高二上学期第一次月考数学试题 含答案
- 格式:docx
- 大小:466.97 KB
- 文档页数:10
2024—2025学年高二上学期第一次月考联考高二数学试卷(答案在最后)本试卷共5页满分150分,考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =-=-,若()a a b λ⊥-,则实数λ的值为()A.2- B.143-C.73D.2【答案】C 【解析】【分析】利用两个向量垂直的性质,数量积公式即求得λ的值.【详解】 向量()()2,1,3,1,1,1a b =-=-若()a a b λ⊥-,则2()(419)(213)0a a b a a b λλλ⋅-=-⋅=++-++=,73λ∴=.故选:C .2.P 是被长为1的正方体1111ABCD A B C D -的底面1111D C B A 上一点,则1PA PC ⋅的取值范围是()A.11,4⎡⎤--⎢⎥⎣⎦B.1,02⎡⎤-⎢⎥⎣⎦C.1,04⎡⎤-⎢⎥⎣⎦D.11,42⎡⎤--⎢⎥⎣⎦【答案】B 【解析】【分析】建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(),,x y z ,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围.【详解】如图,以点D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,则 쳌䁠쳌䁠,()10,1,1C ,设(),,P x y z ,01x ≤≤,01y ≤≤,1z =,()1,,1PA x y ∴=--- ,()1,1,0PC x y =--,()()2222111111222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----=-+-=-+-- ⎪ ⎪⎝⎭⎝⎭ ,当12x y ==时,1PA PC ⋅ 取得最小值12-,当0x =或1,0y =或1时,1PA PC ⋅取得最大值0,所以1PA PC ⋅ 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.故选:B.3.已知向量()4,3,2a =- ,()2,1,1b = ,则a 在向量b上的投影向量为()A.333,,22⎛⎫ ⎪⎝⎭B.333,,244⎛⎫⎪⎝⎭C.333,,422⎛⎫ ⎪⎝⎭D.()4,2,2【答案】A 【解析】【分析】根据投影向量公式计算可得答案.【详解】向量a 在向量b上的投影向量为()()()2242312333cos ,2,1,12,1,13,,222b a b a a b b b b ⋅⨯+⨯-⎛⎫⋅⋅=⋅=⋅== ⎪⎝⎭r r rr r r r r r .故选:A.4.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为()A.3B.C.3 D.255【答案】D 【解析】【分析】建立空间直角坐标系,由点到平面的距离公式计算即可.【详解】以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,则()2,,2G λ,()10,0,2D ,()2,0,1E ,()2,2,1F ,所以()12,0,1ED =- ,()0,2,0= EF ,()0,,1EG λ=.设平面1D EF 的法向量为(),,n x y z = ,则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取1x =,得()1,0,2n =r,所以点G 到平面1D EF的距离为255EG n d n ⋅=== ,故选:D .5.已知四棱锥P ABCD -,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b=,AP c = ,则向量MN 用{},,a b c 为基底表示为()A.1132a b c++ B.1162a b c-++C.1132a b c-+D.1162a b c--+【答案】D 【解析】【分析】利用空间向量的线性运算结合图形计算即可.【详解】由条件易知()11113232MN MC CD DN BC BA DP AD BA AP AD =++=++=++-()11113262b ac b a =-+-=--+.故选:D6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC共面,则λ=()A.12B.13C.512D.712【答案】D 【解析】【分析】根据给定条件,利用空间向量的共面向量定理的推论列式计算即得.【详解】在四面体OABC 中,,,OA OB OC不共面,而1146OM OA OB OC λ=++ ,则由,,MA MB MC ,得11146λ++=,所以712λ=.故选:D7.已知向量()()1,21,0,2,,a t t b t t =--=,则b a - 的最小值为()A.5B.6C.2D.3【答案】C 【解析】【分析】计算出2322b t a -=+≥ .【详解】因为()()1,21,0,2,,a t t b t t =--=,所以()()222211322t t b t t a ++=-=-++当0t =时,等号成立,故b a -.故选:C.8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC -中,PA PB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为().A.23π9B.π18C.π27D.π54【答案】B 【解析】【分析】设1PF CF ==,易知233PA PB AB AC BC =====,且23FG =,设肉馅球半径为r ,CG x =,根据中点可知P 到CF 的距离4d r =,sin 4dPFC r PF∠==,根据三角形面积公式及内切圆半径公式可得1x =,结合余弦定理可得1cos 3PFC ∠=,进而可得3PC =,22sin 3PFC ∠=,可得内切球半径且可知三棱锥为正三棱锥,再根据球的体积公式及三棱锥公式分别求体积及比值.【详解】如图所示,取AB 中点为F ,PF DE G ⋂=,为方便计算,不妨设1PF CF ==,由PA PB AB AC BC ====,可知233PA PB AB AC BC =====,又D 、E 分别为所在棱靠近P 端的三等分点,则2233FG PF ==,且AB PF ⊥,AB CF ⊥、PF CF F = ,PF ,CF ⊂平面PCF ,即AB ⊥平面PCF ,又AB ⊂平面ABC ,则平面PCF ⊥平面ABC ,设肉馅球半径为r ,CG x =,由于H 、I 、J 分别为所在棱中点,且沿平面HIJ 切开后,截面中均恰好看不见肉馅,则P 到CF 的距离4d r =,sin 4d PFC r PF∠==,12414233GFC rS r =⋅⋅⋅=△,又2132GFC rS x ⎛⎫=++⋅ ⎪⎝⎭ ,解得:1x =,故22241119cos 223213CF FG CG PFC CF FG +-+-∠===⋅⋅⋅⋅,又2222111cos 21132P PF CF PC PC F F C P F C +-+⋅-∠==⋅=⋅⋅,解得233PC =,22sin 3PFC ∠=,所以:4sin 31rPFC ∠==,解得26r =,34381V r =π=球,由以上计算可知:P ABC -为正三棱锥,故111sin 4332ABC V S d AB AC BAC r =⋅⋅=⋅⋅⋅⋅∠⋅粽11432332627=⋅⋅⋅⋅⋅⋅=,2812627π=.故选:B.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是()A.13DB =B.向量AE 与1AC uuu r所成角的余弦值为5C.平面AEF 的一个法向量是()4,1,2-D.点D 到平面AEF 的距离为82121【答案】BCD 【解析】【分析】先写出需要的点的坐标,然后利用空间向量分别计算每个选项即可.【详解】由题可知, 쳌䁠쳌䁠,()0,0,0D ,()2,2,1E ,()1,0,2F ,()12,2,2B ,()10,2,2C ,所以1DB ==A 错误;()0,2,1AE = ,()12,2,2AC =-,所以111·15cos ,5AE AC AE AC AE AC ==,故选项B 正确;()0,2,1AE = ,()1,0,2AF =- ,记()4,1,2n =-,则0,0AE AF n n ==,故,AE AF n n ⊥⊥,因为AE AF A ⋂=,,AE AF ⊂平面AEF ,所以()4,1,2n =-垂直于平面AEF ,故选项C 正确;쳌䁠쳌䁠,所以点D 到平面AEF的距离·21DA n d n ===,故选项D 正确;故选:BCD10.在正三棱柱111ABC A B C -中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λμλμ=+∈∈,则下列说法正确的是()A.当1λ=时,点P 在棱1BB 上B.当1μ=时,点P 到平面ABC 的距离为定值C.当12λ=时,点P 在以11,BC B C 的中点为端点的线段上D.当11,2λμ==时,1A B ⊥平面1AB P 【答案】BCD 【解析】【分析】对于A ,由1CP BP BC BB μ==-即可判断;对于B ,由[]11,0,1B P BP BB BC λλ=-=∈ 和11//B C 平面ABC 即可判断;对于C ,分别取BC 和11B C 的中点D 和E ,由BP BD =+1BB μ 即1DP BB μ=即可判断;对于D ,先求证1A E ⊥平面11BB C C ,接着即可求证1B P ⊥平面1A EB ,进而即可求证1A B ⊥平面1AB P .【详解】对于A ,当1λ=时,[]1,0,1CP BP BC BB μμ=-=∈,又11CC BB =,所以1CP CC μ= 即1//CP CC ,又1CP CC C = ,所以1C C P 、、三点共线,故点P 在1CC 上,故A 错误;对于B ,当1μ=时,[]11,0,1B P BP BB BC λλ=-=∈,又11B C BC =,所以111B P B C λ= 即111//B P B C ,又1111B B C P B = ,所以11B C P 、、三点共线,故点P 在棱11B C 上,由三棱柱性质可得11//B C 平面ABC ,所以点P 到平面ABC 的距离为定值,故B 正确;对于C ,当12λ=时,取BC 的中点11,D B C 的中点E ,所以1//DE BB 且1DE BB =,BP BD =+[]1,0,1BB μμ∈ ,即1DP BB μ= ,所以DP E D μ= 即//DP DE,又DP DE D ⋂=,所以D E P 、、三点共线,故P 在线段DE 上,故C 正确;对于D ,当11,2λμ==时,点P 为1CC 的中点,连接1,A E BE ,由题111A B C △为正三角形,所以111A E B C ⊥,又由正三棱柱性质可知11A E BB ⊥,因为1111BB B C B = ,111BB B C ⊂、平面11BB C C ,所以1A E ⊥平面11BB C C ,又1B P ⊂平面11BB C C ,所以11A E B P ⊥,因为1111B C BB CC ==,所以11B E C P =,又111π2BB E B C P ∠=∠=,所以111BB E B C P ≌,所以111B EB C PB ∠=∠,所以1111111π2PB C B EB PB C C PB ∠+∠=∠+∠=,设BE 与1B P 相交于点O ,则1π2B OE ∠=,即1BE B P ⊥,又1A E BE E = ,1A E BE ⊂、平面1A EB ,所以1B P ⊥平面1A EB ,因为1A B ⊂平面1A EB ,所以11B P A B ⊥,由正方形性质可知11A B AB ⊥,又111AB B P B = ,11B P AB ⊂、平面1AB P ,所以1A B ⊥平面1AB P ,故D 正确.故选:BCD.【点睛】思路点睛:对于求证1A B ⊥平面1AB P ,可先由111A E B C ⊥和11A E BB ⊥得1A E ⊥平面11BB C C ,从而得11A E B P ⊥,接着求证1BE B P ⊥得1B P ⊥平面1A EB ,进而11B P A B ⊥,再结合11A B AB ⊥即可得证1A B ⊥平面1AB P .11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则()A.122CG AB AA =+ B.直线CQ 与平面1111D C B A 所成角的正弦值为23C.点1C 到直线CQ 的距离是53D.异面直线CQ 与BD 所成角的余弦值为36【答案】BC 【解析】【分析】A 选项,建立空间直角坐标系,写出点的坐标,得到122AB AA CG +≠;B 选项,求出平面的法向量,利用线面角的夹角公式求出答案;C 选项,利用空间向量点到直线距离公式进行求解;D 选项,利用异面直线夹角公式进行求解.【详解】A 选项,以A 为坐标原点,1,,DA AB AA所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()()10,0,0,0,1,0,0,0,1,1,1,2,0,1,2,1,1,0A B A G Q C ----,()()()110,1,1,1,1,1,1,0,0B C D --,()()()10,2,2,0,1,0,0,0,1CG AB AA =-==,则()()()1220,2,00,0,20,2,2AB AA CG +=+=≠,A 错误;B 选项,平面1111DC B A 的法向量为()0,0,1m =,()()()0,1,21,1,01,2,2CQ =---=-,设直线CQ 与平面1111D C B A 所成角的大小为θ,则2sin cos ,3CQ m CQ m CQ mθ⋅===⋅,B 正确;C 选项,()10,0,1CC =,点1C 到直线CQ 的距离为3d ==,C正确;D 选项,()()()1,0,00,1,01,1,0BD =--=-- ,设异面直线CQ 与BD 所成角大小为α,则cos cos ,6CQ BD CQ BD CQ BDα⋅=====⋅ ,D 错误.故选:BC三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C -的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为______时,使1⊥MN AB .【答案】18##0.125【解析】【分析】根据正三柱性质建立空间直角坐标系,利用向量垂直的坐标表示可得结果.