高一平面解析几何初步复习讲义解析
- 格式:doc
- 大小:954.00 KB
- 文档页数:23
第二章解析几何初步§1直线与直线的方程1.1直线的倾斜角和斜率(教师用书独具)●三维目标1.知识与技能(1)理解直线的倾斜角和斜率的概念.(2)掌握过两点的直线斜率的计算公式.2.过程与方法通过一系列直线的不同位置的学习,培养学生的探究精神.3.情感、态度与价值观通过几何问题用代数问题来处理的思维,培养学生的数形结合思想.●重点难点重点:倾斜角、斜率的概念,过两点的直线斜率的计算公式.难点:直线倾斜角与它的斜率之间的关系.直线的倾斜角、斜率都是用来刻画直线倾斜程度的,它们本质上是一致的,倾斜角α与斜率k之间存在k=tan α(α≠90°)的关系,可以通过改变直线倾斜角来进一步认识斜率,从而化解难点.(教师用书独具)●教学建议教学时结合具体图形,学生容易了解确定直线位置的几何要素可以是一个点与直线方向,观察教材上的图2-1,2-2要确定直线条中某一条直线还需要给出一个角,即引出倾斜角,进一步引出斜率,进而探究斜率与倾斜角的关系.●教学流程创设问题情境,提出问题⇒引导学生回答问题,认识直线的斜率和倾斜角⇒通过例1及变式训练,使学生掌握直线倾斜角的求法⇒通过例2及互动探究,使学生掌握直线的斜率的求法⇒通过例3及变式训练,使学生掌握直线的倾斜角和斜率的综合问题⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈校正课标解读 1.理解直线的倾斜角和斜率的概念(重点). 2.掌握过两点的直线斜率的计算公式(重点).直线的倾斜角和斜率【问题导思】1.已知直线上一个点,能确定一条直线吗? 2.当直线的方向确定后,直线的位置确定吗?3.直线l 1,l 2分别是平面直角坐标系中一、三象限角平分线和二、四象限角平分线,它们的倾斜程度一样吗?【提示】 1.不能.2.不确定.3.不一样.1.直线的确定在平面直角坐标系中,确定直线位置的几何条件是:已知直线上的一个点和这条直线的方向.2.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角,通常用α表示.(2)范围:0°≤α<180°. 3.直线的斜率直线倾斜角α的正切值叫作直线的斜率,即k ={ tan α,α≠90°,不存在,α=90°. 4.倾斜角、斜率及直线特点之间的联系倾斜角α 直线特点 斜率k 的变化0° 垂直于y 轴 k =00°<α<90° 由左向右上升 随着倾斜角在0°→90°间逐渐增大,直线的斜率k也逐渐增大,且恒为正值α=90° 垂直于x 轴 k 不存在90°<α<180°由左向右下降随着倾斜角在90°→180°间逐渐增大,直线的斜率k 也逐渐增大,且恒为负值 5.过两点的直线斜率的计算公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.求直线的倾斜角 设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B.α-135°C.135°-αD.当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°【思路探究】倾斜角的取值范围0°≤α<135°α+45°135°≤α<180°α-135°【自主解答】由倾斜角的范围知只有当0°≤α+45°<180°,即0°≤α<135°时,l1的倾斜角才是α+45°;而0°≤α<180°,所以当135°≤α<180°时,l1的倾斜角为α-135°,如图所示,故选D.【答案】 D1.研究直线的倾斜角,必须明确倾斜角α的范围是0°≤α<180°,否则将造成角度范围的扩大,产生不符合范围的角度.如对α不分类,选项A将出现大于等于180°的角;选项B、C将出现小于0°的角.2.此类问题应紧扣倾斜角的范围和倾斜角概念中的三个关键条件:①直线向上的方向;②x轴的正方向;③逆时针方向旋转.有时利用数形结合的思想方法求解.图2-1-1中α是直线l的倾斜角吗?试用α表示图中各条直线l的倾斜角.图2-1-1【解】设直线l的倾斜角为β,图①中α是直线l的倾斜角,β=α;图②中α不是直线l的倾斜角,β=180°-α;图③中α不是直线l的倾斜角,β=α;图④中α不是直线l的倾斜角,β=90°+α.求直线的斜率(1)直线过两点A(1,3)、B(2,7),求直线的斜率;(2)过原点且斜率为1的直线l绕原点逆时针方向旋转90°到达l′位置,求直线l′的倾斜率.【思路探究】(1)利用过两点的直线的斜率公式求得.(2)利用斜率的定义求.【自主解答】(1)因为两点的横坐标不相等,所以直线的斜率存在,根据直线斜率公式得k =7-32-1=4.(2)因为直线l 的斜率k =1,所以直线l 的倾斜角为45°,所以直线l ′的倾斜角为45°+90°=135°,所以直线l ′的斜率k ′=tan 135°=-1.1.熟记斜率公式是解答本题的关键.2.求直线的斜率有两种思路一是公式,二是定义.当两点的横坐标相等时,过这两个点的直线与x 轴垂直,其斜率不存在,不能用斜率公式求解,因此,用斜率公式求斜率时,要先判断斜率是否存在.将本题中的两点改为(1,1),(-1,-2)其余不变. 【解】 k =-2-1-1-1=32.直线的倾斜角、斜率的综合应用 已知点A (2,-3),B (-3,-2),直线l 过点P (3,1),且与线段AB 相交,求直线l 的斜率的取值范围.【思路探究】 欲使直线l 与线段AB 相交,则直线l 的斜率与直线PA ,PB 的斜率有必然的关系,通过画图可知.【自主解答】 设直线l 的斜率为k ,当l 与线段AB 相交时,k PB ≤k ≤k PA , 又∵k PA =1+33-2=4,k PB =1+23+3=12,∴12≤k ≤4, 即直线l 的斜率的取值范围为12,433,3-12,3).1.2直线的方程第1课时直线方程的点斜式(教师用书独具)●三维目标1.知识与技能(1)掌握直线方程的点斜式.(2)了解斜截式与一次函数的关系.2.过程与方法通过直线点斜式方程的学习,培养学生的探索精神.3.情感、态度与价值观培养学生用代数思维解决几何问题,提高数学的学习兴趣.●重点难点重点:直线方程的点斜式.难点:直线方程的应用.给定点P(x0,y0)和斜率k后,直线就唯一确定了,直线的方程,就是直线上任意一点的坐标(x,y)满足的关系式.(教师用书独具)●教学建议本节是在学习了直线的倾斜角和斜率之后,进行直线方程的学习,因此本节课宜采用探究式课堂模式,即在教学过程中,在教师的启发引导下,以学生独立自主为前提,两点斜率公式为基本探究问题,引出直线方程的点斜式,让学生在“活动”中学习,在“主动”中发展、提高.●教学流程创设问题情境,提出问题⇒通过引导学生回答问题,认识掌握直线方程的点斜式⇒通过例1及互动探究,使学生掌握利用点斜式求直线方程⇒通过例2及变式训练,使学生掌握利用斜截式求直线方程⇒通过例3及变式训练,使学生点斜式、斜截式的综合应用⇒归纳整理,进行课堂小结整体认识所学知识⇒完成当堂双基达标巩固所学知识并进行反馈、矫正课标解读1.掌握直线方程的点斜式(重点).2.了解直线在y轴截距的概念(易混点).3.了解斜截式与一次函数的关系(难点).直线方程的点斜式【问题导思】若直线经过点P(x0,y0),且斜率为k,则直线上任意一点的坐标满足什么关系?【提示】y-y0=k(x-x0).1.