粘度的测定方法范文
- 格式:docx
- 大小:37.14 KB
- 文档页数:2
流体粘度的测定一、实验目的液体的粘度表示它的流动性的大小,粘度大则流动性小,反之亦然。
液体的粘度随着温度的升高而降低,通过实验,要求了解液体恩格拉(Engler)粘度的工业测定方法和温度对粘度的影响。
二、实验原理粘度是表示流体质点之间摩擦力大小的一个物理指标,粘度大即摩擦力大,流动性小。
根据牛顿粘度定律:dnduA F μ=式中:F ——内摩擦力,N ;μ——粘性系数(粘度),Pa.s ; A ——面积,m ; du/dn —速度梯度,s -1。
当各值均采用C 、G 、S 制时,μ的单位为泊(poise )。
测定粘度的方法很多。
在工业上,多采用泄流法来测定流体的粘度。
泄流法的内容是:在一定条件下,一定容量的液体经由锐孔流出所需要的时间,就表示该液体的粘度。
工业上用的粘度计也很多,如恩格拉(Engler)粘度计,赛波尔(Saybolt)粘度计,雷德乌德(Redwood)粘度计等。
恩氏粘度计测粘度的方法是:在实验的温度下测定200ml 试样油从小孔流出所需要的时间,该时间与20℃时200ml 蒸馏水流出所需要的时间相除,所得的商就是该试样油在实验温度下的粘度,即:E t =)蒸馏水流出的时间(秒时)试样油流出的时间(秒时ml C ml C t 20020200οο其单位为条件度,用ºE 来表示。
一般地20℃的蒸馏水流出的时间为51±1秒,本实验不进行这项测定,对每台仪器,都已测量好(标准水值)并标明在粘度计外表面上。
三、实验设备实验装置如下图所示1.棒式温度计2.温控仪探头3.手动搅拌器4.恩氏温度计5.加热器6.内锅盖7.内锅8.外锅9.油面高度标志10.木栓11.流出管(锐孔)12.支架13.粘度计接收瓶14.调整螺丝15温度控制仪图1、恩氏粘度计四、实验步骤1、用木栓堵住内锅底部之小孔,注意必须严堵,但不能用力过度。
2、将试样油沿着玻璃棒缓慢注入到内锅中,注意不能产生气泡。
粘度测量实验报告粘度测量实验报告引言粘度是液体流动阻力的一种度量,是描述液体黏稠程度的物理量。
粘度的测量对于很多领域都非常重要,如化学工程、食品加工、医药等。
本实验旨在通过使用旋转式粘度计测量不同液体的粘度,探究温度、浓度和分子结构对粘度的影响。
实验方法1. 实验仪器:旋转式粘度计、恒温水浴、计时器、试管等。
2. 实验材料:不同液体样品(如水、甘油、酒精等)。
3. 实验步骤:a. 将旋转式粘度计放置在恒温水浴中,使其温度稳定在实验所需温度。
b. 取一定量的液体样品倒入试管中。
c. 将试管插入粘度计的测量槽中,调节旋转速度。
d. 开始计时,记录液体样品在粘度计上流动所需的时间。
e. 重复以上步骤,以获得准确的实验数据。
实验结果与讨论1. 温度对粘度的影响:实验中,我们分别在不同温度下测量了水的粘度。
结果显示,随着温度的升高,水的粘度呈下降趋势。
这是因为温度升高会增加水分子的热运动能力,使分子间相互作用减弱,从而降低了流动阻力,导致粘度的减小。
2. 浓度对粘度的影响:我们选取了不同浓度的甘油溶液进行测量。
实验结果表明,随着甘油浓度的增加,溶液的粘度也增加。
这是因为溶液中溶质分子的增加会增加分子间相互作用力,从而增加流动阻力,使粘度升高。
3. 分子结构对粘度的影响:我们选择了酒精和水进行对比实验。
结果显示,酒精的粘度明显低于水。
这是因为酒精分子较小,分子间的相互作用力较弱,流动阻力较小,导致粘度较低。
而水分子较大,分子间相互作用较强,流动阻力较大,粘度较高。
结论通过本实验的测量与分析,我们得出以下结论:1. 温度升高会降低液体的粘度。
2. 浓度升高会增加液体的粘度。
3. 不同分子结构的液体具有不同的粘度特性。