【详解】取11B C 的中点为1M ,连接1,MM AM ,由正三棱柱性质可得11,,AM MM BM MM AM BM ⊥⊥⊥,因此以M 为坐标原点,以1,,AM BM MM 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如下图所示:易知()11,0,0,0,,2,0,0,022A B M ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,设CN 的长为a ,且0a >,可得10,,2N a ⎛⎫- ⎪⎝⎭;易知11310,,,,,2222MN a AB ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭若1⊥MN AB ,则1112022MN AB a ⋅=-⨯+= ,解得18a =,所以当CN 的长为18时,使1⊥MN AB .故答案为:1813.四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC V 的重心,则PG 与平面PAD 所成角θ的正弦值为______.【答案】23【解析】【分析】建立空间直角坐标系,求出平面PAD 的一个法向量m 及PG,由PG 与平面PAD 所成角θ,根据sin cos ,m PG m PG m PGθ⋅==⋅ 即可求解.【详解】因为PD ⊥底面ABCD ,底面ABCD 是正方形,所以,,DA DC DP 两两垂直,以D 为坐标原点,,,DA DC DP 的方向分别为,,x y z 轴的正方向,建立如图所示空间直角坐标系,则()0,0,0D ,()0,0,1P ,()3,0,0A ,()3,3,0B ,()0,3,0C ,则重心()2,2,0G ,因而()2,2,1PG =- ,()3,0,0DA = ,()0,0,1DP = ,设平面PAD 的一个法向量为(),,m x y z =,则300m DA x m DP z ⎧⋅==⎪⎨⋅==⎪⎩ ,令1y =则()0,1,0m = ,则22sin cos ,133m PG m PG m PG θ⋅====⨯⋅ ,故答案为:23.14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为145,则该五面体的所有棱长之和为_______.【答案】117m【解析】【分析】先根据线面角的定义求得5tan tan EMO EGO ∠=∠=,从而依次求EO ,EG ,EB ,EF ,再把所有棱长相加即可得解.【详解】如图,过E 做EO ⊥平面ABCD ,垂足为O ,过E 分别做EG BC ⊥,EM AB ⊥,垂足分别为G ,M ,连接OG ,OM,由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为EMO ∠和EGO ∠,所以tan tan EMO EGO ∠=∠=.因为EO ⊥平面ABCD ,⊂BC 平面ABCD ,所以EO BC ⊥,因为EG BC ⊥,EO ,EG ⊂平面EOG ,EO EG E = ,所以⊥BC 平面EOG ,因为OG ⊂平面EOG ,所以BC OG ⊥,同理,OM BM ⊥,又BM BG ⊥,故四边形OMBG 是矩形,所以由10BC =得5OM =,所以EO =,所以5OG =,所以在直角三角形EOG中,EG ==在直角三角形EBG 中,5BG OM ==,8EB ===,又因为55255515EF AB =--=--=,所有棱长之和为2252101548117⨯+⨯++⨯=.故答案为:117m四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.【答案】(1)66(2)当2AE =时,直线1A D 与平面1D EC 所成角的正弦值最小,最小值为105【解析】【分析】(1)以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立空间直角坐标系,求得平面1D EC 的一个法向量,平面1DCD 的一个法向量,利用向量法可求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)设AE m =,可求得平面1D EC 的一个法向量,直线的方向向量1DA ,利用向量法可得sin θ=,可求正弦值的最小值.【小问1详解】以D 为坐标原点,1,,DA DC DD 所在直线为坐标轴建立如图所示的空间直角坐标系,当点E 在棱AB 的中点时,则1(0,0,1),(1,1,0),(0,2,0),(0,0,0),(1,0,0)E C D A D ,则1(1,1,1),(1,1,0),(1,0,0)ED EC DA =--=-= ,设平面1D EC 的一个法向量为(,,)n x y z = ,则1·0·0n ED x y z n EC x y ⎧=--+=⎪⎨=-+=⎪⎩ ,令1x =,则1,2y z ==,所以平面1D EC 的一个法向量为(1,1,2)n = ,又平面1DCD 的一个法向量为(1,0,0)DA = ,所以·6cos ,6·DA n DA n DA n=== ,所以平面1D EC 与平面1DCD 所成的夹角的余弦值为66;【小问2详解】设AE m =,则11(0,0,1),(1,,0),(0,2,0),(0,0,0),(1,0,1)E m C D A D ,则11(1,,1),(1,2,0),(02),(1,0,1)ED m EC m m DA =--=--≤≤=,设平面1D EC 的一个法向量为(,,)n x y z = ,则1·0·(2)0n ED x my z n EC x m y ⎧=--+=⎪⎨=-+-=⎪⎩ ,令1y =,则2,2x m z =-=,所以平面1D EC 的一个法向量为(2,1,2)n m =- ,设直线1A D 与平面1D EC 所成的角为θ,则11||sin ||||n DA n DA θ=== 令4[2,4]m t -=∈,则sin θ====当2t =时,sin θ取得最小值,最小值为105.16.如图所示,直三棱柱11ABC A B C -中,11,92,0,,CA CB BCA AA M N ︒==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .【答案】(1(2)10(3)证明见解析【解析】【分析】(1)建立空间直角坐标系,求出相关点坐标,根据空间两点间距离公式,即得答案;(2)根据空间向量的夹角公式,即可求得答案;(3)求出1C M ,1C N ,BN 的坐标,根据空间位置关系的向量证明方法,结合线面垂直的判定定理,即可证明结论.【小问1详解】如图,建立以点O 为坐标原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴的空间直角坐标系.依题意得(0,1,0),(1,0,1)B N ,∴222(10)(01)(10)3BN =-+-+- ;【小问2详解】依题意得,()()()()111,0,2,0,1,0,0,0,0,0,1,2A B C B ,∴1(1,1,2)BA =- ,1(0,1,2)CB = ,113BA CB =⋅ ,16BA = 15CB = 所以1111130cos ,1065BA CB BA CB BA CB ⋅===⨯⋅ ;【小问3详解】证明:()()()10,0,2,0,1,0,1,0,1C B N ,11,,222M ⎛⎫ ⎪⎝⎭.∴111,,022C M ⎛⎫= ⎪⎝⎭uuuu r ,()11,0,1C N =-uuur ,()1,1,1BN =- ,∴1111(1)10022C M BN ⋅=⨯+⨯-+⨯= ,1110(1)(1)10C N BN ⋅=⨯+⨯-+-⨯= ,∴1C M BN ⊥ ,1C N BN ⊥ ,即11,C M BN C N BN ⊥⊥,又1C M ⊂平面1C MN ,1C N ⊂平面1C MN ,111= C M C N C ,∴BN ⊥平面1C MN .17.如图,在四棱维P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由.【答案】(1)22(2)存在点M ,使得//BM 平面PCD ,14AM AP =.【解析】【分析】(1)取AD 的中点为O ,连接,PO CO ,由面面垂直的性质定理证明⊥PO 平面ABCD ,建立空间直角坐标系求解直线PB 与平面PCD 所成角的正切值即可;(2)假设在PA 上存在点M ,使得()01PM PA λλ=≤≤ ,由线面平行,转化为平面的法向量与直线的方向向量垂直,求解参数即可.【小问1详解】取AD 的中点为O ,连接,PO CO ,因为PA PD =,所以PO AD ⊥,又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PO ⊂平面PAD ,所以⊥PO 平面ABCD ,又AC CD =,所以CO AD ⊥,PA PD ⊥,2AD =,所以1PO =,5AC CD ==2CO =,所以以O 为坐标原点,分别以,,OC OA OP 所在的直线为,,x y z 轴建立空间直角坐标系,䁠쳌䁠쳌 ,()2,0,0C ,()0,1,0A ,()1,1,0B ,()0,1,0D -,所以()2,0,1PC =- ,()0,1,1PD =-- ,()1,1,1PB =- ,设平面PCD 的一个法向量为 쳌h쳌 ,则00PC m PD m ⎧⋅=⎪⎨⋅=⎪⎩ ,200x z y z -=⎧⎨--=⎩,令1,x =则2,2z y ==-,所以()1,2,2m =- ,设直线PB 与平面PCD 所成角为θ,sin cos ,3m PB m PB m PBθ⋅==== ,所以cos 3θ==,所以2tan 2θ=,所以直线PB 与平面PCD所成角的正切值.【小问2详解】在PA 上存在点M ,使得()01PM PA λλ=≤≤ ,所以()0,1,1PA =- ,所以()0,,PM PA λλλ==- ,所以()0,,1M λλ-,所以()1,1,1BM λλ=--- ,因为//BM 平面PCD ,所以BM m ⊥ ,即()()121210λλ---+-=,解得34λ=,所以存在点M ,使得//BM 平面PCD ,此时14AM AP =.18.如图1,在边长为4的菱形ABCD 中,60DAB ∠=︒,点M ,N 分别是边BC ,CD 的中点,1AC BD O ⋂=,AC MN G ⋂=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2所示的五棱锥P ABMND -.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为1313?若存在,试确定点Q 的位置;若不存在,请说明理由.【答案】(1)总有平面PBD ⊥平面PAG ,证明详见解析(2)存在,Q 是PA 的靠近P 的三等分点,理由见解析.【解析】【分析】(1)通过证明BD ⊥平面PAG 来证得平面PBD ⊥平面PAG .(2)建立空间直角坐标系,利用平面QDN 与平面PMN 所成角的余弦值来列方程,从而求得Q 点的位置.【小问1详解】折叠前,因为四边形ABCD 是菱形,所以AC BD ⊥,由于,M N 分别是边BC ,CD 的中点,所以//MN BD ,所以MN AC ⊥,折叠过程中,,,,,MN GP MN GA GP GA G GP GA ⊥⊥⋂=⊂平面PAG ,所以MN ⊥平面PAG ,所以BD ⊥平面PAG ,由于BD ⊂平面PBD ,所以平面PBD ⊥平面PAG .【小问2详解】存在,理由如下:当平面PMN ⊥平面MNDB 时,由于平面PMN 平面MNDB MN =,GP ⊂平面PMN ,GP MN ⊥,所以GP ⊥平面MNDB ,由于AG ⊂平面MNDB ,所以GP AG ⊥,由此以G 为空间坐标原点建立如图所示空间直角坐标系,依题意可知())()3,3,2,0,3,2,0,0,1,0,3,2,3P D B N PB --=()A,(PA = ,设()01PQ PA λλ=≤≤,则(()(),0,,0,GQ GP PQ GP PA λ=+=+=+-= ,平面PMN 的法向量为()11,0,0n =,()(),DQ DN =-= ,设平面QDN 的法向量为()2222,,n x y z = ,则()2222222200n DQ x y z n DN y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩ ,故可设()21n λλ=--+ ,设平面QDN 与平面PMN 所成角为θ,由于平面QDN 与平面PMN所成角的余弦值为13,所以121213cos 13n n n n θ⋅==⋅ ,解得13λ=,所以当Q 是PA 的靠近P 的三等分点时,平面QDN 与平面PMN 所成角的余弦值为1313.19.如图,四棱锥P ABCD -中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM ⊥于点H ,求线段CH 长的最小值.【答案】(1)证明见解析(2)158(3)455【解析】【分析】(1)根据条件建立合适的空间直角坐标系,利用空间向量证明线面关系即可;(2)利用空间向量研究线面夹角,结合二次函数的性质计算最大值即可;(3)设BM tBC = ,利用空间向量基本定理及三点共线的充要条件得出AH,利用向量模长公式及导数研究函数的单调性计算最值即可.【小问1详解】由于四边形ABCD 是菱形,且60ABC ∠= ,取CD 中点G ,则AG CD ⊥,又PA ⊥平面ABCD ,可以A 为中心建立如图所示的空间直角坐标系,则()()()()()2,0,0,3,0,1,3,0,0,0,1,0,3,0B C D P G -,所以()()()3,1,3,3,0,2,0,1PC BD BP =-=-=- ,由()01BE PF BD PC λλ==<≤,可知,,BE BD PF PC EF EB BP PF BD BP PC λλλλ==∴=++=-++ ()42,0,1λλ=--,易知()3,0AG = 是平面PAB 的一个法向量,显然0EF AG ⋅=,且EF ⊄平面PAB ,即//EF 平面PAB ;【小问2详解】由上可知()()()1,3,13,1,33,1DP PF DF λλλλλλ+==+-=+-- ,设平面PBC 的一个法向量为(),,n x y z =r ,则2030n BP x z n PC x y z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩ ,令1x =,则32,3z y ==,31,23n ⎛⎫= ⎪ ⎪⎝⎭,设直线DF 与平面PBC 所成角为α,则2223sin cos ,4325655653n DF n DF n DF αλλλλ⋅===⋅-+⋅-+ ,易知35λ=时,()2min 165655λλ-+=,即此时sin α取得最大值158;【小问3详解】设()(]()3,0,0,12,3BM tBC t t t AM AB BM t t ==-∈⇒=+=- ,由于,,H M P 共线,不妨设()1AH xAM x AP =+- ,易知AM AP ⊥,则有()()22010AH PM AH AM AP xAM x AP ⋅=⋅-=⇒--= ,所以22114451x t t AM ==-++ ,则()()233,1CH CA AH t x tx x =+=---- ,即()()2222454454655445t CH t t x t x t t --=-+-++=-+ 记()(]()2450,1445t f t t t t --=∈-+,则()()()2228255445t t f t t t --+'=-+,易知22550t t -+>恒成立,所以()0f t '<,即()f t 单调递减,所以()()min 945155f t f CH ≥=-⇒=.。