直线的方程如果一个方程满足以下两点,就把这个方程称为直线l的方程:(1)直线l上任一点的坐标(x,y)都满足这个方程;(2)满足该方程的每一个数对(x,y)所对应的点都在直线l上.2.直线方程的点斜式和斜截式利用点斜式求直线方程根据条件写出下列直线的方程,并画出图形.(1)经过点A(-1,4),斜率k=-3;(2)经过坐标原点,倾斜角为45°;(3)经过点B(3,-5),倾斜角为90°;(4)经过点C(2,8),D(-3,-2).【思路探究】解答本题可先分析每条直线的斜率是否存在,然后选择相应形式求解.【自主解答】(1)y-4=-3,即y=-3x+1,图形如图(1)所示.(2)k=tan 45°=1,∴y-0=x-0,即y=x.图形如图(2)所示.(3)斜率k不存在,∴直线方程为x=3.图形如图(3)所示.(4)k =8-(-2)2-(-3)=2,∴y -8=2(x -2),即y =2x +4.图形如图(4)所示.1.求直线的斜率是解题的关键,利用“两点确定一条直线”作图.2.利用点斜式求直线方程的步骤:①在直线上找一点,并确定其坐标(x 0,y 0);②判断斜率是否存在,若存在求出斜率;③利用点斜式写出方程(斜率不存在时,方程为x =x 0).本例第(4)问中“C (2,8)”改为“C (m,8)”,试写出满足条件的直线方程. 【解】 当m =-3时,斜率不存在,直线方程为x =-3; 当m ≠-3时,k =8-(-2)m -(-3)=10m +3,∴y -(-2)=10m +3,即y =10m +3x +24-2m m +3.利用斜截式求直线方程 (1)写出斜率为2,在y 轴上截距是3的直线方程的斜截式.(2)已知直线l 的方程是2x +y -1=0,求直线的斜率k ,在y 轴上的截距b ,以及与y 轴交点P 的坐标.【思路探究】 利用斜截式写直线的方程须先确定斜率和截距,再利用斜截式写出直线方程.【自主解答】 (1)∵直线的斜率为2,在y 轴上截距是3, ∴直线方程的斜截式为y =2x +3.(2)把直线l 的方程2x +y -1=0,化为斜截式为y =-2x +1, ∴k =-2,b =1,点P 的坐标为(0,1).1.已知直线斜率或直线与y 轴有交点坐标时,常用斜截式写出直线方程.2.利用斜截式求直线方程时,要先判断直线斜率是否存在.当直线斜率不存在时,直线无法用斜截式方程表示,在y 轴上也没有截距.写出斜率为2,在y 轴上截距为m 的直线方程,并求m 为何值时,直线过点(1,1)? 【解】 由题意知,直线方程为y =2x +m .把点(1,1)代入得1=2×1+m , ∴m =-1.点斜式、斜截式方程的综合应用 已知直线l :5ax -5y -a +3=0,求证:不论a 取何值,直线l 总经过第一象限. 【思路探究】 可以把直线l 的方程变形为点斜式或斜截式,根据其特点证明.【自主解答】 法一 将直线方程变形为y -35=a (x -15),它表示经过点A (15,35),斜率为a 的直线.∵点A (15,35)在第一象限.∴直线l 必过第一象限.法二 将直线方程变形为y =ax +3-a5,当a >0时,不论a 取何值,直线一定经过第一象限;当a =0时,y =35,直线显然过第一象限;当a <0时,3-a5>0,直线一定经过第一象限.综上,直线5ax -5y -a +3=0一定过第一象限.1.法一是变形为点斜式,法二是变形为斜截式.2.解决此类问题关键是将方程转化为点斜式或斜截式来处理.不论m 为何值,直线mx -y +2m +1=0恒过定点( )A .(1,12) B .(-2,1)C .(2,-1)D .(-1,-12)【解析】 ∵直线方程可化为y -1=m , ∴直线恒过定点(-2,1).【答案】B忽视对字母的分类讨论致误求过两点(m,2),(3,4)的直线方程. 【错解】 ∵k =4-23-m =23-m,∴直线方程为y-4=23-m(x-3).【错因分析】未考虑m与3的关系导致错误的出现.【防范措施】当m=3时斜率不存在,故应该讨论m与3的关系.【正解】当m=3时,直线斜率不存在,∴直线方程为x=3,当m≠3时,k=23-m,∴直线方程为y-4=23-m(x-3).1.对于利用点斜式求直线方程,首先应先求出直线的斜率,再代入公式求解.2.对于利用斜截式求直线方程,不仅求斜率,还要求截距.1.过点P(-2,0),斜率为3的直线方程是()A.y=3x-2B.y=3x+2C.y=3(x-2) D.y=3(x+2)【解析】由点斜式可得y-0=3(x+2),即y=3(x+2).【答案】 D2.直线y=2x-3的斜率和在y轴上的截距分别等于()A.2,2 B.-3,-3C.-3,2 D.2,-3【解析】由斜截式方程形式可知,k=2,b=-3.【答案】 D3.倾斜角为150°,在y轴上截距为6的直线方程是________.【解析】∵倾斜角为150°,∴斜率k=tan 150°=-33,又知直线在y轴上截距为6,∴y=-33x+6.【答案】y=-33x+64.已知直线的斜率为2,与x轴交点横坐标为-1,求直线方程.【解】∵直线过(-1,0),k=2,由点斜式得y=2 ∴y=2x+2.一、选择题1.过点(4,-2),倾斜角为150°的直线方程为( )A .y -2=-33(x +4)B .y -(-2)=-33(x -4)C .y -(-2)=33(x -4)D .y -2=33(x +4)【解析】 k =tan 150°=-33,∴y -(-2)=-33(x -4).【答案】 B2.方程y =kx +1k表示的直线可能是( )【解析】 斜率为k ,且k ≠0,在y 轴上的截距为1k.当k >0时,1k >0;当k <0时,1k<0,从而选B.【答案】 B3.直线l 过点(-1,-1),(2,5)两点,点(1 005,b )在l 上,则b 的值为( ) A .2 009 B .2 010 C .2 011 D .2 012【解析】 ∵直线斜率k =5-(-1)2-(-1)=2,∴直线点斜式方程为y -5=2(x -2), ∴y =2x +1,令x =1 005,∴b =2 011. 【答案】 C4.方程y =k (x +4)表示( ) A .过点(-4,0)的所有直线 B .过点(4,0)的一切直线C .过点(-4,0)且不垂直于x 轴的一切直线D .过点(-4,0)且除去x 轴的一切直线【解析】 显然y =k (x +4)中斜率存在,因此不包含过点(-4,0)且斜率不存在即垂直于x 轴的直线.【答案】 C 5.(2013·佛山高一检测)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1【解析】 当a =0时,不满足条件,当a ≠0时,令x =0,y =a +2, 令y =0,x =2+aa .由已知得a +2=2+aa .∴(a +2)(1-1a )=0.∴a =-2或a =1.【答案】 D 二、填空题 6.(2013·平江高一检测)直线-x +3y -6=0的倾斜角是________,在y 轴上的截距是________.【解析】 y =33x +23,∴tan α=33,∴α=π6,在y 轴上的截轴为2 3.【答案】 π6,2 37.直线y =x +m 过点(m ,-1),则其在y 轴上的截距是________.【解析】 y =x +m 过点(m ,-1),∴-1=m +m ,即m =-12,从而在y 轴上的截距为-12. 【答案】 -128.