实验的局限性与改进本实验中只选取了少量液体样品进行测量,对于粘度的影响因素进行了初步探究。
然而,实际情况可能更加复杂,还有其他因素可能对粘度产生影响,如压力、pH值等。
因此,可以进一步扩大实验样本数量,探究更多因素对粘度的影响。
粘度测量原理范文粘度是指流体对流动的阻力大小,是流体内摩擦力的表现。
粘度的测量可以通过测量流体在单位横截面上单位时间流过的体积,或者通过测量液体在单位面积上的摩擦力来实现。
本文将详细介绍粘度测量的原理。
1.流体的流动规律当力的作用下,流体会产生流动。
根据牛顿流体力学原理,单位时间通过单位横截面的流体体积与施加在流体上的压力之间具有直线关系。
即:Q=ΔV/Δt=pA/ηl其中,Q是单位时间内通过流体的体积,ΔV是流体在Δt时间内通过单位横截面的体积,p是施加在流体上的压力,A是横截面的面积,η是流体的粘度,l是单位长度。
根据这个公式,可以通过测量流体在单位时间内通过横截面的体积来计算流体的粘度。
2.测量流体粘度的方法目前常用的测量流体粘度的方法主要有以下几种:(1)滴定法:通过流体在单位时间内通过一个滴定管的滴数来计算流体的粘度。
滴定管有一个定好的孔径,可以控制流体的滴下速度。
通过控制时间和滴数,可以计算流体的粘度。
(2)直流液流动法:通过观察流体在单位时间内通过管道的流速来计算粘度。
通过测量管道的长度、管道之间的压差、流体通过管道所需的时间,可以计算出流体的平均流速,从而计算流体的粘度。
(3)旋转流法:通过将流体注入一个精确测定粘度的设备中,通过旋转的内、外筒产生切向剪应力,根据流体在设备中的流动速度来计算粘度。
(4)绝对粘度计:通过测量液体在单位时间内通过定制的精密测量仪器的体积来计算粘度。
3.影响粘度测量的因素粘度测量的准确性和精度受到许多因素的影响,主要包括以下几个方面:(1)温度:粘度与温度密切相关,一般情况下,温度越高,粘度越低。
因此,在进行粘度测量时,要保持恒定的温度。
(2)压强:粘度与压强并不是线性相关。
当压强较小时,粘度随压强的增加而增加,但当压强超过一定程度后,粘度几乎不变。
(3)测试设备:粘度测量设备的精度和条约也会影响测量结果的准确性。
(4)液体的种类:不同种类的液体具有不同的粘度特性,因此在进行粘度测量时需要考虑液体的性质。
粘度指数及计算范文粘度指数(Viscosity Index,簡稱VI)是一種用於描述油品在不同溫度下黏滯性變化程度的指標。
粘度指数越高,表示油品在不同溫度下的黏滞性变化越小,即表明其黏度随温度变化的程度较低。
相反,粘度指数越低,表示油品在不同温度下的黏滞性变化越大。
粘度指数的计算可以通过两种方法来进行:经验公式法和测定法。
一、经验公式法根据油品的运动黏度与温度之间的关系,通过经验公式计算粘度指数。
常用的经验公式有索尔兹米诺夫(Soltzmeister)方程、Ostwald方程、Andrade方程等。
这些公式均通过测定油品在不同温度下的运动黏度,然后将数据带入公式进行计算,得到粘度指数。
例如,索尔兹米诺夫方程的公式如下:ln(ηr1/ηr2) = C(1/T1 - 1/T2)其中,ηr1和ηr2分别为两个不同温度下的相对黏度,T1和T2为对应的温度,C为常数。
二、测定法通过测定油品在不同温度下的运动黏度,然后根据ASTMD2270标准(美国材料试验协会)中的计算方法,进行粘度指数的计算。
ASTMD2270标准计算粘度指数的方法是通过测定油品在40°C和100°C下的运动黏度,然后代入计算公式进行计算。
该计算公式如下:VI=(L-H)*100/(L-R)其中,L为低温测定温度(100°C)时所测得的黏度值,H为高温测定温度(40°C)时所测得的黏度值,R为标准温度(100°C)时的黏度值。
