05_压力容器应力分析_厚壁圆筒弹性应力分析
- 格式:docx
- 大小:37.06 KB
- 文档页数:2
厚壁圆筒应力分析剖析一、应力分析方法1.在应力分析中,通常采用静力学的方法,根据力学定律对厚壁圆筒进行应力分析。
2.厚壁圆筒的应力分析可以分为轴向应力、周向应力和切向应力三个方向上的应力分析。
二、应力计算公式1.轴向应力:σa=(P·r)/t其中,σa表示轴向应力,P表示圆筒受到的内外压力,r表示圆筒内径,t表示圆筒壁厚。
2.周向应力:σc=(P·r)/(2t)其中,σc表示周向应力。
3. 切向应力:τ = (P · ri) / t其中,τ 表示切向应力,ri 表示圆筒中心点到任意一点的径向距离。
三、实例分析假设有一个内径为 10cm,外径为 15cm,壁厚为 2cm 的厚壁圆筒,内外压力分别为 5MPa 和 10MPa。
现对该厚壁圆筒进行应力分析。
1.轴向应力:根据公式σa = (P · r) / t,代入 P = 5MPa,r = 7.5cm,t =2cm,计算得σa = (5×7.5) / 2 = 18.75MPa。
同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σa =(10×7.5) / 2 = 37.5MP a。
2.周向应力:根据公式σc = (P · r) / (2t),代入 P = 5MPa,r = 7.5cm,t= 2cm,计算得σc = (5×7.5) / (2×2) = 9.375MPa。
同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σc =(10×7.5) / (2×2) = 18.75MPa。
3.切向应力:根据公式τ = (P · ri) / t,代入 P = 5MPa,ri = 7.5cm,t =2cm,计算得τ = (5×7.5) / 2 = 18.75MPa。
同理,代入 P = 10MPa,ri = 7.5cm,t = 2cm,计算得τ =(10×7.5) / 2 = 37.5MPa。
工程上一般将设计压力在10≤p≤100MPa之间的压力容器称为高压容器,而将100MPa压力以上的称为超高压容器。
高压容器不但压力高,而且同时伴有高温,例如合成氨就是在15~32MPa压力和500℃高温下进行合成反应。
一般来说,高压和超高压容器的径比K > 1.2,称此类容器为“厚壁容器”。
本章讨论的对象,是厚壁圆筒型容器。
承受压力载荷或者温差载荷的厚壁圆筒容器,其上任意点的应力,是三向应力状态。
即存在经向应力(又称轴向应力)、周向应力和径向应力。
针对厚壁筒的应力求解,将在平衡方程、几何方程、物理方程三个方面进行分析。
2.2.1 弹性应力-压力载荷引起的弹性应力(1)轴向(经向)应力ϭz222200002200002220()1i z i i i i i i i z i iP P FP P p R p R F R R p R p R p p KR K R R K R σππππσ−=−=⋅−⋅=−−−⋅===−−径比(2) 周向应力ϭ和径向应力ϭrθ三对截面:一对圆柱面,相距dr一对纵截面,相差dθ一对横截面,长度为1Ϭz作用在横截面上Ϭr作用在圆柱面上Ϭθ作用在纵截面上平衡方程(沿径向列平衡方程)()()112sin 102r r r d d r dr d rd dr θθσσθσθσ++⋅−⋅−⋅=sin 22d d θθ≈略去高阶无穷小,并使得到平衡方程r r d r drθσσσ−=几何方程()r w dw wdwdr drε+−==径向应变周向应变()r w d rd wrd r θθθεθ+−==上述表达式是Lame 在1833年推得的,又称为Lame 公式。
当仅有内压时,p o =0,有()222222211111112i o i o r z i z r p R K r p R K r p K θθσσσσσσ⎧⎛⎞=⋅−⎪⎜⎟−⎝⎠⎪⎪⎛⎞⎪=⋅+⎜⎟⎪−⎝⎠⎨⎪⎛⎞=⋅⎪⎜⎟−⎝⎠⎪⎪=+⎪⎩246810010********σθ R i / σθ R oK可见,当K 越大时,应力的分布就越不均匀。
厚壁圆筒应力分析剖析厚壁圆筒是一种常见的结构,广泛应用于各个领域,比如压力容器、热交换器等。
在使用厚壁圆筒的过程中,必须进行应力分析,以确保结构的安全性和可靠性。
首先,研究厚壁圆筒的应力分析需要考虑以下几个方面。
1.圆筒的几何形状:厚壁圆筒是由外径、厚度和长度组成的。
这些几何参数会影响圆筒内部的应力分布情况。
2.材料特性:圆筒的材料特性直接影响其应力分布。
研究厚壁圆筒时,通常会考虑材料的弹性模量和泊松比等参数。
3.加载条件:圆筒的应力分布受外部载荷的影响。
载荷的形式可以是压力、温度、重力等。
加载条件的确定对于应力分析至关重要。
接下来,我们将详细介绍厚壁圆筒的应力分析方法。
1.内外压力分析:考虑厚壁圆筒内外的压力差异。
当内外压力相等时,圆筒应力较小。