北京市2024~2025学年度第一学期9月高二数学试卷(答案在最后)2024.09本试卷共4页,120分.考试时长90分钟考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数11i +在复平面上对应的点的坐标是A.(1,1)B.(1,1)- C.(1,1)-- D.(1,1)-【答案】D 【解析】【详解】试题分析:111i i+=-,所以对应的点的坐标为(1,1)-.考点:复数的运算.2.已知角α的终边经过点()2,1P -,则cos α=()A.5B.5-C.5D.【答案】C 【解析】【分析】根据条件,利用三角函数的定义,即可求出结果.【详解】因为角α的终边经过点()2,1P -,所以cos 5α==,故选:C.3.如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一平面内,若四边形ABCD 是边长为2的正方形,则这个八面体的表面积为()A.8B.16C.3D.163【答案】C 【解析】【分析】先计算出每个面的面积,再乘以8即为表面积;【详解】每个面的面积为23234⨯=,所以该图形的表面积为83.故选:C4.已知圆锥的母线长为5,底面圆的半径为3,则该圆锥的体积为()A.12πB.15πC.36πD.45π【答案】A 【解析】【分析】根据题意画出立体图像,根据已知条件求得圆锥的高,即可求得答案.【详解】设圆锥的高为h ,母线长为l ,底面半径为r 画出立体图像,如图:根据立体图形可得:2222534h l r =-=-=根据圆锥的体积计算公式:2211ππ343π312V r h ==⋅⋅=故选:A.5.在正方体1111ABCD A B C D -中,直线11A C 与直线1B C 所成角的大小为()A.30︒B.45︒C.60︒D.120︒【答案】C 【解析】【分析】作出辅助线,得到1ACB ∠或其补角为直线11A C 与直线1B C 所成角,根据1AB C △为等边三角形,故160ACB ∠=︒,得到答案.【详解】连接AC ,因为11AA CC =,11//AA CC ,所以四边形11AA C C 为平行四边形,则11//A C AC ,故1ACB ∠或其补角为直线11A C 与直线1B C 所成角,连接1AB ,则11AB AC B C ==,即1AB C △为等边三角形,故160ACB ∠=︒,直线11A C 与直线1B C 所成角大小为60︒.故选:C6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m α⊥,αβ⊥,则//m βB.若l αβ⋂=,v/,则//m βC.若m α⊂,αβ⊥,则m β⊥D.若m α⊥,v/,则m β⊥【答案】D 【解析】【分析】根据线线,线面及面面位置关系判断各个选项即可.【详解】对于A:若,m ααβ⊥⊥,则可能m β⊂,A 错误;对于B:若,//l l m αβ⋂=,则可能m β⊂,B 错误;对于C:若,,m ααβ⊂⊥则m 可能不垂直β,C 错误;对于D:若,//m ααβ⊥,则m β⊥,D 正确.故选:D.7.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.8.在正方体1111ABCD A B C D -中,点E ,F 分别是AB ,1CC 的中点,则下列说法正确的是()A.1//A E 平面1BFDB.1A E ⊥平面ADFC.A ,E ,B ,F 四点共面D.直线EF 与底面ABCD 所成角的正切值为5【答案】B 【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出结果判断A ,B ;利用异面直线的判断方法判断C ;利用空间向量求线面夹角判断D .【详解】设正方体1111ABCD A B C D -中棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则()12,0,2A ,()2,1,0E ,()2,2,0B ,()0,2,1F ,()10,0,2D ,()0,0,0D ,对于A :()12,2,2BD =-- ,()2,0,1BF =-,设平面1BFD 的一个法向量 =s s ,则1222020n BD x y z n BF x z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令1x =,则2,1z y ==,可得()1,1,2n =,且()10,1,2A E =- ,则130A E n ⋅=-≠uuu r r,所以1A E 不平行于面1BFD ,故A 错误;对于B :D=2,0,0,()0,2,1DF = ,()10,1,2A E =-,则10A E DA ⋅=,10A E DF ⋅= ,即1A E DA ⊥,1A E DF ⊥,且DA DF D = ,,DA DF ⊂平面ADF ,所以1A E ⊥平面ADF ,故B 正确;对于C :因为1A E ⊂面11ABB A ,BF ⊄面11ABB A ,且1B A E ∉,所以直线1A E 与BF 为异面直线,故C 错误;对于D :因为()2,1,1EF =- ,且底面ABCD 的法向量()0,0,1m =,则6cos ,661EF m EF m EF m⋅==⨯⋅,设直线EF 与底面ABCD 所成角为π0,2θ⎛⎫∈ ⎪⎝⎭,则6sin 6θ=,可得230cos 1sin 6θθ=-=,sin 5tan cos 5θθθ==,所以直线EF 与底面ABCD所成角的正切值为5,故D 错误.故选:B .9.四面体ABCD 的一条棱长为x ,其余棱长均为2,记四面体ABCD 的表面积为()F x ,则函数()F x 的最大值为()A.6+B.4+C.D.【答案】B 【解析】【分析】如图,设AB 为x ,由题可得表达式,即可得答案.【详解】如图,设AB 为x ,因其他棱长为2,则44BCD ACD S S ==⨯= .取AB 中点为E ,则2xAE =,又由题可得DEAB ⊥,结合2AD =,由勾股定理,DE =,则12ABD ABC S S == 则()4F x x =<<,则()4F x =.当且仅当22444x x x =-⇒=时取等号.故选:B10.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别是棱BC ,11C D 的中点,点P 在底面1111D C B A 内,点Q 在线段1A N上,若PM =,则PQ 长度的最小值为A.21- B.2C.3515- D.355【答案】C 【解析】【详解】解:如图,取B 1C 1中点O ,则MO ⊥面A 1B 1C 1D 1,即MO ⊥OP ,∵PM 5=,则OP =1,∴点P 在以O 为圆心,1以半径的位于平面A 1B 1C 1D 1内的半圆上.可得O 到A 1N 的距离减去半径即为PQ 长度的最小值,作OH ⊥A 1N 于H ,△A 1ON 的面积为2×21132111222-⨯⨯-⨯⨯=,∴11322A N OH ⨯=,可得OH 355=,∴PQ 长度的最小值为3515-.故答案为;C .点睛:这个题目考查了立体中面面垂直的性质的应用,线面垂直的应用,以及数形结合的应用,较好的考查了学生的空间想像力.一般处理立体的小题,都会将空间中的位置关系转化为平面关系,或者建系来处理.二、填空题:本大题共5小题,每小题5分,共25分.11.已知长方体的长、宽、高分别为3,2,1,则它的体对角线长为___________.【答案】14【解析】【分析】由长方体的性质计算.=故答案为.12.如图,已知矩形ABCD 中,4=AD ,3CD =,PA ⊥平面ABCD ,并且PA =则PC =______.【答案】6【解析】【分析】连接AC ,利用勾股定理求出AC ,由线面垂直的性质得到PA AC ⊥,由勾股定理求解PC 即可.【详解】连接AC ,在矩形ABCD 中,4=AD ,3CD =,则5AC ==,因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,则PA AC ⊥,在Rt PAC △中,PA =6PC ===.故答案为:6.13.在正三棱柱111ABC A B C -中,12AB AA ==,则直线1AA 与1BC 所成角的大小为__________;点A 到平面11BB C C 的距离为________.【答案】①.π4②.【解析】【分析】分析可知直线1AA 与1BC 所成角为1B BC ∠(或其补角),即可得结果;做辅助线,可证AD ⊥平面11BB C C ,即可得点A 到平面11BB C C 的距离.【详解】因为1AA ∥1BB ,可知直线1AA 与1BC 所成角为1B BC ∠(或其补角),由题意可知:11BCC B 为正方形,则1π4B BC ∠=,所以直线1AA 与1BC 所成角的大小为π4;取BC 的中点D ,连接AD ,因为ABC V 为等边三角形,则AD BC ⊥,又因为1BB ⊥平面ABC ,AD ⊂平面ABC ,则1AD BB ⊥,且1BC BB B = ,1,BC BB ⊂平面11BB C C ,可得AD ⊥平面11BB C C ,所以点A 到平面11BB C C 的距离为AD =.故答案为:π414.在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),的正四棱锥SEFGH (如图2),则正四棱锥SEFGH 的体积为________.【答案】43【解析】【分析】连结EG ,HF ,交点为O ,求出点E 到线段AB 的距离,利用勾股定理求出EB 和SO 的长度,最后利用棱锥体积公式求出体积即可.【详解】连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB=.SO2,故正四棱锥SEFGH 的体积为13)2×2=43.故答案为:43【点睛】本题考查了棱锥体积公式,考查了数学运算能力,考查了空间想象能力.15.如图,正方体1111ABCD A B C D -的棱长为4,E 为BC 的中点,F 为线段1CC 上的动点,过点A ,E ,F的平面截该正方体所得截面记为S ,当3CF =时,截面S 与11A D ,11C D 分别交于M ,N ,则MN =_________.【答案】3【解析】【分析】由面面平行的性质可得截面与平面11ADD A 及平面1111D C B A 的交线,后由几何知识可得答案.【详解】由图,截面S 与平面11ADD A ,平面11BB C C 相交,因平面11ADD A //平面11BB C C ,则相应交线平行.则过A 作EF 的平行线,则平行线与11A D 交点即为M ,与1DD 延长线交于H .注意到AHD EFC ,则162EC FC HD AD HD ==⇒=,又14DD =,则12HD =.又注意到1MHD AHD ,则1111433HD MD MD HD AD ==⇒=.又截面S 与平面ABCD ,平面1111D C B A 相交,则同理过M 作AE 平行线,则平行线与11C D 交点即为N .注意到1AEB NMD ,则1113823EB AB ND MD ND ==⇒=.则根据勾股定理,3MN ==.故答案为:3.三、解答题:本大题共4小题,共45分.解答应写出文字说明,演算步骤或证明过程.16.已知正三棱锥P ABC -,请从条件①,条件②,条件③中选择两个条件作为已知,使得三棱锥存在,并求出此正三棱锥的体积.①底面边长为2 2.【答案】答案见解析【解析】【分析】根据题意分析可知:不能选②③.取ABC V 的中心O ,BC 的中点为M ,若选①②:求得3OP =,进而可得体积;若选①③:求得3OP =,进而可得体积.2<,可知②③不能同时成立,故不能选②③.取ABC V 的中心O ,BC 的中点为M ,连接,,PO PM AM ,则⊥PO 平面ABC ,,AM BC PM BC ⊥⊥,若选①②:则233OA AM ==,11222ABC S BC AM =⨯⨯=⨯= ,在Rt POA △中,则3OP ==,所以正三棱锥的体积为113333ABC V S OP =⋅==△;选①③:则133OM AM ==,2PM =,11222ABC S BC AM =⨯⨯=⨯= ,在Rt POM 中,则3OP ==,所以正三棱锥的体积为113333ABC V S OP =⋅== .17.如图,在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱1BB ,1DD 的中点.求证:(1)BD ∥平面1C EF ;(2)⊥EF 平面11ACC A .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据平面性质可得BD EF ∥,再根据线面平行的判定定理分析证明;(2)根据题意可得AC EF ⊥,1AA EF ⊥,结合线面垂直的判定定理分析证明.【小问1详解】因为E ,F 分别为1BB ,1DD 的中点,11BB DD =,11BB DD ∥,则BE DF ∥且BE DF =,可知四边形BDFE 为平行四边形,则BD EF ∥,且EF ⊂平面1C EF ,BD ⊄平面1C EF ,所以BD ∥平面1C EF .【小问2详解】因为四边形ABCD 为正方形,则BD AC ⊥,且EF BD ∥,则AC EF ⊥,又因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1AA BD ⊥.且EF BD ∥,则1AA EF ⊥,且1AC AA A =∩,1,AC AA ⊂平面11ACC A ,所以⊥EF 平面11ACC A .18.如图,四棱锥P ABCD -的底面是边长为2的菱形,且60ABC ∠=︒,侧面PAB 是正三角形,M 是PD 上一动点,N 是CD 的中点.(1)若PC ∥平面BMN ,求证:M 是PD 的中点;(2)若平面PAB ⊥平面ABCD ,求线段PC 的长;(3)是否存在点M 、使得PC BM ⊥?若存在,求出PM MD的值;若不存在,请说明理由.