直线l 的倾斜角为45°,且过点(4,-1),则这条直线被坐标轴所截得的线段长是________.【解析】 由已知得直线方程 y +1=tan 45°(x -4), 即y =x -5.当x =0,y =-5,当y =0,x =5. ∴被坐标轴所截得的线段长|AB |=52+52=5 2.【答案】 5 2 三、解答题9.写出下列直线的方程.(1)斜率是3,在y 轴上的截轴是-2. (2)倾斜角是30°,过点(2,1).【解】 (1)根据斜截式得直线方程为y =3x -2. (2)k =tan 30°=33. ∴直线方程为y -1=33(x -2),∴y =33x -233+1. 10.直线x -y +1=0上一点P (3,m ),把已知直线绕点P 逆时针方向旋转15°后得直线l ,求直线l 的方程.【解】 把点P (3,m )的坐标代入方程x -y +1=0可得3-m +1=0,∴m=4,即P(3,4).又∵已知直线方程可化为y=x+1,∴k=1=tan 45°,即倾斜角为45°.如图,易知已知直线绕点P 逆时针方向旋转15°, 所得直线的倾斜角为60°, ∴k =tan 60°=3,∴所求直线方程为y -4=3(x -3).11.经过点A (-2,2)并且和两个坐标轴围成的三角形的面积是1的直线方程. 【解】 设直线为y -2=k (x +2),交x 轴于点(-2k-2,0),交y 轴于点(0,2k +2),S =12×|2k +2|×|2k +2|=1,|4+2k +2k |=1, 得2k 2+3k +2=0或2k 2+5k +2=0,解得k =-12或k =-2,∴x +2y -2=0或2x +y +2=0为所求.(教师用书独具)如图所示,已知△ABC 中,A (1,1),B (5,1),∠A =60°,点C 在直线AB 上方. 求:(1)线段AB 的方程;(2)AC 所在直线的方程及在y 轴上的截距.【思路探究】 结合倾斜角和斜率的关系或斜率公式,得所求直线的斜率,从而求解. 【自主解答】 (1)由A (1,1),B (5,1),得AB ∥x 轴, ∴k AB =0,∴线段AB 的方程为y =1(1≤x ≤5). (2)k AC =tan 60°=3,∴直线AC 的方程为y -1=3(x -1),整理得y =3x +1-3,令x =0得y =1-3, ∴在y 轴上的截距为1- 3.1.斜截式方程的应用前提是直线的斜率存在,当k=0时,y=b表示与x轴平行的直线,当b=0时,y=kx表示过原点的直线.2.截距不同于日常生活中的距离,截矩是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.已知直线y=-33x+5的倾斜角是直线l的倾斜角的5倍,求分别满足下列条件的直线l的方程.(1)过点P(3,-4);(2)在y轴上截距为3.【解】由直线y=-33x+5,得k=-33,即tan α=-33,∴α=150°,故所求直线l的倾斜角为30°,斜率k′=33.(1)∵l过点P(3,-4),则由点斜式方程得:y+4=33(x-3),即y=33x-3-4. (2)∵l在y轴上截距为3,则由斜截式方程得:y=33x+3.第2课时直线方程的两点式和一般式(教师用书独具)●三维目标1.知识与技能(1)掌握直线方程的几种形式及它们之间的相互转化.(2)了解直线与二元一次方程的对应关系.2.过程与方法让学生在应用旧知识的探究过程中获得新的结论,并通过新的知识的比较、分析、应用获得新知识的特点.3.情感、态度与价值观(1)认识事物之间的普遍联系与相互转化.(2)培养学生用联系的观点看问题.●重点难点重点:直线方程的两点式和一般式.难点:利用直线方程的各种形式求直线方程.两点式其实就是点斜式的变形,值得注意的是两点式方程y-y1y2-y1=x-x1x2-x1中的条件x1≠x2,y1≠y2,使得它既不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线.(教师用书独具)●教学建议本节课的教学内容为直线方程的两点式和一般式,在此之前,学生已掌握了直线方程的点斜式、斜截式,在本节教学时,通过师生探讨,得出直线的两点式和一般式方程,通过直线的两点式方程向截距式方程的过渡训练,让学生体会由一般到特殊的处理方法,让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.●教学流程创设问题情境,提出问题⇒引导学生回答问题,理解直线方程的两点式、一般式⇒通过例1及互动探究使学生掌握灵活运用题目条件求直线方程⇒通过例2及变式训练使学生掌握一般式方程与其他方程的互化⇒通过例3及变式训练使学生掌握一般式方程的应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正课标解读1.掌握直线方程的几种形式及它们之间的相互转化(重点).2.了解在直角坐标系中平面上的直线与关于x,y的二元一次方程的对应关系(难点).直线方程的两点式【问题导思】已知A(x1,y1),B(x2,y2),如何求AB的直线方程?【提示】k AB=y2-y1x2-x1由点斜式方程得y-y1=y2-y1x2-x1(x-x1).1.两点式:设A(x1,y1),B(x2,y2)(其中x1≠x2,y1≠y2)是直线l上的两点,则l的两点式为y-y1y2-y1=x-x1 x2-x1.2.截距式:若直线l过A(a,0),B(0,b),(ab≠0),则直线l的两点式方程可化为xa+yb=1的形式,这种形式的方程叫作直线方程的截距式.其中a为直线在x轴上的截距,b为直线在y轴上的截距.直线方程的一般式【问题导思】以上所学的直线方程的几种形式能整理成关于x、y的二元一次方程的整式形式吗?【提示】能.直线方程的一般式关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)表示的是一条直线,我们把它叫作直线方程的一般式.直线方程的两点式和截距式 求满足下列条件的直线方程: (1)过点A (-2,3),B (4,-1);(2)在x 轴、y 轴上的截距分别为4,-5; (3)过点P (2,3),且在两坐标轴上的截距相等.【思路探究】 (1)要根据不同的要求选择适当的方程形式;(2)“截距”相等要注意分过原点和不过原点这两种情况.【自主解答】 (1)由两点式得y -3-1-3=x +24+2化简得2x +3y -5=0.(2)由截距式,得x 4+y-5=1化简为5x -4y -20=0.(3)当直线过原点时,所求直线方程为3x -2y =0.当直线不过原点时,设直线方程为x a +ya =1,∵直线过P (2,3) , ∴2+3a =1,∴a =5, 直线方程为x +y -5=0,所以所求直线方程为3x -2y =0或x +y -5=0.1.本题(3)中易漏掉截距都为0情况.2.直线方程有多种形式,在求解时应根据题目的条件选择合适的形式,但要注意方程各种形式的适用范围.将本例(1)中的A 改(-2,m ),求直线方程. 【解】 当m =-1时直线方程为y =-1, 当m ≠-1时,由两点式得y -m -1-m =x -4-2-4,∴y =m +16x +m -13.直线方程的一般式 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别确定m 的值;(1)l 在x 轴上的截距是-3;(2)l 的斜率是-1.