当内压大于外压时,圆筒将会受到较大的应力。
2.纵向应力分析:厚壁圆筒在纵向方向上承受的应力主要为轴向拉应力。
如果存在压力差,则拉应力沿厚度逐渐增加。
3.周向应力分析:在周向上,厚壁圆筒受到的应力主要为周向拉应力。
当圆筒内外压力不平衡时,周向应力将会增加。
4.切应力分析:切应力是圆筒内部的剪切应力分量。
在圆筒壁厚度的不同位置,切应力的大小也会有所不同。
5.应力分布图:为了更好地理解厚壁圆筒的应力分布情况,可以绘制应力分布图。
这样可以直观地了解不同部位的应力分布情况,以便进行结构优化。
总结一下,厚壁圆筒的应力分析对于确保结构安全性至关重要。
通过分析内外压力、纵向应力、周向应力和切应力,可以更好地理解圆筒的应力分布情况。
通过应力分布图,可以更直观地了解圆筒不同部位的应力情况,从而进行优化设计。
在实际工程中,应力分析的结果可以用来指导材料的选择、结构的设计以及使用中的安全操作。
第二章 厚壁圆筒的弹塑性应力分析1.只受内压作用:(1)在厚壁圆筒中,筒体处于三向应力状态,其中θσ为拉应力,r σ为压应力,且沿壁厚非均匀分布;而z σ介于θσ和r σ之间,即2r z θσσσ+=,且沿壁厚均匀分布。
(2)在筒体内壁面处,θσ、r σ的绝对值比外壁面处为大,其中θσ具有最大值,且恒大于内压力i p ,其危险点将首先在内壁面上产生。
(3)θσ沿壁厚分布随径比K 值的增加趋向更不均匀,不均匀度为内、外壁周向应力之比,即2()1()2io r R r R K θθσσ==+=。
显然,不均匀度随2K 成比例,可见K 值愈大,应力分布愈不均匀。
当内壁材料开始屈服时,外壁材料远小于屈服限,因此筒体材料的强度不能得到充分的利用。
由此可知,用增加筒体壁厚(即增加K 值)的方法来降低厚壁圆筒的内壁应力,只在一定范围内有效,而内压力接近或超过材料的许用应力时,增加厚度是完全无效的。
为了提高筒壁材料的利用率,有效的办法是改变应力沿壁厚分布的不均匀性,使其趋于均化。
2.往往采用组合圆筒或单层厚壁圆筒自增强处理技术,以提高筒体的弹性承载能力。
3.温差应力:厚壁圆筒的厚壁可能从内表面或外表面被加热,由于筒壁较厚,并有一定的热阻,在筒体的内、外壁之间存在温度差,温度较高部分因受热而引起膨胀变形,同时受到温度较低部分的约束,从而使前者受压缩,而后者受拉伸,出现了温差应力或称热应力。
(1)厚壁圆筒中,温差应力与温度差t ∆成正比,而与温度本身的绝对值无关,因此在圆筒内壁或外壁进行保温以减小内、外壁的温度差,可以降低厚壁圆筒的温差应力。
(2)温差应力的分布规律为三向应力沿壁厚均为非均匀分布,其中,轴向应力是环(周)向应力与径向应力之和,即t t t z r θσσσ=+ ;在内、外壁面处,径向应力为零,轴向应力和环(周)向应力分别相等,且最大应力发生在外壁面处。
(3)温差应力是由于各部分变形相互约束而产生的,因此应力达到屈服极限而屈服时,温差应力不但不会继续增加,而且在很大程度上会得到缓和,这就是温差应力的自限性,它属于二次应力。
05_压力容器应力分析_厚壁圆筒弹性应力分析压力容器是广泛应用于石油、化工、冶金、医药等行业的重要设备,
用于存储和运输气体或液体。
在使用过程中,由于内外压差的存在,压力
容器的壁会产生应力,如果超过了材料的极限承载能力,就会发生破裂事故。
因此,对压力容器的应力分析非常重要,通过分析容器内壁的应力分
布情况,可以判断容器的安全性能,从而采取相应的措施保证其安全运行。
厚壁圆筒作为一种常见的压力容器结构,其应力分析是非常有代表性的。
在进行弹性应力分析时,首先需要确定内压力和外压力的大小。
通常
情况下,我们假设容器的内部和外部都是完全承受压力的,即容器内部压
力和外部压力均匀分布。
其次,我们需要了解容器的内径、外径、壁厚等
几何参数,以及容器所使用的材料的弹性模量和泊松比等弹性性质参数。
在厚壁圆筒的弹性应力分析中,一般采用极限状态设计方法进行计算。
首先,可以根据容器内外压力差的大小,计算容器内部的径向应力和环向
应力,这两个应力分量是产生破裂的主要因素。
然后,通过应力的叠加原理,将径向应力和环向应力合成为合成应力,进一步计算合成应力与容器
材料的屈服强度之间的比值,根据这个比值可以评估容器的安全性能。
在实际应用中,为了保证压力容器的安全性能,通常会将容器的设计
和制造有一定的安全裕量。
在计算容器的弹性应力时,需要将其与容器材
料的屈服强度进行比较,以确保应力值处于安全范围内。
如果计算得到的
应力值超过了材料的屈服强度,就需要重新设计容器的结构或者更换更高
强度的材料,以满足安全性能的要求。
总之,压力容器的应力分析是确保容器安全运行的重要手段之一、通
过对容器内壁的应力分布进行分析,可以评估容器的安全性能,并采取相
应的措施保证其安全运行。
在进行压力容器的设计和制造过程中,应该遵
循相应的规范和标准,确保容器的结构和材料能够承受内外压力的作用,
从而保证容器在工作过程中不会发生破裂事故,保障工业生产和人身安全。