的含义和特点。
三、解决重叠问题的方法(15分钟)1. 介绍解决重叠问题的方法,如排除法、画图法、列表法等。
2. 通过具体的例子,引导学生运用这些方法解决重叠问题。
四、实际应用(10分钟)1. 提供一些实际问题,让学生运用重叠问题的方法解决。
2. 引导学生观察、分析和解决实际问题,培养学生的应用能力。
五、巩固练习(10分钟)1. 提供一些练习题,让学生独立完成。
2. 引导学生分析和解决练习题,巩固所学知识。
六、总结和拓展(5分钟)1. 对本节课的内容进行总结,让学生明确重叠问题的概念和解决方法。
2. 提供一些拓展问题,让学生思考和探索。
教学反思:本节课通过引入生活中的重叠现象,让学生理解重叠问题的概念和解决方法。
在教学过程中,注重培养学生的观察能力、分析能力和逻辑思维能力。
通过实际问题的解决,让学生将所学知识运用到实际中,培养学生的应用能力。
在巩固练习环节,提供一些练习题,让学生独立完成,巩固所学知识。
最后,通过总结和拓展,让学生对重叠问题有更深入的理解和思考。
需要重点关注的细节是“解决重叠问题的方法”。
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考. 教学目标知识要点7-7-3.几何中的重叠问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米).【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3468【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答例题精讲12【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10 【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C . A B C ===30,A B =6,B C =8,A C =5,A B C =73,而A B C =A B C +--A B B C A C A B C --+.有73=30×3-6-8-5+AB C ,即A B C =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星【题型】解答【解析】 阴部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑴先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶再“包含”:56873---+,这就是三张纸片覆盖的面积.x根据上面的分析得:5687338x=.x---+=,解得:6【答案】6。
五年级奥数题:重叠问题1.甲、乙两队合修一条水渠,甲队每天修14.5米,乙队3天修46.5米,照这样计算,两队合修6天,共修水渠多少米?2.用绳子测一口井的深度.绳子两折时,多余60厘米;绳子三折时,还差40厘米.求绳长和井深.3.甲、乙两筐苹果,如果从甲筐中拿出18个放进乙筐,两筐的苹果就同样多,如果从乙筐拿出13个放进甲筐,甲筐里的苹果就是乙筐的3倍.甲、乙两筐原来各有苹果多少个?4.一个水池,单开进水管,6分钟可将空水池注满,单开出水管8分钟可将满池水放完,若同时打开进、出水管,多少分钟可将水池注满?5.甲、乙两人修路队共有76人,甲队增加本队人数的4倍,乙队增加本队人数的6倍后,两队共增加了384人,求甲、乙两队原有各有多少人?6.一个食堂买来面粉是大米的2倍,每天吃30千克大米,40千克面粉,几天后大米全部吃完,面粉还剩余160千克,这个食堂买来大米和面粉各多少千克?7.甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍.甲、乙原有存款各有多少元?8.10年前母亲的年龄是女儿的7倍,10年后母亲的年龄是女儿的2倍.现在母亲的年龄是多少岁?9.甲、乙两车同时从A、B两地相向而行,第一次两车在距B地64千米外相遇,相遇后两车仍以原速度继续行驶,并在到达对方车站后立即沿原路返回,途中两车在距A地48千米处第二次相遇,两次相遇后之间相距多少千米?10.