【思路探究】 可根据所求的结论把一般式转化为其他形式. 【自主解答】 (1)由题意可得⎩⎨⎧m 2-2m -3≠0, ①2m -6m 2-2m -3=-3, ② 由①得:m ≠-1且m ≠3, 由②得:m =3或m =-53.∴m =-53.(2)由题意得⎩⎨⎧2m 2+m -1≠0, ③-m 2-2m -32m 2+m -1=-1. ④ 由③得:m ≠-1且m ≠12,由④得:m =-1或m =-2.∴m =-2.1.本题的易错点是(1)中漏掉m 2-2m -3≠0,(2)中漏掉2m 2+m -1≠0.2.把直线方程的一般式Ax +By +C =0(A 、B 不同时为0)化成其他形式时,要注意式子成立的条件,特别是当B =0时,直线的斜率不存在,这时方程不能化成点斜式或斜截式的形式.根据下列条件分别写出直线的方程,并化为一般式方程: (1)斜率为2,且经过点A (1,-1).(2)斜率为12,在y 轴上的截距为1.【解】 (1)y -(-1)=2(x -1),即2x -y -3=0.(2)y =12x +1,即x -2y +2=0.直线方程的应用 已知直线l :5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围.【思路探究】 解答本题可先把一般式方程化为点斜式方程,然后再由直线过定点(15,35),说明直线l 恒过第一象限.对于求a 的取值范围可借助图形,利用“数形结合思想”求得.【自主解答】 (1)将直线l 的方程整理为y -35=a (x -15),∴l 的斜率为a ,且过定点A (15,35),而点A (15,35)在第一象限, 故l 过第一象限.(2)如图,直线OA的斜率k=35-015-0=3,∵l不经过第二象限,∴a≥3.1.直线过定点(15,35)是解决本题的关键. 2.针对这个类型的题目,灵活地把一般式Ax +By +C =0(A ,B 不同时为0)进行变形是解决这类问题的关键.在求参量取值范围时,巧妙地利用数形结合思想,会使问题简单明了.若直线(m -1)x -y -2m +1=0不经过第一象限,则实数m 的取值范围是________.【解析】 {m -1<0,1-2m <0,∴12<m <1. 【答案】 (12,1)分类讨论思想在直线方程问题中的应用(12分)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.【思路点拨】 对截距相等一定要考虑都为0,都不为0,若不为0求出截距让其相等.【规范解答】 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为零,当然相等.2分∴当a =2时满足条件,此时方程为3x +y =0.当a =-1时,直线为平行于x 轴的直线,在x 轴上无截距,不合题意.4分当a ≠-1且a ≠2时,由a -2a +1=a -2, 即a +1=1.∴当a =0时,直线在x 轴、y 轴上的截距都为-2,此时方程为x +y +2=0.7分综上所述,当a =2时,l 在两坐标轴上的截距相等,方程为3x +y =0;当a =0时,l 在两坐标轴上的截距相等,方程为x +y +2=0.8分(2)将l 的方程转化为y =-(a +1)x +a -2,∴{ -(a +1)>0,a -2≤0,或{-(a +1)=0,a -2≤0.10分∴a ≤-1.∴a 的取值范围为(-∞,-1x -(-35)-2,2-1,1-12,120,2 C .-3,3-33,33-33,33(x -1)2+y 2-1 B .(13,34 D .512,+∞)【思路点拨】 根据图形的特点求解.【解析】 先作出已知曲线y =1+4-x 2的图形,再根据直线y =k (x -2)+4过定点(2,4). 如图所示,曲线是以(0,1)为圆心,r =2为半径的半圆,直线表示过定点(2,4)的动直线.由图形中关系可求得k PC =512. 【答案】 D点P (x ,y )在以A (-3,1),B (-1,0),C (-2,0)为顶点的△ABC 的内部运动(不包含边界),则y -2x -1的取值范围是( ) A .12,114,1 D .(14,1)【解析】 令k =y -2x -1,则k 可以看成过点D (1,2)和(x ,y )的直线斜率,显然k AD 是最小值,k BD 是最大值.由于不包含边界,所以k ∈(14,1). 【答案】 D。
二、平面解析几何初步【知识网络】第六章直线的方程专题一直线的倾斜角与斜率1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.【典例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是 . (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为 .【答案】 (1)⎣⎢⎡⎦⎥⎤π4,π3 (2)(-∞,-3]∪1,+∞)(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪1,+∞).【迁移训练1】 (1)直线x cos α+3y +2=0的倾斜角的范围是 .(2)已知实数x ,y 满足2x +y =8,当2≤x ≤3时,则yx的最大值为 ;最小值为 . 【答案】 (1)⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π (2)2 23(2)本题可先作出函数y =8-2x (2≤x ≤3)的图象,把yx看成过点(x ,y )和原点的直线的斜率进行求解.如图,设点P (x ,y ),因为x ,y 满足2x +y =8,且2≤x ≤3,所以点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标分别是(2,4),(3,2).因为y x的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23. 专题二 求直线的方程名称 方程 适用范围 点斜式 y -y 1=k (x -x 1) 不含直线x =x 1 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1 (x 1≠x 2)和直线y =y 1 (y 1≠y 2)截距式x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0(A ,B 不全为0)平面直角坐标系内的直线都适用(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.(2)由题设知截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.【思维升华】在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 【迁移训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 【解析】 (1)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1), ∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.