需要注意的是,由于油品的性质多样,不同类型的油品具有不同的粘度指数计算方法。
粘度指数的应用:1.粘度指数的值可以作为评判润滑油高温性能的一个指标。
一般来说,粘度指数高的润滑油在高温下黏度变化小,具有较好的抗磨损性和稳定性。
2.粘度指数可用于比较不同油品的高低温适应性,评估其在不同温度条件下的润滑效果。
3.粘度指数还常用于预测润滑油在高温下的汽化损失和机械损失,从而评估润滑油在实际使用中的性能表现。
实验报告范文(通用1)实验名称:甲醇水溶液粘度的测量实验目的:通过实验,掌握粘度的测量方法和粘度与浓度的关系,了解甲醇水溶液的性质和特点。
实验原理:当两层液体隔有无限小距离,外层静止不动而内层沿着内壁缓慢流动时,内层流动速度的大小和方向随高度而不同,最靠近内壁时速度最小,离内壁越远而速度越大,因此液体内部各层之间存在相对运动。
这种相对运动为内摩擦力,内部层与层之间的相互作用力和分子内部之间的不规则活动所引起。
液体粘度的大小与液体内部分子间的相互作用力以及分子排列的紧密程度有关。
实验仪器:粘度计、甲醇、蒸馏水、容量瓶、移液管、计时器、温度计、实验台等。
实验步骤:1. 用甲醇和蒸馏水配制出5%、10%、15%、20%、25%五种不同浓度的甲醇水溶液。
2. 将各种浓度的溶液分别取一定的量,称重记录质量。
3. 将溶液倒入粘度计中,注意勾兑均匀。
4. 将粘度计放置于恒温水浴中,控制温度为25℃,20分钟后进行测量。
5. 用移液管用力吹两下,将移液管中的空气全部排出,将粘度计倾斜成一定的角度,记录滑球上升的时间。
6. 对每种浓度的溶液分别进行5次测量,取平均值作为最终数据。
实验结果:浓度/% 时间/s5 11.1310 8.3215 6.7320 5.8925 4.96数据处理:1. 利用测量数据绘制出甲醇水溶液浓度与粘度的曲线。
2. 利用测量数据计算出甲醇水溶液的相对粘度和黏度,并绘制出相对粘度和黏度随浓度的变化曲线。
实验结论:由实验结果可知,甲醇水溶液随着浓度的增加,其粘度不断降低。
此外,相对粘度和黏度也随着浓度的增加而减小。
这些结果说明甲醇水溶液的内部分子间相互作用力随浓度的变化而发生了变化,这一点为甲醇的应用提供了一些参考。
简单黏度测定实验报告Title: Simple Viscosity Measurement Experiment ReportAbstract:The purpose of this experiment was to determine the viscosity of several liquids using a simple viscosity measurement method. The liquid samples tested included water, oil, and syrup. The method involved measuring the time it took for a fixed volume of each liquid to flow through a capillary tube using a stopwatch. The results obtained were compared to known viscosities to validate the accuracy of the method used.摘要本实验的目的是用一种简单的粘度测量方法来测定几种液体的粘度。
测试的液体样品包括水、油和糖浆。
该方法包括使用秒表测量每种液体的固定体积通过毛细管所需的时间。
将所得到的结果与已知的粘度进行了比较,以验证所使用的方法的准确性。