【答案】(1)证明见解析(2(3)存在,1【解析】【分析】(1)根据线面平行的性质可得MN PC ∥,再结合平行线的性质分析证明;(2)根据面面垂直的性质可得PF ⊥平面ABCD ,进而可得PF CF ⊥,即可得结果;(3)做辅助线,可证AB ⊥平面PCF ,PC ⊥平面ABE ,可得EM CD ,即可得结果.【小问1详解】若PC ∥平面BMN ,且PC ⊂平面PCD ,平面PCD 平面BMN MN =,可得MN PC ∥,在PCD △中,点N 是CD 中点,所以点M 是PD 中点.【小问2详解】如图,取AB 中点F ,连接PF ,CF .因为PAB 是正三角形,则PF AB ⊥,且平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PF⊂平面PAB ,可得PF ⊥平面ABCD ,由CF ⊂平面ABCD ,可得PF CF ⊥,在因为侧面PAB 是正三角形,则PF =因为底面ABCD 是菱形,且60ABC ∠=︒,可知ABC V 是等边三角形,则CF AB ⊥且CF =所以PC =【小问3详解】取PC 中点E ,连接BE ,AE .因为四棱锥P ABCD -的底面是菱形,侧面PAB 是正三角形,则PB AB BC ==,BE PC ⊥.由(2)可得PF AB ⊥,CF AB ⊥,且,PF CF ⊂平面PCF ,PF CF F = ,所以AB ⊥平面PCF ,由PC ⊂平面PCF ,可得AB PC ⊥.又因为AB BE B = ,AB 、BE 在平面ABE 内,所以PC ⊥平面ABE .过E 作EM CD 交PD 于点M .因为EM CD AB ∥∥,所以点M ∈平面ABEM .所以PC ⊥平面ABEM ,因为BM ⊂平面ABEM ,所以PC BM ⊥,因为E 为PC 的中点,EM CD ,所以PM MD =,即1PM MD=.19.已知定义在R 上的函数()f x ,()g x 满足以下三个条件:①()()()()()f x y f x f y g x g y -=-;②()()()()()g x y g x f y f x g y +=+;③存在集合{},a b (){}g x x ∈R .(1)判断函数()f x 的奇偶性,并说明现由;(2)求()0f ,()0g 的值;(3)判断命题p :“()g x 是周期函数”的真假,并说明理由.【答案】(1)()f x 为偶函数,理由见解析(2)()00g =,()01f =(3)假命题,理由见解析【解析】【分析】(1)根据题意结合偶函数的定义分析判断;(2)根据题意通过赋值令0x y ==,运算求解即可;(3)利用周期函数的定义,举反例说明即可.【小问1详解】由①可得,()()()()()()f y x f y f x g y g x f x y -=-=-,故()f x 为偶函数.【小问2详解】在②中令0x y ==可得,()()()()()()()00000200g g f f g g f =+=,可得()00g =或()102f =.在①中令y x =可得,()()()220f fx g x =-,若()102f =,则()()()2221100024f g f =-≤=矛盾,故()00g =,可得()()()()2220000f f g f =-=,即()00f =或1.若()00f =时,()()()()()(0)000g x g x g x f f x g =+=+=.此时(){}{}0g x x ∈=R 与③矛盾,故()01f =.【小问3详解】假命题,例如()e e 2x x f x -+=,()e e 2x xg x --=,则()()()()()e e e e e e e e 2222e e 2x x y y x x y y x y x yf x f yg x g y f x y ------+++--+-=⋅-⋅=-,即①成立;又因为()()()()()e e e e e e e e e 22222e x x y y x x y y x y x yg x f y f x g y g x y ----+---++--+=⋅+⋅=+,即②成立;又因为()00g =,()1e e 102g --=>,即③成立;但()g x 在R 上递增,可知()g x 不是周期函数.。
高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。
2024—2025第一次阶段性检测数学时量:120分钟 满分:150分得分______一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则( )C.3D.52.无论为何值,直线过定点( )A. B. C. D.3.在平行四边形中,,,,则点的坐标为( )A. B. C. D.4.已知,则( )A. B.C. D.5.直线关于对称的直线方程为()A. B. C. D.6.已知椭圆:,则( )A. B.C.8或2D.87.已知实数满足,则的范围是( )A. B. C. D.8.已知平面上一点,若直线上存在点使,则称该直线为点的“相关直线”,下列直线中不是点的“相关直线”的是( )A. B. C. D.3i1iz +=+z =λ()()()234210x y λλλ++++-=()2,2-()2,2--()1,1--()1,1-ABCD ()1,2,3A -()4,5,6B -()0,1,2C D ()5,6,1--()5,8,5-()5,6,1-()5,8,5--π1sin 33α⎛⎫+= ⎪⎝⎭πcos 23α⎛⎫- ⎪⎝⎭79-7929-292410x y --=0x y +=4210x y ++=4210x y +-=4210x y --=4210x y -+=C ()22104x y m m +=>m =,x y ()22203y x x x =-+ (4)1y x ++[]2,6(][),26,-∞+∞ 92,4⎡⎤⎢⎥⎣⎦(]9,2,4⎡⎫-∞+∞⎪⎢⎣⎭()5,0M l P 4PM =()5,0M ()5,0M 3y x =-2y =430x y -=210x y -+=二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线:,圆:,为坐标原点,下列说法正确的是( )A.若圆关于直线对称,则B.点到直线C.存在两个不同的实数,使得直线与圆相切D.存在两个不同的实数,使得圆上恰有三个点到直线的距离为10.已知圆:与圆:的一个交点为,动点的轨迹是曲线,则下列说法正确的是( )A.曲线的方程为B.曲线的方程为C.过点且垂直于轴的直线与曲线相交所得弦长为D.曲线上的点到直线11.在边长为2的正方体中,为边的中点,下列结论正确的有( )A.与B.过,,三点的正方体的截面面积为3C.当在线段上运动时,的最小值为3D.若为正方体表面上的一个动点,,分别为的三等分点,则的最小值为三、填空题:本题共3小题,每小题5分,共15分.12.通过科学研究发现:地震释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放的能量分别为,,则______.13.直线的倾斜角的取值范围是______l 20x y λλ+--=C 221x y +=O C l 2λ=-O l λl C λC l 121F ()()222328x y m m ++=……2F ()()222310x y m -+=-M M C C 22110064x y +=C 2212516x y +=1F x C 325C 4510x ++=ABCD A B C D '-'''M BC AM D B ''A M D 'ABCD A B C D '-'''P A C 'PB PM '+Q B C C B ''EF A C 'QE QF +lg 4.8 1.5E M =+1E 2E 12E E =()243410ax ay +-+=14.如图,设,分别是椭圆的左、右焦点,点P 是以为直径的圆与椭圆在第一象限内的一个交点,延长与椭圆交于点,若,则直线的斜率为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知两圆和.求:(1)m 取何值时两圆外切?(2)当时,两圆的公共弦所在直线的方程和公共弦长.16.(15分)在中,内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求的值;(2)若,,求的面积.17.(15分)如图,在四棱锥中,平面,,四边形满足,,,点为的中点,点为棱上的动点.(1)求证:平面;(2)是否存在点,使得平面与平面所成角的余弦值为?若存在,求出线段的长度;若不存在,说明理由.18.(17分)某校高一年级设有羽毛球训练课,期末对学生进行羽毛球五项指标(正手发高远球、定点高远球、吊球、杀球以及半场计时往返跑)考核,满分100分.参加考核的学生有40人,考核得分的频率分布直方图如图所示.1F 2F ()222210x y a b a b+=>>12F F 2PF Q 222PF F Q =1PF 222610x y x y +---=2210120x y x y m +--+=45m =A B C △()()cos 2cos 2cos A C b c a B -=-sin sin CA1cos 4B =2b =A BC △P ABCD -PA ⊥ABCD 2PA AB AD ===ABCDAB AD ⊥B C A D ∥4BC =M PC E BC DM ∥PAB E PDE ADE 23BE(1)由频率分布直方图,求出图中t 的值,并估计考核得分的第60百分位数;(2)为了提升同学们的羽毛球技能,校方准备招聘高水平的教练.现采用分层抽样的方法(样本量按比例分配),从得分在内的学生中抽取5人,再从中挑出两人进行试课,求两人得分分别来自和的概率;(3)若一个总体划分为两层,通过按样本量比例分配分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:,,;,,.记总的样本平均数为,样本方差为,证明:19.(17分)已知动直线与椭圆:交于,两点,且的面积为坐标原点.(1)证明:和均为定值;(2)设线段的中点为,求的最大值;(3)椭圆上是否存在三点D ,E ,G,,使得?若存在,判断的形状;若不存在,请说明理由.[)70,90[)70,80[)80,90m x 21s n y 22s w 2s ()(){}22222121s m s x w n s y w m n ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦+l C 22132x y +=()11,P x y ()22,Q x y OPQ △OPQ S △O 2212x x +2212y y +P Q M OM PQ ⋅C ODE ODG OEG S S S ===△△△D E G △长沙市第一中学2024—2025学年度高二第一学期第一次阶段性检测数学参考答案一、二、选择题题号1234567891011答案BAAACCADABDBCDAC1.B 【解析】∵,∴. .故选B.2.A 【解析】由得:,由得∴直线恒过定点.故选A.3.A【解析】设,则,,得.故选A.4.A 【解析】,又,所以.故选A.5.C 【解析】取直线关于对称的直线上任意一点,易知点关于直线对称的点的坐标为,由点在直线上可知,即.故选C.6.C 【解析】椭圆:的离心率为,,解得或.故选C.7.A 【解析】表示函数图象上的点与的连线的斜率,结合图象可知,斜率分别在与(相切时)处取最大值和最小值,()()()()23i 1i 3i 33i i i 2i 1i 1i 1i 2z +-+-+-====-++-z ==()()()234210x y λλλ++++-=()()223420x y x y λ++++-=220,3420x y x y ++=⎧⎨+-=⎩2,2,x y =-⎧⎨=⎩()()()234210x y λλλ++++-=()2,2-(),,D x y z ()5,7,3AB =- (),1,2DC x y z =---()5,6,1D --22πππ17cos 2cos 212sin 1233399ααα⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦π2π22π33αα⎛⎫-=+- ⎪⎝⎭π2π2π7cos 2cos 2πcos 23339ααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2410x y --=0x y +=()00,P x y P 0x y +=()00,Q y x --Q 2410x y --=002410y x -+-=004210x y --=C ()22104x y m m +=>==8m =2m =41y x ++()22203y x x x =-+……()1,4--()0,2()2,2所以的范围是.故选A.8.D 【解析】根据题意,当点到直线的距离时,该直线上存在点使得,此时直线为点的“相关直线”,对于A ,,即,点到直线的距离,该直线是点的“相关直线”;对于B ,,点到直线的距离,该直线是点的“相关直线”;对于C ,,点到直线的距离,该直线是点的“相关直线”;对于D,,点到直线的距离,该直线不是点的“相关直线”.故选D.9.ABD 【解析】直线:过定点,圆:,圆心,半径,对选项A :直线过圆心,则,解得,故选项A 正确;对选项B :点O 到直线l的距离的最大值为B 正确;对选项C :直线与圆相切,则圆心到直线的距离,解得,故选项C 错误;对选项D :当圆上恰有三个点到直线的距离为时,圆心到直线的距离,解得,故选项D 正确.故选ABD.10.BCD 【解析】对A 选项与B 选项,由题意知圆与圆交于点,则,,所以,所以点的轨迹是焦点在轴上的椭圆,且,,即,,所以,所以曲线的方程为,故A 选项错误,B 选项正确;41y x ++[]2,6M l 4d …P 4PM =l()5,0M 30y x =-=30x y --=M l 4d <()5,0M 2y =M l 0224d =-=<()5,0M 430x y -=M l 4d ==()5,0M 210x y -+=M l 4d ()5,0M l 20x y λλ+--=()2,1P C 221x y +=()0,0C 1r =20λ--=2λ=-PC =l C 1d 34λ=-C l 12C l 12d λ=1F 2F M 1MF m =210MF m =-1212106MF MF F F +=>=M x 210a =26c =5a =3c =4b =C 2212516x y +=对C 选项,通径的长度为,故C 选项正确;对D 选项,设与直线平行的直线为,,将与联立得,令,解得,此时直线与椭圆相切,当时,切点到直线的距离最大,直线的方程为,故曲线上的点到直线D 选项正确.