专题三 直线方程的综合应用【典例3】 (1)(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是 .(2)(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为 . 【答案】 (1)5 (2)-12【解析】 (1)∵直线x +my =0与mx -y -m +3=0分别过定点A ,B ,∴A (0,0),B (1,3).当点P 与点A (或B )重合时,PA ·PB 为零; 当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点, 且易知此两直线垂直, ∴△APB 为直角三角形, ∴AP 2+BP 2=AB 2=10, ∴PA ·PB ≤PA 2+PB 22=102=5,当且仅当PA =PB 时,上式等号成立. (2)∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.【迁移训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 【解析】【方法二】依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k≥12⎣⎢⎡⎦⎥⎤12+2 -9k ·4-k =12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立. 即△ABO 的面积的最小值为12.故所求直线的方程为2x+3y-12=0.第七章两条直线的位置关系专题一两条直线的平行与垂直(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2(k1,k均存在).2(ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2.②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1 (k1,k均存在).2(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.【典例1】(1)已知两条直线l1:(a-1)·x+2y+1=0,l2:x+ay+3=0平行,则a=________.(2)已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=________.【答案】(1)-1或2 (2)-2【思维升华】(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x、y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【迁移训练1】已知两直线l1:x+y sin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得:(1)l1∥l2;(2)l1⊥l2.【解析】(1)【方法一】当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α. 要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22.所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.专题二 两条直线的交点与距离问题1、两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2、几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离P 1P 2=x 2-x 12+y 2-y 12.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 【典例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l __________________________.【答案】 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1 【解析】(1)【方法一】 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行) ∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.【方法二】如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12. ∴-16<k <12.【方法二】 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1. 故所求直线l 的方程为x +3y -5=0或x =-1. 【思维升华】(1)求过两直线交点的直线方程的方法:求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; ②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等. 【迁移训练2】(1)如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.(2)正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. 【解析】点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5),则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 专题三 对称问题【典例3】 (1)过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.(2)已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为____________.(3)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.(3) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0. 【思维升华】 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决. 【迁移训练3】在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过△ABC 的重心,则AP =________.【答案】 43【解析】建立如图所示的坐标系:可得B (4,0),C (0,4),故直线BC 的方程为x +y =4, △ABC 的重心为⎝⎛⎭⎪⎫0+0+43,0+4+03,设P (a,0),其中0<a <4,故直线QR 的方程为y =4-a4+a(x +a ),由于直线QR 过△ABC 的重心(43,43),代入化简可得3a 2-4a =0,解得a =43,或a =0(舍去),故P ⎝ ⎛⎭⎪⎫43,0,故AP =43.第八章 圆的方程专题一 求圆的方程 1.