Introduction:Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a moving fluid, with higher viscosity indicating thicker and more resisting fluid, and vice versa. The viscosity of a liquid depends on factors such as temperature and composition. In this experiment, we aimed to measure the viscosity of water, oil, and syrup using a simplecapillary tube method.介绍粘度是对流体对流动的阻力的一种测量方法。
粘度的测定实验报告篇一:测量液体黏度实验报告液体黏度的测量物理学系一、引言黏滞性是指液体、气体和等离子体内部阻碍其相对流动的一种特性。
如果在流动的流体中平行于流动方向将流体分成流速不同的各层,则在任何相邻两层的接触面上就有与面平行而与相对流动方向相反的阻力或曳力存在。
液体的黏度在医学、生产、生活实践中都有非常重要的意义。
例如,许多心血管疾病都与血液的黏度有关;石油在封闭的管道中输送时,其输运特性与黏滞性密切相关。
本实验旨在学会使用毛细管和落球法测定液体黏度的原理并了解分别适用范围,掌握温度计、密度计、电子秒表、螺旋测微器、游标卡尺的使用,并学会进行两种测量方法的误差分析。
二、实验原理(一)落球法当金属小圆球在黏性液体中下落时,它受到3个力,重力mg、浮力和粘滞阻力。
如果液体无限深广,在下落速度v较小下,粘滞阻力F有斯托克斯公式F=6πr是小球的半径;??称为液体的黏度,其单位是Pa·s.小球刚进入时重力大于浮力和粘滞阻力之和,运动一段时间后,速度增大,达到三个力平衡,即mg=+6π于是小球作匀速直线运动,由式,并用m??ldd3??,v?,r?代入上式,并因为6t2待测液体不能满足无限深广的条件,为满足实际条件而进行修正得(??-?)g2dt1??18lDH其中??为小球材料的密度,d为小球直径,l为小球匀速下落的距离,t为小球下落l距离所用的时间,D为容器内径,H为液柱高度。
(二)毛细管法若细圆管半径为r,长度为L,细管两端的压强差为?P,液体黏度为?,则其流量Q可以由泊肃叶定律表示:?r4?PQ?8?L由泊肃叶定律,再加上当毛细管沿竖直位置放置时,应考虑液体本身的重力作用。
因此,可以写出?r4V??t8?L(5)本实验所用的毛细管黏度计如图1所示,实验时将一定量的液体注入右管,用吸球将液体吸至左管。
保持黏度计竖直,然后让液体经毛细管流回右管。
设左管液面在C处时,右管中液面在D处,两液面高度差为H,CA间高度差为h1,BD间高度差为h2。
粘度的定义公式范文
粘度是液体流动阻力的度量,是指流体分子间相互之间的内摩擦力。
它是反映液体流动特性的重要物理量,常用于描述液体的黏稠度。
粘度可以分为动力粘度和运动粘度。
动力粘度指的是液体内部分子间的摩擦阻力,通常用希斯定律来描述;而运动粘度则是通过液体流动产生的阻力来描述的,它是液体黏度的最常用表达形式。
根据斯托克斯定律,当一个小球在一个粘性液体中以匀速运动时,液体对其的阻力与运动速度成正比。
具体而言,斯托克斯定律可以表示为:
F = 6πηrv
其中,F代表阻力,η代表粘度,r代表小球的半径,v代表小球的速度。
根据上述公式,可以推导出粘度的具体表达式为:
η = (F/6πrv)
这个公式表明粘度与液体对物体的阻力、物体的半径以及物体在液体中的速度之间存在一定的关系。
η=(2/9)(gρr²/v)
其中,g代表重力加速度。
在实际测量中,科学家和工程师通常使用粘度计来测量液体的粘度。