故选BCD.11.AC 【解析】以为坐标原点,,,所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则,,,,,∴,,∴,∴与A 正确;取的中点,连接,,,则,故梯形为过点,,的该正方体的截面,∵,,∴梯形,1632255⨯=4510x ++=l 40x t ++=51t ≠40x t ++=2212516x y +=221004000y t ++-=()22Δ3004004000tt =--=40t =±l 40t =-4510x ++=l 4400x +-=C 4510x ++=A 'A D ''A B ''A A '()0,0,2A ()1,2,2M ()2,0,0D '()0,2,0B '()2,2,0C '()1,2,0AM = ()2,2,0DB''=-cos ,AM D B AM D B AM D B '⋅'''''⋅==AM D B ''C C 'N M N D N 'AD 'M N BC AD ''∥∥M N D A 'A M D 'MN AD '=AM D N ='=M N D A '=∴梯形的面积为,故B 错误;由对称性可知,,故,又由于,,,四点共面,故,当为与的交点时等号成立,故C 正确,设点关于平面的对称点为,连接,当与平面的交点为时,最小,过点作的平行线,过点作的平行线,两者交于点,此时,D 错误.故选AC.三、填空题12.1000 【解析】由题知,.13. 【解析】设直线的倾斜角为,当时,直线为,;当时,,当且仅当时取等号, ∴;当时,,当且仅当时取等号, ∴,综上可得.14.【解析】连接,,由点在以为直径的圆上,故.M N D A '1922⨯+=PB PD '='PB PM PD PM '++'=A 'B C D '3PB PM PD PM D M +=+'''=…P A C 'D M 'F B C C B ''F 'EF 'EF 'B C C B ''Q QE QF QE QF +=+'E AD 'F AB G 13EG AD =='2G F '=EF =='11112222lg 4.8 1.59,lg lg 3lg 31000lg 4.8 1.57E E EE E E E E =+⨯⎧⇒-=⇒=⇒=⎨=+⨯⎩π2π,33⎡⎤⎢⎥⎣⎦()243410a x ay +-+=α0α=310x +=π2α=0α>2433tan 44a k a a a α+===+= (3)4a a =ππ,32α⎡⎫∈⎪⎢⎣⎭0α<24333tan 444a k a a a a a α+⎛⎫===+=--+-= ⎪-⎝⎭ (3)4a a -=-π2π,23α⎛⎤∈ ⎥⎝⎦π2π,33α⎡⎤∈⎢⎥⎣⎦121PF 1QF P 12F F 12PF PF ⊥又,在椭圆上,故有,.设,则,,,.在中,由勾股定理得,解得,于是,,故.四、解答题15.【解析】(1)由已知化简两圆的方程为标准方程分别为:,,则圆心分别为,,,解得.(2)当,则,所以两圆相交,则两圆的公共弦所在直线的方程为:,即,圆心到直线的距离,所以公共弦长.16.【解析】(1)由正弦定理得,所以,所以,化简得,又,所以,因此.(2)由,得,由余弦定理及,又,得,解得,从而.又因为,且,所以.P Q 122PF PF a +=122QF QF a +=2QF m =22PF m =122PF a m =-12QF a m =-3PQ m =1Rt PQF △()()()2223222m a m a m +-=-3a m =223a PF =143a PF =1121tan 2PF k PF F ∠==()()221311x y -+-=()()()22566161x y m m -+-=-<()1,3M ()5,6N =+25m =+45m =4=44<<+()22222611012450x y x y x y x y +----+--+=43230x y +-=()1,3M 43230x y +-=2d l ==()()cos 2cos sin 2sin sin cos A C B C A B -=-cos sin 2cos sin 2sin cos sin cos A B C B C B A B -=-cos sin sin cos 2cos sin 2sin cos A B A B C B C B +=+()()sin 2sin A B B C +=+πA B C ++=sin 2sin C A =sin 2sin CA=sin 2sin C A =2c a =2222cos b a c ac B =+-1cos 4B =2b =22214444a a a =+-⨯1a =2c =1cos 4B =0πB <<sin B =因此.17.【解析】(1)因为平面,,平面,所以,,又,所以,,两两垂直.以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系,如下图所示,则,,,,因为点为中点,所以,,又,,所以,所以,,为共面向量,则在平面内存在直线与平面外的直线平行,所以平面.(2)设,,,,依题意可知,平面的法向量为,设平面的法向量为,则令,则.因为平面与平面所成角的余弦值为,所以,解得或,所以存在点使得平面与平面所成角的余弦值为,或.18.【解析】(1)由题意得:,解得,11sin 1222ABC S ac B ==⨯⨯=△PA ⊥ABCD A D AB ⊂ABCD PA AD ⊥PA AB ⊥AB AD ⊥PA AB A D A AB x A D y AP z ()0,0,2P ()2,0,0B ()0,2,0D ()2,4,0C M PC ()1,2,1M ()1,0,1DM =()0,0,2AP = ()2,0,0AB =1122DM AP AB =+ DM ,AP A BPAB l PAB DM DM ∥PAB ()2,,0E a 04a ……()0,2,2DP =- ()2,2,0DE a =-ADE ()0,0,2AP =PDE (),,n x y z =()220,220,DP n y z DE n x a y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩1z =2,1,12a n -⎛⎫= ⎪⎝⎭ PDE ADE 232cos ,3AP n AP n AP n ⋅==⋅23=1a =3a =E PDE ADE 231BE =3BE =()100.010.0150.020.0251t ⨯++++=0.03t =设第60百分位数为,则,解得,即第60百分位数为85.(2)由题意知,抽出的5位同学中,得分在的有人,设为,,在的有人,设为a ,b ,c .则样本空间为,.设事件“两人分别来自和”,则,,因此,所以两人得分分别来自和的概率为. (3)由题得:①;②略19.【解析】(1)(ⅰ)当直线的斜率不存在时,,两点关于轴对称,所以,,因为在椭圆上,所以,①又因为,所以由①②得,,此时,.(ⅱ)当直线的斜率存在时,设直线的方程为,由题意知,将其代入得,其中,即,(*)又,,所以,x ()0.01100.015100.02100.03800.6x ⨯+⨯+⨯+⨯-=85x =[)70,8085220⨯=A B [)80,90125320⨯=()()()()()()()()()(){}Ω,,,,,,,,,,,,,,,,,,,A B A a A b A c B a B b B c a b a c b c =()Ω10n =M =[)70,80[)80,90()()()()()(){},,,,,,,,,,,M A a A b A c B a B b B c =()6n M=()()()63Ω105n M P M n ===[)70,80[)80,9035mx ny m n w x y m n m n m n+==++++l P Q x 21x x =21y y =-()11,P x y 2211132x y +=OPQ S =△11x y ⋅=1x =11y =22123x x +=22122y y +=l l y kx m =+0m ≠22132x y +=()()222236320k x kmx m +++-=()()2222Δ36122320k m k m =-+->2232k m +>122623km x x k +=-+()21223223m x x k -=+PQ ==因为点到直线的距离为,所以又,整理得,且符合(*)式,此时,,综上所述,,,结论成立。
高二上学期第一次月考数学试卷(答案在最后)(考试时间:120分钟试卷满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.某工厂生产的产品的合格率是99.99%,这说明()A.该厂生产的10000件产品中不合格的产品一定有1件B.该厂生产的10000件产品中合格的产品一定有9999件C.该厂生产的10000件产品中没有不合格的产品D.该厂生产的产品合格的可能性是99.99%【答案】D 【解析】【分析】由概率的定义逐一分析即可.【详解】对于A :该厂生产的10000件产品中不合格的产品不一定有1件,可能是多件或者没有,故A 错误;对于B :该厂生产的10000件产品中合格的产品不一定是9999件,故B 错误;对于C :该厂生产的10000件产品中可能有不合格产品,故C 错误;对于D :该厂生产的产品合格的可能性是99.99%,故D 正确;故选:D.2.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为()A.0.42B.0.12C.0.18D.0.28【答案】B 【解析】【分析】由两人考试相互独立和达到优秀的概率可得.【详解】所求概率为()()10.610.70.12-⨯-=.故选B.【点睛】本题考查相互独立事件概率计算公式,属于基础题.3.在一次随机试验中,彼此互斥的事件,,,A B C D 发生的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()A.A B 与C 是互斥事件,也是对立事件B.B C ⋃与D 是互斥事件,也是对立事件C.A C U 与B D 是互斥事件,但不是对立事件D.A 与B C D 是互斥事件,也是对立事件【答案】D 【解析】【分析】根据互斥事件的定义和对立事件的性质逐项判断后可得正确的选项.【详解】A 中,因为,,,A B C D 彼此互斥,故A B 与C 是互斥事件,而()()0.71P A B P C ⋃+=<,故A B 与C 不是对立事件,故A 错误;B 中,因为,,,A B C D 彼此互斥,故B C ⋃与D 是互斥事件,而()()0.81P C B P D ⋃+=<,故B C ⋃与D 不是对立事件,故B 错误;C 中,因为,,,A B C D 彼此互斥,故A C U 与B D 是互斥事件,而()()1P A C P B D ⋃+⋃=,故A C U 与B D 是对立事件,故C 错误;D 中,因为,,,A B C D 彼此互斥,故A 与B C D 互斥事件,而()()1P A P B C D +⋃⋃=,故A 与B C D 是对立事件,故D 正确;故选:D.4.如图,在四面体OABC 中,点M 在棱OA 上,且满足2OM MA =,点N ,G 分别是线段BC ,MN 的中点,则用向量OA ,OB ,OC 表示向量OG应为()A.111344OG OA OB OC=++ B.111344OG OA OB OC=-+C.111344OG OA OB OC=-- D.111344OG OA OB OC=+- 【答案】A 【解析】【分析】利用空间向量基本定理以及空间向量的线性运算进行求解即可.【详解】因为2OM MA =,所以23OM OA =,因为点N ,G 分别是线段BC ,MN 的中点,所以111211111()222322344OG OM ON OA OB OC OA OB OC =+=⨯+⨯+=++,所以111344OG OA OB OC =++ .故选:A .5.已知随机事件A 和B 互斥,且()0.7P A B ⋃=,()0.2P B =,则()P A =A.0.5 B.0.1 C.0.7 D.0.8【答案】A 【解析】【分析】由()()()+0.7P A B P B P A ⋃==,可求出()P A ,进而可求出()P A .【详解】因为事件A 和B 互斥,所以()()()+0.7P A B P B P A ⋃==,则()=0.7-0.2=0.5P A ,故()()1-0.5P A P A ==.故答案为A.【点睛】本题考查了互斥事件概率加法公式,考查了对立事件的概率求法,考查了计算求解能力,属于基础题.6.已知正四面体D ABC -的各棱长为1,点E 是AB 的中点,则EC AD ⋅的值为()A.14B.14-C.34D.34-【答案】A 【解析】【分析】把EC 表示为AC AE -,然后再求数量积.【详解】由题意,四面体D ABC -是正四面体,每个面都是正三角形,∴EC AD ⋅ ()AC AE AD AC AD AE AD =-⋅=⋅-⋅ 1111cos 601cos 6024=⨯⨯︒-⨯⨯︒=.故选:A.【点睛】本题考查向量的数量积,解题关键是把EC 表示为AC AE -,然后计算即可.7.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p ,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为()A.35B.45 C.34D.14【答案】C 【解析】【分析】根据独立事件概率乘法公式,结合各射击一次得分之和为2的概率构造方程求解即可.【详解】记甲、乙两人各射击一次的得分之和为X ,则()()33319211555520P X p p p ⎛⎫==⨯-+-=-= ⎪⎝⎭,解得:34p =.故选:C.8.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称“甲、乙心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.19B.29C.718D.49【答案】D 【解析】【分析】由题意,样本点总数为36,可列举出满足条件的样本点共16个,由古典概型的概率公式,即得解【详解】记“|a -b |≤1”为事件A ,由于a ,b ∈{1,2,3,4,5,6},则事件A 包含的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16个,而依题意得,样本点总数为36,且每个样本点出现的可能性相等.因此他们“心有灵犀”的概率P =1636=49.故选:D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是()A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为12【答案】ACD 【解析】【分析】根据独立事件乘法公式计算2个球都是红球的概率,判断A ;利用对立事件的概率计算方法求得2个球不都是红球的概率,判断B;根据对立事件的概率计算判断C;根据互斥事件的概率计算可判断D.