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =D 2+E 2-4F2.【典例1】 根据下列条件,求圆的方程.(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).(2)【方法一】如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.【方法二】 设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,3-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.【思维升华】 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.【迁移训练1】 (1)(2014·陕西)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为____________.(2)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________. 【答案】 (1)x 2+(y -1)2=1 (2)(x -3)2+y 2=2专题二 与圆有关的最值问题 命题点1 斜率型最值问题【典例2】 已知实数x 、y 满足方程x 2+y 2-4x +1=0,则求: (1)y x的最大值为________,最小值为________. (2)求y -x 的最小值和最大值. (3)求x 2+y 2的最大值和最小值. 【解析】 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆. 设y x=k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3.(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)解(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图). 又因为圆心到原点的距离为2-02+0-02=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值为(2-3)2=7-4 3.【思维升华】 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题. 【迁移训练2】(1)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则PQ 的最小值为 ________. 【答案】 4【解析】 PQ 的最小值为圆心到直线的距离减去半径.因为圆的圆心为(3,-1),半径为2,所以PQ 的最小值d =3-(-3)-2=4.(2)已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). ①求MQ 的最大值和最小值; ②若M (m ,n ),求n -3m +2的最大值和最小值.②可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. 专题三 与圆有关的轨迹问题【典例3】设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹. 【解析】如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).【思维升华】 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.【迁移训练3】 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.(2)设PQ 的中点为N (x ,y ),连结BN . 在Rt△PBQ 中,PN =BN .设O 为坐标原点,连结ON ,则ON ⊥PQ , 所以OP 2=ON 2+PN 2=ON 2+BN 2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第九章 直线与圆、圆与圆的位置关系专题一 直线与圆的位置关系判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac ⎩⎨⎧>0⇔相交;=0⇔相切;<0⇔相离.【典例1】(1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d=1,故直线与圆相切.【思维升华】 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 【迁移训练1】 已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 2的最大值为4,此时AB 最小为27.专题二 圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).方法 位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2 一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2) 一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解【典例2】 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. (2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为____________.(3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是__________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2). 过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小. ∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为 ⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45. (3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2.依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2.∴a ∈(-22,0)∪(0,22)【思维升华】 判断圆与圆的位置关系时,一般用几何法,其步骤是(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|;(3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.【迁移训练2】 (1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.