粘度计基于流体力学原理,通过测量液体在不同温度下在给定条件下通过粘度计的流动速度来确定粘度。
通过测量不同温度和压力下的流动特性,可以获得液体的粘度数据,并在表格或图表中记录和表达。
粘度的单位通常是帕斯卡·秒(Pa·s),也可以使用以毫帕秒(mPa·s)或千克/米·秒(kg/m·s)为单位的亚单位。
总的来说,粘度的定义公式是根据斯托克斯定律推导出来的,利用这
个公式,可以计算液体的粘度。
尽管粘度的测量可以通过不同的方法进行,但斯托克斯定律给了我们一个基本的理论框架来理解粘度的本质。
粘度的测量实验报告《粘度的测量实验报告》实验目的:通过实验测量不同液体的粘度,探究不同液体的流动特性并分析其影响因素。
实验原理:粘度是液体流动阻力的大小,通常用来描述液体的黏稠程度。
在实验中,可以通过旋转式粘度计或者流变仪来测量液体的粘度。
通过测量不同液体在不同温度下的粘度,可以得出不同液体的流动特性以及温度对粘度的影响。
实验材料和方法:本次实验选取了水、甘油和汽油作为实验液体,使用旋转式粘度计在不同温度下进行实验。
首先,将液体倒入粘度计的容器中,然后根据实验要求设置不同的温度。
在每个温度下,通过旋转粘度计并记录所需的扭矩和转速,从而得出不同液体在不同温度下的粘度值。
实验结果和分析:通过实验测量得出了水、甘油和汽油在不同温度下的粘度值。
实验结果表明,水的粘度随着温度的升高而减小,而甘油和汽油的粘度则随着温度的升高而增大。
这表明不同液体的粘度受温度影响的方式不同,这与液体分子间的相互作用有关。
此外,实验结果还表明,甘油和汽油的粘度值相对较大,说明它们的流动阻力较大,而水的粘度值相对较小,说明其流动性较好。
结论:通过本次实验,我们得出了不同液体在不同温度下的粘度值,并分析了不同液体的流动特性。
实验结果表明,温度对液体的粘度有着不同的影响,不同液体的粘度值也存在较大差异。
这些结果对于工程领域中液体流动的研究具有一定的指导作用。
实验中还存在一些不确定因素,如实验条件的控制和实验仪器的精度等,这些因素可能对实验结果产生一定的影响。
因此,在进行实验分析时需要综合考虑这些因素,并且在实际应用中也需要对实验结果进行合理的修正和调整。
总之,本次实验通过测量不同液体的粘度值,探究了不同液体的流动特性并分析了其影响因素。
这些结果对于液体流动的研究和工程应用具有一定的指导意义。
篇一:流体粘度的测定实验液体粘度的测量实验——斯托克斯法测液体的粘度胡涛热能1班 15摘要:设计出了粘度测量的实验, 该实验使用的器材不多, 且均为常用器材, 较易开展.关键词:液体粘度系数; 斯托克斯法1 实验提供器材游标卡尺、小钢球、磁铁、待测液体、停表、镊子、密度计、温度计, 不同内径的圆形有机玻璃容器一组 ( 5 个) , 50 ml 量筒一个.2 实验原理在粘滞液体中下落的小球, 受到三个力的作用: 重力w 、浮力f 和阻力f , 阻力来自于附着在小球表是可得出液体的粘度系数公式:式中η是液体粘滞系数, d 是小球直径, υ0 是小球在无限宽广的粘滞液体中匀速下落时的速度( 收尾速度) . ρ和σ分别表示小球和液体的密度, 由上式可求出液体粘滞系数. ( 1) 式是小球在无限广延的液体中下落推导出来的, 在实际测量中, 液体总是盛在有器壁的容器里而不满足无限宽广条件, 故( 1) 式还需引入修正系数, 于是粘度公式变为( 2)式中d 为圆筒形容器的内径, h 表示容器内液体的高度. v 是小球在有限宽广的粘滞液体中匀速下落时的速度, 由小球在容器中匀速下落的距离除以对应的下落的时间求出, 即v = l / t .3 实验要求设计的实验思路为采用合理操作方法, 选用合适的实验器材, 设计数据表格, 完成各项要求.3. 