【详解】设“从甲袋中摸出一个红球”为事件1A ,从“乙袋中摸出一个红球”为事件2A ,则()113P A =,()212P A =,对于A 选项,2个球都是红球为12A A ,其概率为111326⨯=,故A 选项正确,对于B 选项,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为15166-=,故B 选项错误,对于C 选项,2个球至少有一个红球的概率为()()1221211323P A P A -=-⨯=,故C 选项正确,对于D 选项,2个球中恰有1个红球的概率为1211232132⨯+⨯=,故D 选项正确.故选:ACD .10.下列各对事件中,M 、N 是相互独立事件的有()A.掷1枚质地均匀的骰子一次,事件M =“出现的点数为奇数”,事件N =“出现的点数为偶数”B.袋中有5个红球,5个黄球,除颜色外完全相同,依次不放回地摸两次,事件M =“第1次摸到红球”,事件N =“第2次摸到红球”C.分别抛掷2枚相同的硬币,事件M =“第1枚为正面”,事件N =“两枚结果相同”D.一枚硬币掷两次,事件M =“第一次为正面”,事件N =“第二次为反面”【答案】CD 【解析】【分析】利用独立事件的定义可判断AC 选项;利用事件的关系可判断BD 选项.【详解】对于A 选项,掷1枚质地均匀的骰子一次,事件M =“出现的点数为奇数”,事件N =“出现的点数为偶数”,则事件MN =“出现的点数为奇数且为偶数”,所以,()0P MN =,又因为()()12P M P N ==,所以,()()()P MN P M P N ≠⋅,所以,M 、N 不相互独立,A 不满足;对于B 选项,袋中有5个红球,5个黄球,除颜色外完全相同,依次不放回地摸两次,事件M =“第1次摸到红球”,事件N =“第2次摸到红球”,由题意可知,事件M 的发生影响事件N 的发生,故M 、N 不相互独立,B 不满足;对于C 选项,分别抛掷2枚相同的硬币,事件M =“第1枚为正面”,事件N =“两枚结果相同”,则事件MN =“两枚硬币都正面向上”,则()14P MN =,又因为()12P M =,()2142P N ==,则()()()P MN P M P N =⋅,所以,M 、N 相互独立,C 满足;对于D 选项,一枚硬币掷两次,事件M =“第一次为正面”,事件N =“第二次为反面”,第一次为正面对第二次的结果不影响,因此,M 、N 相互独立,D 满足.故选:CD.11.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且()()2,45P A a P B a =-=-,则实数a 的值可以是()A.1312 B.54C.43D.3124【答案】CD 【解析】【分析】由互斥事件的概率性质列不等式组求解即可;【详解】解:由题意可知()()()()01011P A P B P A P B ⎧<<⎪<<⎨⎪+≤⎩,即0210451 331a a a <-<⎧⎪<-<⎨⎪-≤⎩,即12534243a a a ⎧⎪<<⎪⎪<<⎨⎪⎪≤⎪⎩,解得5443a <≤,故选:CD.三、填空题:本题共3小题,每小题5分,共15分.12.平行六面体1111ABCD A B C D -中,若11BC xAB yAC z AA =++,则x y z --=______.【答案】3-【解析】【分析】画出图象,根据向量的加、减法的法则求解即可.【详解】 111BC AC AB AA AC AB →→→→→=-=+-,11BC xAB yAC z AA =++ ,∴1,1,1x y z =-==,则3x y z --=-.故答案为:-3.13.在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为715,取得两个绿玻璃球的概率为115,则取得两个同颜色的玻璃球的概率为________;至少取得一个红玻璃球的概率为________.【答案】①.815②.1415【解析】【分析】“取得两个同颜色的球”是由“取得两个红球”与“取得两个绿球”的和事件,利用互斥事件的概率公式求出概率;“至少取得一个红球”与“取得两个绿球”为对立事件,利用对立事件的概率公式求出概率.【详解】取得两个同颜色的玻璃球包括两个红玻璃球或两个绿玻璃球故取得两个同颜色的玻璃球的概率1718151515P =+=;“至少取得一个红玻璃球”的对立事件是“取得两个绿玻璃球”故至少取得一个红玻璃球的概率211411515P =-=故答案为:815;1415【点睛】本题考查互斥事件的概率公式;对立事件的概率公式,属于基础题.14.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为____.【答案】0.09.【解析】【分析】当乙连胜四局时,对阵情况是第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;第四局:乙对丙,乙胜,然后利用概率公式进行求解即可【详解】当乙连胜四局时,对阵情况如下:第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;第四局:乙对丙,乙胜.所求概率为P 1=(1﹣0.4)2×0.52=0.32=0.09∴乙连胜四局的概率为0.09【点睛】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.抛掷两枚质地均匀的骰子(标记为I 号和II 号),观察两枚骰子分别可能出现的基本结果,(1)写出这个试验的样本空间,并判断这个试验是否为古典概型;(2)求下列事件的概率:A =“两个点数之和是5”;B =“两个点数相等”;C =“I 号骰子的点数大于II 号骰子的点数”.【答案】(1)(){}{},,1,2,3,4,5,6m n m n Ω=∈,是古典概型(2)19;16;512【解析】【分析】(1)确定样本空间中试验结果是不是有限的,每个试验结果是不是等可能的即可.(2)用列举法再写出事件,,A B C 所含基本事件的个数,从而可计算出概率.【详解】解:(1)抛掷一枚骰子有6种等可能的结果,I 号骰子的每一个结果都可与II 号骰子的任意一个结果配对,组成掷两枚骰子试验的一个结果.用数字m 表示I 号骰子出现的点数是m ,数字n 表示II 号骰子出现的点数是n ,则数组(),m n 表示这个试验的一个样本点.因此该试验的样本空间(){}{},,1,2,3,4,5,6m n m n Ω=∈,其中共有36个样本点.由于骰子的质地均匀,所以各个样本点出现的可能性相等,因此这个试验是古典概型.(2)因为()()()(){}1,4,2,3,3,2,4,1A =,所以()4n A =,从而()()()41369n A P A n===Ω;因为()()()()()(){}1,1,2,2,3,3,4,4,5,5,6,6B =,所以()6n B =,从而()()()61366n B P B n ===Ω;因为()()()()()()()()()()()()()()(){}2,1,3,1,3,2,4,1,4,2,4,3,5,1,5,2,5,3,5,4,6,1,6,2,6,3,6,4,6,5C =,所以()15n C =,从而()()()1553612n C P C n ===Ω;【点睛】本题考查样本空间,考查古典概型,属于基础题.16.某学校有学生1000人,为了解学生对本校食堂服务满意程度,随机抽取了100名学生对本校食堂服务满意程度打分,根据这100名学生的打分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[)[)[)[)[)[]40,50,50,60,60,70,70,80,80,90,90,100.(1)求频率分布直方图中a 的值,并估计该校学生满意度打分不低于70分的人数;(2)若采用分层抽样的方法,从打分在[)40,60的受访学生中随机抽取5人了解情况,再从中选取2人进行跟踪分析,求这2人至少有一人评分在[)40,50的概率.【答案】(1)0.006a =,680人(2)710【解析】【分析】(1)由频率分布直方图中所有小矩形的面积之和为1得到方程,即可求出a ,再估计出满意度打分不低于70分的人数;(2)首先求出打分在[)40,50和[)50,60内人数,再用列举法列出所有可能结果,最后根据古典概型的概率公式计算可得.【小问1详解】由频率分布直方图可知,()0.0040.0180.02220.028101a +++⨯+⨯=,解得0.006a =.该校学生满意度打分不低于70分的人数为()10000.280.220.18680⨯++=.【小问2详解】由频率分布直方图可知,打分在[)40,50和[)50,60内的频率分别为0.04和0.06,抽取的5人采用分层抽样的方法,在[)40,50内的人数为2人,在[)50,60内的人数为3人.设[)40,50内的2人打分分别为1a ,2a ,[)50,60内的3人打分分别为1A ,2A ,3A ,则从[)40,60的受访学生中随机抽取2人,2人打分的基本事件有:()()()121112,,,,,a a a A a A ,()()()()13212223,,,,a A a A a A a A ,,,,()()()121323,,,,,A A A A A A 共10种.其中两人都在[)50,60内的可能结果为()()()121323,,,,,A A A A A A ,则这2人至少有一人打分在[)40,50的概率3711010P =-=.17.如图,正三棱柱111ABC A B C -.(1)设侧棱长为1,求证:11AB BC ⊥;(2)设1AB 与1BC 的夹角为3π,求侧棱的长.【答案】(1)证明见解析(2)2【解析】【分析】(1)根据空间向量的线性运算表示1AB 与1BC ,结合向量数量积的运算律计算11AB BC ⋅ ,即可得证;(2)根据向量数量积的运算律表示数量积及模长,根据夹角可得模长.【小问1详解】由已知得11AB AB BB =+ ,11111BC BB B C BB BC =+=+ ,1BB ⊥ 平面ABC ,10BB AB ∴⋅= ,10BB BC ⋅= ,又ABC 是正三角形,2,,33AB BC BA BC ππππ∴=-=-= ,()()21111111AB BC AB BB BB BC AB BB AB BC BB BB BC ∴⋅=+⋅+=⋅+⋅++⋅2110cos ,0102AB BC AB BC BB ⎛⎫=+⋅⋅++=-+= ⎪⎝⎭;11AB BC ∴⊥;【小问2详解】由(1)得221111cos ,1AB BC AB BC AB BC BB BB ⋅=⋅⋅+=- ,又1AB =,1BC = 211111211111cos ,22BB AB BC AB BC AB BC BB -⋅∴===⋅+ ,解得12BB = ,即侧棱长为2.18.已知四边形ABCD 为正方形,P 是四边形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O ,Q 是CD 的中点,求下列各题中x ,y 的值.(1)OQ PQ xPC yPA =++ ;(2)PA xPO yPQ PD =++ .【答案】(1)12x y ==-(2)2x =,2y =-【解析】【分析】(1)利用向量的三角形法则及其向量相等即可得出.(2)利用向量的三角形法则及其向量相等即可得出.由图可知,()111222OQ PQ PO PQ PA PC PQ PA PC =-=-+=-- ,12x y ∴==-.【小问2详解】2PA PC PO += ,2PA PO PC ∴=- .2PC PD PQ += ,2PC PQ PD ∴=- ,()2222PA PO PQ PD PO PQ PD ∴=--=-+ .2x ∴=,2y =-.19.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)写出甲、乙抽到牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌的数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的数字比乙的大,则甲胜;否则乙胜,你认为此游戏是否公平?为什么?【答案】(1)答案见解析(2)23(3)游戏不公平,理由见解析【解析】【分析】(1)由题意写出所有抽牌情况即可;(2)由古典概率计算即可;(3)找到甲抽到的牌的数字比乙的大的情况,再由古典概率计算,比较大小即可;分别用2,3,4,4'表示红桃2,红桃3,红桃4,方片4,则甲、乙抽到牌的所有情况为()()()()()()()()()()()()2,3,2,4,2,4,3,2,3,4,3,4,4,2,4,3,4,4,4,2,4,3,4,4'''''',共12种不同的情况.【小问2详解】甲抽到红桃3,乙抽到的只能是红桃2,红桃4,方片4,因此乙抽到牌的数字比3大的概率是23,【小问3详解】甲抽到的牌的数字比乙的大,有()()()()()3,2,4,2,4,3,4,2,4,3'',共5种情况,因此甲胜的概率为512,乙胜的概率为712.因此512<712,所以此游戏不公平.。
高二上学期数学第一次月考练习题及答案学校:___________班级:___________姓名:___________学号:___________一、单选题1. 直线10x y -+=的倾斜角为( )A .30°B .45°C .120°D .135° 2. 已知在空间直角坐标系中,A(1,-2,4),B(-2,3,0),C(2,-2,-5).则AC AB •是( ) A. 12 B. 23 C. 18 D. 333. 已知()()()1,1,1,3,,3,1,2,-===c y b x a ,且c a ⊥,c b //则=-b a 2( )A. ()121,,B. ()121,,-C. ()171--,,D. ()172,,4. 直线()()12120a x a y ---+=恒过一定点, 则此定点为( )A.(2,3)B.(2,4)C.(4,2) D(3,2 )三、填空题5. 直线0142=-+y x 的一个方向向量为______.6. 已知过点(-1,3),且与直线02143=-+y x 垂直的直线方程为__________.四、解答题7. 如图,在长方体1111ABCD A BC D -中12AAAD ==,点M 为AB 的中点,点N 是1BB 上靠近1B 的三等分点,1BD 与1B D 交于点O .(1)求证://OM 平面11BCC B ;(2)若1CO B D ⊥,求点N 到平面COM 的距离.参考答案1. B2. D3. C4.C5.满足21-=x y 的坐标均成立。