【答案】 内切(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分). N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆. 再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切.当半圆和圆相外切时,由OO ′=2=2a +a ,求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a ,求得a =22+2,故a 的取值范围是22-2,22+2],a 的最大值为22+2,最小值为22-2.专题三 直线与圆的综合问题【典例3】 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .【解析】 (1)由题设,可知直线l 的方程为y =kx +1,因为直线l 与圆C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2). 将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=41+k 1+k 2,x 1x 2=71+k2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k 1+k2+8. 由题设可得4k 1+k 1+k 2+8=12,解得k =1, 所以直线l 的方程为y =x +1.故圆心C 在直线l 上,所以MN =2.【迁移训练3】 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过A 点作圆的切线有两条,则a 的取值范围是____________. 【答案】 (1)2 2 (2)⎝ ⎛⎭⎪⎫-233,233 【解析】 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.。
第2章 平面解析几何初步2.1 直线与方程如图2—1—2(1),已知两点1122(,),(,)P x y Q x y ,如果12x x ≠,那么直线PQ 的斜率(slope)为211221()y y k x x x x -=≠-.例 1 如图2—1—3,直线123,,l l l 都经过点(3,2),P 又123,,l l l 分别经过点123(2,1),(4,2),(3,2)Q Q Q ----,试计算直线123,,l l l 的斜率.例2 经过点(3,2)画直线,使直线的斜率分别为: (1)34;(2)45-.在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角(inclination),并规定: 与x 轴平行或重合的直线的倾斜角为0︒由定义可知,直线的倾斜角α的取值范围是0180α︒≤<︒.当直线的斜率为正时,直线的倾斜角为锐角(图2—1—5(1)),此时,tan .y BNk x ANα∆===∆当直线的斜率为负时,直线的倾斜角为钝角(图2—1—5(2)),此时,tan tan(180).y BNk x ANθα∆===-=-︒-∆-练习1.分别求经过下列两点的直线的斜率: (1)(2,3),(4,5);(2)(-2,3),(2,1);(3)(―3,―1),(2,―1);(3)(―1,3),2.根据下列条件,分析画出经过点P ,且斜率为k 的直线: (1)(1,2),3P k =; (2)3(2,4),4P k =-; (3)(1,3),0P k -=;(3)(2,0),P -斜率不存在.3.设过点A 的直线的斜率为k ,试分别根据上列条件写出直线上另一点B 的坐标(答案不惟一):(1)4,(1,2);k A =(2)2,(2,3);k A =--- (3)3,(2,4);2k A =--(4)4,(3,2).3k A =- 4.分别判断下列三点是否在同一直线上: (1)(0,2)(2,5),(3,7); (2)(―1,4),(2,1),(―2,5).若直线l 经过点(1,3)A -,斜率为2-,点P 在直线l 上运动,那么点P 的坐标(,)x y 满足什么条件(图2—1—6)?一般地,设直线l 经过点111(,)P x y ,斜率为k ,直线l 上任意一点P 的坐标是(,)x y . 当点(,)P x y (不同于点1P )在直线l 上运动时,1PP的斜率恒等于k ,即 11y y k x x -=-, 故11()y y k x x -=-.可以验证:直线l 上的每个点(包括点1P )的坐标都是这个方程的解;反过来,以这个方程的解为坐标的点都在直线l 上.这个方程就是过点1P ,斜率为k 的直线l 的方程.方程11()y y k x x -=-叫做直线的点斜式方程.当直线l 与x 轴垂直时,斜率不存在,其方程不能用点斜式表示.但因为l 上每一点的横坐标都等于1x ,所以它的方程是1x x =例1 已知一直线经过点(2,3)P -,斜率为2,求这条直线的方程.例2 已知直线l 的斜率为k ,与y 轴的交点是(0,)P b ,求直线l 的方程. 练习1.根据下列条件,分别写出直线的方程: (1)经过点(4,2)-,斜率为3;(2)经过点(3,1),斜率为12; (3)斜率为2-,在y 轴上的截距为2-;(4,与x 轴交点的横坐标为7-. 2.直线(1)(0)y k x k =+>的图象可能是( ).3.若一直线经过点(1,2)P ,且斜率与直线23y x =-+的斜率相等,则该直线的方程是 .4.任一条直线都可以用点斜式方程表示吗?斜截式方程可以改写成点斜式方程吗? 思考(1)方程121121y y y y x x x x --=--的左、右两边各具有怎样的几何意义?它表示什么图表? (2)方程121121y y y y x x x x --=--和方程112121y y x x y y x x --=--表示同一图形吗? 例1 已知直线l 经过两点(,0),(0,)A a B b ,其中0ab ≠,求直线l 的方程(图2—1—8).例2 已知三角形的顶点是(5,0),(3,3),(0,2)A B C --(图2—1—9),试求这个三角形三边所在直线的方程.1.分别写出经过下列两点的直线的方程: (1)(1,3),(-1,2);(2)(0,3),(-2,0).2.已知两点(3,2),(8,12)A B . (1)求出直线AB 的方程;(2)若点(2,)C a -在直线AB 上,求实数a 的值.3.求过点(3,4)M -,且在两坐标轴上的截距相等的直线的方程.4.回答下列问题:(1)任一条直线都有x 轴上的截距和y 轴上的截距吗?(2)如果两条直线有相同的斜率,但在x 轴上的截距不同,那么它们在y 轴上的截距可能相同吗?(3)如果两条直线在y 轴上的截距相同,但是斜率不同,那么它们在x 轴上的截距可能相同吗?(4)任一条直线都可以用截距式方程表示吗? 思考平面内任意一条直线是否都可以用形如0Ax By C ++=(,A B 不全为0)的方程来表示?例1 求直线:35150l x y +-=的斜率以及它在x 轴、y 轴上的截距,并作图.例2 设直线l 的方程为260x my m +-+=,根据下列条件分别确定m 的值: (1)直线l 在x 轴上的截距是3-; (2)直线l 的斜率是1.1.如果直线326x y +=的斜率为k ,在y 轴上的截距为b ,那么有( ).A.3,32k b =-=B.2,33k b =-=- C.3,32k b =-=-D.2,23k b =-= 2.