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要_________秒钟?11.买来5角、2角、1角5分三种邮票,共20张,总值5元5角,其中5角和1角5分的邮票张数相等,问三种邮票各购几张?.12.客车从甲地开往开乙地,货车从乙地开往甲地,每小时客车比货车多得12千米,经过4小时相遇.相遇后,两车继续按原方向前进,又经过3小时客车到达乙地,这时货车离乙地多少米?13.仓库里原有化肥若干吨,第一天取出全部的一半多30吨,第二次取出余下的一半少100吨,第三次取出150吨,最后还剩下70吨,这批化肥原有多少吨?14.三个植树队共植树1800棵,甲队植树的棵数是乙队的2倍,乙队植树的棵数比丙队少200棵,三队各植树多少棵?15.如果买3盒水彩笔和5个书包,需要259元,如果买2盒水彩笔和3个书包,需要161元,2个书包和2盒水彩笔共要多少元?16.一个两位数,十位数字与个位数字之和是10,数字之差是4,且个位数字小于十位数字,这个两数是多少?17.一群公猴、母猴、小猴共38只,每天摘桃266个.已知1只公猴每天摘桃10个,1只母猴每天摘桃8个,1只小猴每天摘桃5个.又知公猴比母猴少4只,那么这群猴子中,小猴有多少只?18.有鸡蛋16箩,每只大箩可容180个,每只小箩可容120个,共值570元.若将每个鸡蛋便宜5分出售,则可得款456元,大箩、小箩各多少只?五年级奥数题:重叠问题参考答案与试题解析1.甲、乙两队合修一条水渠,甲队每天修14.5米,乙队3天修46.5米,照这样计算,两队合修6天,共修水渠多少米?2.用绳子测一口井的深度.绳子两折时,多余60厘米;绳子三折时,还差40厘米.求绳长和井深.,折三折时,每段就是全长的,全长的()就÷,,本题的关键是绳长一定,折二折每段是全长的,折三折每段是全长的3.甲、乙两筐苹果,如果从甲筐中拿出18个放进乙筐,两筐的苹果就同样多,如果从乙筐拿出13个放进甲筐,甲筐里的苹果就是乙筐的3倍.甲、乙两筐原来各有苹果多少个?4.一个水池,单开进水管,6分钟可将空水池注满,单开出水管8分钟可将满池水放完,若同时打开进、出水管,多少分钟可将水池注满?;单开出分钟可将满池水放完,每分钟,同时打开进、出水管,每分钟进水﹣﹣(﹣÷,5.甲、乙两人修路队共有76人,甲队增加本队人数的4倍,乙队增加本队人数的6倍后,两队共增加了384人,求甲、乙两队原有各有多少人?6.一个食堂买来面粉是大米的2倍,每天吃30千克大米,40千克面粉,几天后大米全部吃完,面粉还剩余160千克,这个食堂买来大米和面粉各多少千克?x﹣)÷,7.甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍.甲、乙原有存款各有多少元?8.10年前母亲的年龄是女儿的7倍,10年后母亲的年龄是女儿的2倍.现在母亲的年龄是多少岁?x+10=9.甲、乙两车同时从A、B两地相向而行,第一次两车在距B地64千米外相遇,相遇后两车仍以原速度继续行驶,并在到达对方车站后立即沿原路返回,途中两车在距A地48千米处第二次相遇,两次相遇后之间相距多少千米?10.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要10秒钟?11.买来5角、2角、1角5分三种邮票,共20张,总值5元5角,其中5角和1角5分的邮票张数相等,问三种邮票各购几张?.12.客车从甲地开往开乙地,货车从乙地开往甲地,每小时客车比货车多得12千米,经过4小时相遇.相遇后,两车继续按原方向前进,又经过3小时客车到达乙地,这时货车离乙地多少米?13.仓库里原有化肥若干吨,第一天取出全部的一半多30吨,第二次取出余下的一半少100吨,第三次取出150吨,最后还剩下70吨,这批化肥原有多少吨?14.三个植树队共植树1800棵,甲队植树的棵数是乙队的2倍,乙队植树的棵数比丙队少200棵,三队各植树多少棵?15.如果买3盒水彩笔和5个书包,需要259元,如果买2盒水彩笔和3个书包,需要161元,2个书包和2盒水彩笔共要多少元?16.一个两位数,十位数字与个位数字之和是10,数字之差是4,且个位数字小于十位数字,这个两数是多少?17.一群公猴、母猴、小猴共38只,每天摘桃266个.已知1只公猴每天摘桃10个,1只母猴每天摘桃8个,1只小猴每天摘桃5个.又知公猴比母猴少4只,那么这群猴子中,小猴有多少只?18.有鸡蛋16箩,每只大箩可容180个,每只小箩可容120个,共值570元.若将每个鸡蛋便宜5分出售,则可得款456元,大箩、小箩各多少只?。