6..03134=+-y x7.【小问1详解】解:连接11,AD BC ,由O 和M 分别为线段1,BD AB 的中点,所以1//OM AD又由11AB D C =且11//AB D C ,所以四边形11ABC D 是平行四边形 所以11//AD BC ,可得1//OM BC因为OM ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//OM 平面11BCC B .【小问2详解】解:连接11,BC C N ,由221122BC BC CC =+=因为O 为1B D 的中点,且1CO B D ⊥,所以122CD BC == 以D 为原点,1,,DA DC DD 所在直线分别为,,x y z 轴建立空间直角坐标系D xyz - 如图所示,则4(0,22,0),2,0),2,1),2,22,3C M O N ⎛⎫⎪⎝⎭ 所以()()1,2,1,2,2,0CO CM =-=-.设平面COM 的法向量为()111,,m x y z =,则1111120220m CO x y z m CM x y ⎧⋅=+=⎪⎨⋅==⎪⎩ 令11x =,则112,1y z ==,所以()1,2,1m =. 因为42,0,3CN ⎛⎫= ⎪⎝⎭,所以点N 到平面COM 的距离为53CN md m ⋅==.。
2024-2025学年高二上期10月月考数学试卷考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的倾斜角是( )A. B. C.D.2.已知平面的法向量为,平面的法向量为,若,则k 等于( )A. 4B. -4C. 5D. 3.若双曲线离心率为2,过点,则该双曲线的方程为( )A. B. C. D. 4.若圆:与圆:相切,则( )A .9B .10C .11D .9或115.如图,一束光线从出发,经直线反射后又经过点,则光线从A 到B 走过的路程为()AB .CD .6.如图,棱长为1的正方体,中M ,N 点,分别是线段,的中点,记E 是线段的中点,则点E 到面的距离为()10y --=3π-6π-6π3πα(1,2,2)a =-β(2,4,)b k =-- αβ⊥5-2222:1x y C a b-=2221x y -=2213y x -=22531x y -=22126x y -=1C ()()22121x y ++-=2C ()()22256x y r -++=r =()1,0A 10x y ++=()6,5B -1111ABCD A B C D -1BB 1DD 1MC 1ANBA.BCD .7.已知,,动点P 满足,则点P 的轨迹与圆相交的弦长等于()A .BCD8.棱长为2的菱形ABCD 中,,将沿对角线BD 翻折,使A 到P 的位置,得到三棱锥,在翻折过程中,下列结论正确的是( )A .三棱锥B .C .存在某个位置,使得D .存在某个位置,使得面BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.以下四个命题正确的有()A .直线与直线B .直线l 过定点,点和到直线l 距离相等,则直线l 的方程为C .点到直线D .已知,则“直线与直线垂直”是“”的必要不充分条件10.下列说法正确的是()A .在四面体OABC 中,若,则A ,B ,C ,G 四点共面B .若G 是四面体OABC 的底面三角形ABC 的重心,则C .已知平行六面体的棱长均为1,且,则2313()2,0A -()2,0B PAPB=224x y +=60BAD ∠=︒ABD △P BCD -P BCD -CD PC⊥CD PB⊥CP ⊥220x y +-=2410x y ++=()0,1-()3,4A --()6,3B 330x y -++=()1,210x y +-=a R ∈210ax y +-=()120a x ay a +-+=3a =151266OG OA OB OC =-++()13OG OA OB OC=++1111ABCD A B C D -1160BAD BAA DAA ∠=∠=∠=︒对角线D .若向量,则称为在基底下的坐标,已知向量在单位正交基底下的坐标为,则向量在基底下的坐标为11“黄金椭圆”,在椭圆中,,,,分别是椭圆的左、右顶点和上、下顶点,,是椭圆的左、右焦点,P 是椭圆上的动点,则下列选项中,能使椭圆是“黄金椭圆”的有()A .轴且B .C .四边形的内切圆过D .非选择题部分三、填空题,本题共3小题,每小题5分,共15分12.已知椭圆C :,则椭圆的短轴长为______.13.已知,过定点M 的动直线与过定点N 的动直线相交于点P ,则的最大值是______.14.已知一张纸上画有半径为4的圆O ,在圆O 内有一个定点A ,且,折叠纸片,使圆上某一点刚好与A 点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C .则曲线C 上的点到点O 的最大距离为______.四、解答题;本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)如图,在正方体中,E 为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.1AC =p mx n y k z =++ (),,m n k p {},,x y z p{},,a b c ()1,2,3p {},,a b a b c -+ 13,,322⎛⎫- ⎪⎝⎭()222210x y a b a b+=>>1A 2A 1B 2B 1F 2F 1PF x ⊥21//PO A B 2121122F F A F A F =1122A B A B 1F 2212A B F B ⊥2221x y +=a R ∈310ax y a --+=310x ay a +--=PM PN 2OA =A 'A 'OA '1111ABCD A B C D -1BB 1A C ⊥11AB D 1CC 1AD E16.(本小题15分)圆C 过点和,圆心C 在直线上.(1)求圆C 的标准方程(2)直线l 经过点,且被圆C 所截得的弦长为4,求直线l 的方程17.(本小题15分)已知O 为坐标原点,是椭圆C:的左焦点,点P 是椭圆的上顶点,以点P 为圆心且过的圆恰好与直线相切.(1)求椭圆C 的方程(2)斜率为1的直线l 交椭圆C 于A ,B两点,求面积的最大值18.(本小题17分)如图,在四棱锥中,平面平面ABCD ,,,BD 是的平分线,且,二面角的大小为60°.(1)若E 是棱PC 的中点,求证:平面PAD(2)求平面PAB 与平面PCD 所成的二面角的夹角的余弦值19.(本小题17分)已知圆O 的方程为,与x 轴的正半轴交于点N ,过点作直线与圆O交于A 、B 两点.(1)若坐标原点O 到直线AB 的距离为1,求直线AB 的方程;(2)如图所示,已知点P(-4,0), 一条斜率为-1的直线交圆于R ,S 两点,连接PS ,PR ,试问是否存在锐角,,使得为定值?若存在,求出该定值,若不存在,说明理由.()4,2A ()1,3B 1y x =-()1,1P -()11,0F -()222210x y a b a b+=>>1F x =AOB △P ABCD -PAD ⊥2PA AD ==4BD =AB =ADC ∠BD BC ⊥P AB D --//BE 2216x y +=()3.0M NPS ∠NPR ∠NPS NPR ∠+∠高二年级数学答案一、选择题:1.D 2.D 3.B 4.D 5.C 6.D 7.A 8.C 二、选择题;9.ACD 10.BCD 11.CD三、填空题;1213.4 14.3四、解答题;解答应写出文字说明,证明过程或演算步骤.15.解:(Ⅰ)由正方体的性质可知,面,则,又,,∴面,则同理,,∴平面(Ⅱ)解法一:以A 为原点,AD 、AB 、分别为x 、y 和z 轴建立如图所示的空间直角坐标系,设正方体的棱长为a ,则,,,,∴,,,设平面的法向量为,则,即,令,则,,∴,设直线与平面所成角为θ,则,故直线与平面所成角的正弦值为.BC ⊥11ABB A 1BC AB ⊥11AB A B ⊥1BC A B B = AB ⊥1A BC 11AB A C⊥111B D A C ⊥1111B D AB B = 1A C ⊥11AB D 1AA ()0,0,0A ()10,0,A a =()1,0,D a a 10,,2E a a ⎛⎫ ⎪⎝⎭()10,0,AA a = ()1,0,AD a a = 10,,2AE a a ⎛⎫= ⎪⎝⎭ 1AD E (),,m x y z = 10m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩ ()0102a x z a y z +=⎧⎪⎨⎛⎫+= ⎪⎪⎝⎭⎩2z =2x =-1y =-()2,1,2m =--1AA 1AD E 11122sin cos ,33m AA a m AA a m AA θ⋅====⋅⋅1CC 1AD E 23解法二:设正方体的棱长为,则,,,, 由余弦定理知,∴,∴,设点到平面的距离为h ,∵,∴,∴,设直线与平面所成角为θ,则.故直线与平面所成角的正弦值为.16.(1)AB 的中垂线方程为,联立,知,则∴圆C 的标准方程是(2)若直线l 的斜率不存在,直线l :,弦长,成立若直线l 的斜率存在,设直线l :,圆心C到直线l 的距离为1,,则直线l :∴直线l :或17.(1)∴椭圆C 的方程为(2)设,,直线l :联立方程,得2a 1AD =AE =13ED a =1212222AA D S a a a =⋅⋅=△2221111cos 2AD AE ED EAD AD AE +-∠===⋅⋅1sin EAD ∠=12111sin 32EAD S AD AE EAD a =⋅⋅∠=△1A 1EAD 111A EAD E AA D V V --=221132233h a a a ⋅=⋅⋅43h a =1AA 1AD E 1423sin 23a h AA a θ===1CC 1AD E 2335y x =-351y x y x =-⎧⎨=-⎩()2,1C r =()()22215x y -+-=1x =4=()11y k x +=-134k =3744y x =-1x =3744y x =-a =1c =2212x y +=()11,A x y ()22,B x y y x m=+2212y x m x y =+⎧⎪⎨+=⎪⎩2234220x mx m ++-=∵直线l 交椭圆C 于A ,B 两点 ∴,得,∴弦长又点O 到直线l 的距离∴当,即时取得等号 ∴18.解:(1)取CD 中点F ,连接BF ,EF ∵ ∴,则而B D 是的平分线,则,从而,则,BF 不在平面PAD 内,平面PAD ,则平面PAD E ,F 分别是PC ,CD 的中点,则,EF 不在平面PAD 内,平面PAD ,则平面PAD ,又∴平面平面PAD ∴平面PAD(2)由题知,,又面面ABCD ,得面PAD 则是二面角的平面角,即,是等边三角形,如图建系,,,设平面PAB 的一个法向量为,则,得,令,则()221612220m m ∆=-->23m <1243m x x +=-212223m x x -=2ABx =-=d 1122S AB d =⋅==≤232m =m =max S =BDBC ⊥BF DF =FDB FBD∠=∠ADC ∠FDB ABD ∠=∠FBD ADB ∠=∠//BF AD AD ⊆//BF//EF PD PD ⊆//EF EF BF F= //BEF //BE BA AD ⊥PAD ⊥BA ⊥PAD ∠P AB D --60PAD ∠=︒PAD ∆(P ()1,0B -()0,1,0D ()C ()1,,n x y z =1100n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩0y ⎧=⎪⎨=⎪⎩1z =()10,n =同理平面的PCD 一个法向量,设平面PAB 与平面PCD 的夹角为α则∴平面PAB 与平面PCD19.(1)若直线AB 的斜率不存在,距离为3,不符合若直线AB 的斜率存在,设直线AB :,得∴直线AB 的方程为(2)设直线RS :,,记,,联立方程,得 ∴,,∴,∴∵,都是锐角 ∴的定值.()1n =-1212cos n n n n α⋅==()3y k x =-1=k =y x =y x =y x m =-+()11,R x y ()22,S x y 111tan 4y k NPR x ==∠+222tan 4y k NPS x ==∠+2216x y y x m⎧+=⎨=-+⎩2222160x mx m -+-=12x x m +=212162m x x -=()12122y y x x m m +=-++=()()21212162m y y x m x m -=-+-+=()1212121244tan tan tan 1tan tan 144y yx x NPS NPRNPS NPR y y NPS NPR x x +++∠+∠∠+∠==-∠⋅∠-⋅++()()()12121212122484161416416x x m x x m m x x x x y y m -+-+++===+++-+NPS ∠NPR ∠0NPS NPR π<∠+∠<4πNPS NPR ∠+∠=。