1 设计实验求出小球在无限深液体中的收尾速度并求液体的粘度系数图1 t—d/ h 图实验提示: t 与d/ h 成线性关系. 该实验可采用的方案: 向量筒中加入适量的液体, 求出小球匀速下落通过距离l 所需的时间t 1. 当各量筒中液体高度为h2 , h3, h4 时, 重复以上操作, 求出t 2, t3, t4, 根据t 1, t 2, t 3, t 4, 及h1 , h2, h3, h4 , 作图t—d /h图, 拟合直线与纵轴相交, 其截距为t , 则t 就是h→∞时, 即无限深的液体中, 小球匀速下落通过距离l 所需要的时间t 值.如图1 所示. 算出速度代入公式可求出液体的粘度系数.3. 2 设计实验求出小球在无限广液体中的收尾速度并求该液体的粘度系数图2 t—d/ d 图实验提示: t 与d/ d 成线性关系. 该实验可采用的方案: 实验中采用一组直径不同的圆管, 依次测出同一小球通过各圆形管相同高度两刻线间所需的时间. 以t 作纵轴, d / d 作横轴, 由图示法将测得的各实验数据点连成直线, 延长该直线与纵轴相交, 其截距为t0 , t 0 就是当d→∞时, 即在横向无限广的粘滞液体中, 小球匀速下落距离l 所需的时间t 值. 如图2所示. 算出速度v 代入公式可求出液体的粘度系数.3. 3 设计实验思路, 求小球在无限深广液体中的收尾速度可采用的设计思路: 在3. 2 的基础上依次改变筒内液体的高度, 根据t 与d/ h 成线性关系, 求出d/h 为零时的t 值, 即为无限深广液体中t 0 值.篇二:粘度法测分子量实验报告实验二十一高聚物相对分子量的测定一、实验目的1、了解黏度法测定高聚物分子量的基本原理和分子。
粘度的测定方法范文
粘度是液体内部分子间相互作用导致的阻力,是描述液体流动性质的
物理量。
粘度的测定主要是通过流动实验和非流动实验两种方法。
一、流动实验方法
1. 毛细管流动法(Ostwald法):这是最常用的粘度测定方法之一、该方法使用毛细管装置,通过测量液体在毛细管内的流动速度来计算粘度。
根据流动速度和背压之间的关系,可以利用毛细管法测定液体的粘度。
2.滴流法:该方法通过将液体滴入设定好的装置中,测量液体滴出的
时间或长度来计算粘度。
常见的滴流法包括下滴法和自由滴落法。
二、非流动实验方法
1.拉伸法:该方法通过施加外力,使液体发生剪切变形,然后测量液
体剪切变形速度和应力的关系,从而计算粘度。
拉伸法有旋转圆柱法、对
撞法、竖直光栅法等。
2.微分式两平板法:这是一种常用的非流动实验方法。
该方法使用两
个平行的平板,通过将液体放置在两平板之间,并施加一定力来压缩液体,然后测量压缩力和变形速度的关系,从而计算粘度。
此外,还有一些相对较少使用的方法,例如:
1.旋转圆柱法:该方法通过转动圆柱管内液体,测量液体在圆柱管内
的流动阻力,从而计算出粘度。
2.摩擦力矩法:该方法利用摩擦力矩来测量液体的粘度,通过测量转
动圆柱时的摩擦力和角速度,计算粘度。
3.球状液体滚动法:该方法使用一个球体滚动在液体中,通过测量液体对球体的阻力和球体滚动速度的关系,计算粘度。
在具体进行粘度测定之前
1.温度的控制:粘度与温度密切相关,一般情况下,温度越高,粘度越低。
所以在进行粘度测定时,需要控制好温度,以保证所得结果准确可靠。
2.试样的制备:为了避免杂质对测定结果的影响,需要确保试样的纯净度和浓度。
3.测量仪器和装置的校准:为了保证测定的准确性,需要定期对测量仪器和装置进行校准。
总之,粘度的测定可以通过流动实验和非流动实验两种方法进行。
具体的测定方法选择需要根据待测液体的性质和实验条件来确定。
同时,为了得到可靠准确的测试结果,还需注意温度控制、试样制备以及仪器装置的校准等方面。