十三、重叠问题一、知识要点:在生活中,我们常常会碰到有关重叠的问题。
什么是重叠呢?请看下面的图:A,B 两个圆圈重叠放在一起,两个圆圈重叠放在一起,C C 是它们的重叠部分。
基本关系:联合体AB=A+B-C重叠体:重叠体:C=A+B-AB C=A+B-AB对这类题目,我们要从信息入手,可以借助作图来分析,找出解题方法。
二、例题学习:例1:老师出了两道题,在40人中,做对第一题的有31人,做对第二题的有28人,每人至少做对一题,两道题都做对的有几人?分析:如图所示:圆A 表示做对第1题的人数,圆B 表示做对第二题的,两个圆的重叠部分表示两道题都做对的人数,的重叠部分表示两道题都做对的人数,3131人与28人的和中包含了两道题都做对的人数,一共是(的人数,一共是(32+28=5932+28=59人),比40人多出(人多出(59-40=1959-40=19人),这就是两道题都做对的人数。
解:解:31+38=5931+38=5931+38=59(人)(人)59-40=19 59-40=19(人)(人)试一试:教工运动会,参加跳绳比赛的有38人,参加踢毽子比赛的有39人,因病请假的有3人,如果全校教工有55人,那么既参加跳绳比赛又参加踢毽子比赛的老师有多少人?例2:校运动会上,四个年级共有118人参加了跑步比赛。
其中一、二年级共有70人参加,一、三年级共有65人参加,二、三年级共有59人参加,问:四年级有多少学生参加跑步比赛?分析:在(分析:在(70+65+59=19470+65+59=194人)中,一、二、三年级的参赛人数均重复出现了两次,因此一、二、三年级的参赛人数应是总人数的一半,这样四年级的参赛人数也就可以算出来了。
解:(解:(70+65+5970+65+5970+65+59)÷)÷)÷2=972=972=97(人)(人)118-97=21118-97=21(人)(人)试一试:某校三年级共有三个班级128名学生,一班和二班共有89人,二班和三班共有87人。
小学奥数:
知识要点:前面已学过排队问题,从前面数,从
后面数,丽丽都排第6,这一排共有几个人?这里丽丽被重复数了两次,有时我们也把这类问题叫重叠问题。
[ 例1 ] 洗好的8块手帕夹在绳子上晾干,同一个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?
分析:由图知道,两块手帕有一边重叠,用3个夹子。
三块手帕有两边重叠,用4个夹子,我们发现夹子数总比手帕数多1,因此8块手帕就要用9个夹子。
[ 例2 ] 把图画每两张重叠在一起钉在墙上,现在有5张画要多少个图钉呢?
分析:每排两张画要6个图钉,每排三张画要8个图钉,每排四张画要10个图钉。
可以看出,图画每增加一张,图钉就要增加2颗,那么5张画要12个图钉。
[ 例3 ] 有两块一样长的木板,钉在一起,如果每块木板长25厘米,中间钉在一起的长5厘米,现在长木板有多长?
分析:把两块木板钉起来,钉在一起的地方的长度就是重叠的部分。
现在的总长就是原来两个总长的和减去重叠的部分。
算式:25+25-5=45(厘米)所以现在木板长45厘米。
[ 例4 ] 张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人?
分析:做对第一题的13个人里,有8个人也做对第二题,那么做对第二题的22个人里这8个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8个人。
算式:13+22-8=27(人)所以这个班一共有27人。
[ 例5 ] 四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?
分析:两根绳有一个结,三根绳有两个结,那么四根绳有三个结。
一个结用去1+1=2厘米,那么三个结用去2+2+2=6厘米,绳子总长8+8+8+8=32厘米,减去打结的6
厘米,13人 22人 8人
32-6=26,现在这根长绳是26厘米。