2024~2025(上)高二年级第一次月考数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章2.3.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线20x +-=的倾斜角为()A.6π B.4π C.3π D.5π62.若1:10l x my --=与()2:2310l m x y --+=是两条不同的直线,则“1m =-”是“12l l ∥”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.已知直线l 的一个方向向量()3,2,1m =-,且直线l 经过(),2,1A a -和()2,3,B b -两点,则a b +=()A.2- B.1- C.1D.24.已知()2,3,1a = ,()1,2,2b =-- ,则a 在b上的投影向量为()A.2bB.2b- C.23b D.23b- 5.下列关于空间向量的说法中错误的是()A.平行于同一个平面的向量叫做共面向量B.空间任意三个向量都可以构成空间的一个基底C.直线可以由其上一点和它的方向向量确定D.任意两个空间向量都可以通过平移转化为同一平面内的向量6.在平行六面体1111ABCD A B C D -中,点P 是线段BD 上的一点,且3PD PB =,设1A A a =,1111,A B b A D c == ,则1PC =()A .1324a b c ++ B.113444a b c -+C.1344a b c-++ D.131444a b c -+ 7.如图,直线334y x =+交x 轴于A 点,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M ,N 恰好落在直线334y x =+上,若点N 在第二象限内,则tan AON ∠的值为()A.17B.16C.15D.188.在棱长为2的正方体1111ABCD A B C D -中,EF 是正方体1111ABCD A B C D -外接球的直径,点P 是正方体1111ABCD A B C D -表面上的一点,则PE PF ⋅的取值范围是()A.[]2,0- B.[]1,0- C.[]0,1 D.[]0,2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.给出下列命题,其中正确的命题是()A.若空间向量a ,b 满足||a b = ,则a b= B.空间任意两个单位向量必相等C.在正方体1111ABCD A B C D -中,必有11BD B D =D.向量(1,1,0)a =的10.已知两条平行直线1l :10x y -+=和2l :0x y m -+=,则实数m 的值可能为()A.0B.1C.2D.-111.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是()A.1DB =B.向量AE 与1AC uuu r 所成角的余弦值为155C.平面AEF 的一个法向量是()4,1,2-D.点D 到平面AEF 的距离为21三、填空题:本题共3小题,每小题5分,共15分.12.直线1l ,2l 的斜率1k ,2k 是关于a 的方程2280a a n ++=的两根,若12l l ⊥,则实数n =______.13.在通用技术课程上,老师教大家利用现有工具研究动态问题.如图,老师事先给学生准备了一张坐标纸及一个三角板,三角板的三个顶点记为,,,2,4A B C AC AB BC ===.现移动边AC ,使得点,A C 分别在x 轴、y 轴的正半轴上运动,则OB (点O 为坐标原点)的最大值为__________.14.已知()1,1,1a =,()()0,,101b y y =≤≤ ,则cos ,a b 最大值为________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线1:10l x my ++=,2:240l x y --=,3:310l x y +-=.(1)若这三条直线交于一点,求实数m 的值;(2)若三条直线能构成三角形,求m 满足的条件.16.如图,在直三棱柱111ABC A B C -中,AC BC ⊥,1AC =,2BC =,13CC =,点D 是棱AB 的中点.(1)证明:1//AC 平面1B CD ;(2)求直线1A B 与平面1B CD 所成角的正弦值.17.已知直线:(21)(3)70l m x m y m +-++-=.(1)m 为何值时,点(3,4)Q 到直线l 的距离最大?并求出最大值;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,求AOB V (O 为坐标原点)面积的最小值及此时直线l 的方程.18.如图,在棱长为3的正方体1111ABCD A B C D -中,点E 是棱11A B 上的一点,且112A E EB =,点F 是棱11A D 上的一点,且112A F FD =.(1)求异面直线1AD 与CF 所成角的余弦值;(2)求直线BD 到平面CEF 的距离.19.如图,在四棱锥P ABCD -中,四边形ABCD 是边长为3的正方形,PA ⊥平面ABCD ,PC =,点E 是棱PB 的中点,点F 是棱PC 上的一点,且2PF FC =.(1)证明:平面AEC 平面PBC;(2)求平面AEF和平面AFC夹角的大小.2024~2025(上)高二年级第一次月考数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章2.3.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】CD 【10题答案】【答案】AC 【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】2-【13题答案】【答案】1+1+【14题答案】【答案】63四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.【15题答案】【答案】(1)1m =(2)1m ≠且13m ≠且12m ≠-【16题答案】【答案】(1)证明见解析(2)49【17题答案】【答案】(1)2219m =-;(2)面积的最小值为12,直线l 的方程为3x +2y +12=0.【18题答案】【答案】(1)19(2)34【19题答案】【答案】(1)证明见解析(2)4.。
2024-2025学年重庆市北碚区朝阳中学高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设空间向量a =(1,2,−1),b =(−2,−4,k),若a //b ,则实数k 的值为( )A. 2B. −10C. −2D. 102.已知空间向量p =2a−3b +3c ,q =3a +b +c ,则p +q 以{a ,b ,c }为单位正交基底时的坐标为( )A. (5,−3,4)B. (5,−2,4)C. (2,−3,3)D. (3,1,1)3.点A(2,3−μ,−1+v)关于x 轴的对称点为A′(λ,7,−6),则( )A. λ=−2,μ=−1,v =−5B. λ=2,μ=−4,v =−5C. λ=2,μ=10,v =8D. λ=2,μ=10,v =74.已知空间向量a =(1,0,3),b =(2,1,0),c =(5,2,z),若a ,b ,c 共面,则实数z 的值为( )A. 0B. 1C. 2D. 35.已知a =(−1,2,1),b =(2,−2,0),则a 在b 方向上的投影为( )A. − 6B. 6C. −3 22D. 3 226.如图,在平行六面体ABCD−A′B′C′D′中,AB =5,AD =3,AA′=7,∠BAD =60°,∠BAA′=∠DAA′=45°,则AC′的长为( )A. 98+56 2B. 98−56 2C. 89+56 2D. 89−56 27.已知向量a =(2,−1,3),b =(−4,2,t)的夹角为钝角,则实数t 的取值范围为( )A. (−∞,−6)B. (−∞,−6)∪(−6,103)C. (103,+∞) D. (−∞,103)8.如图,已知正四棱锥P−ABCD 的所有棱长均为1,E 为PC 的中点,则线段PA 上的动点M 到直线BE 的距离的最小值为( )A. 33 B. 22C. 13D. 12二、多选题:本题共3小题,共18分。
高二数学月考试题2018.9评卷人得分一、选择题(共60分)1等差数列{a}的公差为d,则数列{ca}(c为常数且c≠0)是()n nA.公差为d的等差数列B.公差为cd的等差数列C.不是等差数列D.以上都不对2.有关正弦定理的叙述:①正弦定理只适用于锐角三角形;②正弦定理不适用于直角三角形;③在某一确定的三角形中,各边与它的对角的正弦的比是定值;④在△ABC中,sinA∶sinB∶sinC=a∶b∶c.其中正确的个数是(A.1B.).2 C.3 D.43.已知S是等比数列{a}的前n项和,a=—2,a=16,则S等于(n n586A. B.—C. D.—)4.已知数列的通项公式an=则a a等于().23A.70B.28C.20D.85.在△ABC中,a∶b∶c=1∶5∶6,则sin A∶sin B∶sin C等于(A.1∶5∶)6 B.6∶5∶1C.6∶1∶5 D.不确定6.设{a}是由正数组成的等比数列,且a a=81,那么log a+log a+…+log a的值n563132310是().A.30B.20C.10D.57.一个等比数列的前7项和为48,前14项和为60,则前21项和为().A.180B.108C.75D.638.已知数列{a}的前n项和为S=2n-1,则此数列奇数项的前n项的和是().n nA.(2n+1-1)B.(2n+1-2) C.(22n-1) D.(22n -2)9.在△ABC中,角A,B,C的对边分别为a,b,c,若<△0,则ABC ().A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.是锐角或直角三角形10.在数列{a}中,a=2,2a=2a+1,则a的值为()n1n+1n101A.49B.50C.51D.5211.在△ABC中,a,b,c分别为角A,B,C的对边,如果2b=a+c,B=△30°,ABC的面积为,则b等于()A. C.B. D.12.等差数列{a}与{b},它们的前n项之和分别为S与S′,如n n n n(n∈N*),则的值是().A. B. C.D.评卷人得分二、填空题(共20分)13.在△ABC中,A=30°,AB=2,BC=△1,则ABC的面积等于__________.14.已知数列{a}的通项公式为a=2n-49,那么S达到最小值时n的值为n n n_________________.15.设数列{a}的前n项和S=3n-2,则数列{a}的通项公式为________.n n n16.等比数列{a}共2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比qn=_____________.评卷人得分三、解答题(共60分)17.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12.求这四个数.18.在△ABC中,ab=,sinB=sinC,面积为,求b.19.等比数列{a}的前n项和为S,已知S,S,S成等差数列.n n132(1)求{a}的公比q;n(2)若a-a=3,求S.13n20.在△ABC中,已知(a+b+c)(a+b—c)=3ab,且2cos A sin B=sin C△确定ABC的形状.21.已知数列{a}满足a=1,a=2a+1.n1n+1n(1)求证:数列{a+1}是等比数列;n(2)求a的表达式.n22.在数列中,,.(1)设.证明:数列是等差数列;(2)求数列的前项和.参考答案一、选择题1.答案:B解析:设b=ca,则b-b=ca-ca=c(a-a)=cd.n n n+1n n+1n n+1n2.答案:B解析:由正弦定理的概念知③④正确.3.答案:A解析:设公比为q,由题意,得解得q=—2,a=—.1所以S==.64.答案:C解析:由a=得a a=2×10=20.∴选C.n235.答案:A解析:由正弦定理,知sin A∶sin B∶sin C=a∶b∶c=1∶5∶6.6.答案:B解析:∵a>0,且{a}为等比数列,∴a a=a a=a a=a a=a a=81=34.∴n n11029384756log a+log a+…+log a=log(a a3132310312a…a)=log815=5log81=20.310337.答案:D解析:由性质可得:(S-S)2=S·(S-S),又∵S=48,S=60,∴S=1477211471421 63.8.答案:C解析:由题易知,数列{a}的通项公式为a=2n-1,公比q=2.n n==.∴奇数项的前n项和为S′=a+a+…+a132n-19.答案:C<0和余弦定理可得cos C<0,所以C为钝角,因此△ABC 解析:由一定是钝角三角形.10.答案:D,解析:由已知得a-a=n+1n的等差数列.所以{a}是公差为n又a=2,所以a=2+100×=52.110111.答案:A解析:由ac sin30°=,得ac=6.由余弦定理,得b2=a2+c2-2ac cos30°=(a+c)2-2ac-ac=4b2-12-,得b=.12.答案:C解析:二、填空题13.答案:解析:由余弦定理,得BC2=AB2+AC2-2AB·AC cos30°,∴.∴AC=.ABC =∴S= AB ·AC sin 30°.14.答案:24解析:由 a =2n-49<0,得 n <24 ,n∴a <a <a …<a <0<a <a <…,因此 S 最小.1232425262415.答案:a =n解析:当 n≥2 时,a =S -S =3n -2-(3n-1-2)=2×3n-1,而 a =S =1 不适合上式.nnn-111∴a =n16.答案:2解析:根据题意得∴ ∴q = = =2.三、解答题17.答案:解法一:设这四个数依次为 a-d,a,a+d, ,由条件得解得 或∴当 a=4,d=4 时,所求四个数为 0,4,8,16;当 a=9,d=-6 时,所求四个数为 15,9,3,1.故所求四个数为 0,4,8,16 或 15,9,3,1.解法二:设这四个数依次为 -a, ,a,aq(a≠0),由条件得解得或∴当q=2,a=8时,所求四个数为0,4,8,16;当q=,a=3时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.解法三:设这四个数依次为x,y,12-y,16-x,由已知得解得或故所求四个数为0,4,8,16或15,9,3,1. 18.答案:b=.解析:由S=absinC,∴sinC==.又∵sinB=sinC=由正弦定理得,∴B=C=30°.∴A=120°.=,即a=b,代入ab=,得b=.19.答案:(1)q=.(2)S=.n解析:解:(1)依题意,有2S=S+S,即a+(a+a q)=2(a+a q+a q2),312111111由于a≠0,故2q2+q=0.又q≠0,所以q=.1(2)由已知,可得a-a(-)2=3,解得a=4.从而S=111n.20.答案:解法一:利用边的关系来判断.由正弦定理,得=,由2cos A sin B=sin C,得cos A==.又由余弦定理,得cos A=,∴=,即c2=b2+c2—a2.∴a=b.又∵(a+b+c)(a+b—c)=3ab,∴(a+b)2—c2=3ab.∴4b2—c2=3b2.∴b=c.∴a=b=c.∴△ABC为等边三角形.解法二:利用角的关系来判断.∵A+B+C=180°,∴sin C=sin(A+B).又∵2cos A sin B=sin C,∴2cos A sin B=sin A cos B+cos A sin B.∴sin(A—B)=0.又A与B均为△ABC的内角,∴A=B.又由(a+b+c)(a+b—c)=3ab,得(a+b)2—c2=3ab,a2+b2—c2+2ab=3ab,即a2+b2—c2=ab,由余弦定理,得cos C=.又0°<C<180°,∴C=60°.故△ABC为等边三角形.解析:判定三角形的形状时,一般有两种思想:一是通过三角形的三边关系,二是考虑三角形的内角关系,当然有时可将边和角巧妙结合,同时考虑.21.答案:(2)a=2n-1.n解析:(1)证明:∵a=2a+1,∴a+1=2(a+1).由a=1,故a+1≠0,n+1n n+1n11由上式易知a+1≠0,∴.∴{a+1}成等比数列.n n(2)解:由(1)可知{a+1}是以a+1=2为首项,以2为公比的等比数列,n1∴a+1=2·2n-1,即a=2n-1.n n22.答案:(Ⅰ)略(Ⅱ)解析:解:(Ⅰ)由已知又=1,因此是首项为1,公差为1的等差数列.(Ⅱ)由(Ⅰ)知两边乘以2得两式相减得。