直线52100x y --=在x 轴上的截距为a ,在y 轴上的截距为b ,则( ). A.2,5a b ==B.2,5a b ==-C.2,5a b =-=D.2,5a b =-=-3.设直线l 的方程为0Ax By C ++=(,A B 不同时为0),根据下列条件,求出,,A B C 应满足的条件:(1)直线l 过原点;(2)直线l 垂直于x 轴; (3)直线l 垂直于y 轴;(3)直线l 与两条坐标轴都相交.4.写出下列图中各条直线的方程,并化为一般式:习题2.1(1)1.根据下列条件,分别写出直线的方程:(1)过点(3,2)-,斜率为3; (2)过点(3,0)-,且与x 轴垂直; (3)斜率为4-,且在y 轴上的截距为7;(4)经过点(1,8),(4,2)--.2.写出过点(3,1)P ,且分别满足下列条件的直线l 的方程; (1)直线l 垂直于x 轴; (2)直线l 垂直于y 轴; (3)直线l 过原点.3.分别求下列直线与两坐标轴围成的三角形的面积: (1)2360x y --=;(2)5320x y ++=.4.一根弹簧挂4kg 的物体时,长20cm.在弹性限度内,所挂物体的质量每增加1kg ,弹簧伸长1.5cm.试写出弹簧的长度l (cm )和所挂物体质量m (kg )之间的关系.5.一根铁棒在40℃时长12.506m ,在80℃时长12.512m.已知长度l (m )和温度t (℃)之间的关系可以用直线方程来表示,试求出这个方程,并根据这个方程求出这根铁棒在100℃时的长度.6.已知菱形的两条对角线长分别为8和6,以菱形的中心为坐标原点,较长对角线所在的直线为x 轴,建立直角坐标系,求出菱形各边所在直线的方程.7.直线l 经过点(3,1)-,且与两条坐标轴围成一个等腰直角三角形,求直线l 的方程. 8.设直线l 的方程为2(3)260(3)x k y k k +--+=≠,根据下列条件分别确定k 的值; (1)直线l 的斜率为-1;(2)直线l 在x 轴、y 轴上截距之和等于0.9.设直线l 的方程为3(2)y k x -=+,当k 取任意实数时,这样的直线具有什么共同的特点?10.已知两条直线1110a x b y ++=和2210a x b y ++=都过点(1,2)A ,求过两点111222(,),(,)P a b P a b 的直线的方程.11.“坡度”常用来刻画道路的倾斜程度,这个词与直线的斜率有何关系?坡度为4%的道路很陡吗?调查一些山路或桥面的坡度,并与同学交流.例1 求证:顺次连结7(2,3),5,,(2,3),(4,4)2A B C D ⎛⎫--- ⎪⎝⎭四点所得的四边形是梯形(图2—1—12).例2 求过点(2,3)A -,且与直线250x y +-=平行的直线的方程. 思考如果两条直线12,l l 中的一条斜率不存在,那么这两条直线什么时候互相垂直?逆命题成立吗?例3 (1)已知四点(5,3),(10,6),(3,4),(6,11)A B C D --,求证:AB CD ⊥; (2)已知直线1l 的斜率134k =,直线2l 经过点,且12l l ⊥,求实数a 的值.例4 如图2—1—14,已知三角形的顶点为(2,4),(1,2),(2,3)A B C --,求BC 边长的高AD 所在直线的方程.例5 在路边安装路灯,路宽23m ,灯杆长2.5m ,且与灯柱成120°角.路灯采用锥形灯罩轴线与灯杆垂直.当灯柱高h 为多少米时,灯罩轴线正好通过道路路面的中线?(精确到0.01m ) 习题1.分别判断下列直线AB 与CD 是否平行: (1)(3,1),(1,1)A B --;(3,5),(5,1)C D -;(2)(2,4),(4)A B --; (0,1),(4,1).C D 2.已知17(4,2),(1,1),(5,5),(,)32A B C D ----,求证:四边形ABCD 是梯形. 3.以(1,1),(2,1),(1,4)A B C --为顶点的三角形是( ). A.锐有三角形B.直角三角形C.钝角三角形4.求过点(2,3)A ,且分别适合下列条件的直线的方程:(1)平行于直线2530x y +-=; (2)垂直于直线20x y --=.例1 分别判断下列直线1l 与2l 是否相交,若相交,求出它们的交点: (1)1:27,l x y -=2:3270;l x y +-= (2)1:2640,l x y -+= 2:41280;l x y -+=(3)1:4240,l x y ++= 2:2 3.l y x =-+例2 直线l 经过原点,且经过另两条直线2380,10x y x y ++=--=的交点,求直线l 的方程.例3 某商品的市场需求量1y (万件)、市场供应量2y (万件)与市场价格x (元/件)分别近似地满足下列关系:1270,220y x y x =-+=-.当12y y =时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量. (1)求平衡价格和平衡需求量;(2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?思考已知直线1:10l x y ++=和2:240l x y -+=,那么方程1(24)0x y x y λ+++-+=(λ为任意实数)表示的直线有什么特点? 习题1.与直线230x y --=相交的直线的方程是( ). A.4260x y --= B.2y x = C.25y x =+D.23y x =-+2.若三角直线2380,10x y x y ++=--=和102x ky k +++=相交于一点,则k 的值等于( )A .-2B.12-C.2D.123.已知直线l 经过两条直线2330x y --=和20x y ++=的交点,且与直线310x y +-=平行,求直线l 的方程.4.在例3中,求当每件商品征税3元时新的平衡价格. 习题2.1(2)1.分别求满足下列条件的直线的方程:(1)经过点(3,2)A ,且与直线420x y +-=平行; (2)经过点(3,0)B ,且与直线250x y +-=垂直;(3)经过点(2,3)C -,且平行于过两点(1,2)M 和(1,5)M --的直线. 2.三角形三个项点是(4,0),(6,7),(0,3)A B C ,求AB 边上高所在直线的方程. 3.根据下列条件,求直线的方程:(1)斜率为-2,且过两条直线340x y -+=和40x y +-=的交点;(2)过两条直线230x y -+=和290x y +-=的交点和原点;(3)过两条直线22100x y -+=和3420x y +-=的交点,且垂直于直线3240x y -+=;(4)过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=.4.三条直线280ax y ++=,4310x y +=和210x y -=相交于一点,求a 的值.5.已知(1,3),(3,2),(6,1),(2,4)A B C D ---,求证:四边形ABCD 为平行四边形.6.已知两条直线210ax ay ++=和(1)(1)10a x a y --+-=互相垂直,求垂足的坐标.7.已知两条直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=,当m 为何值时,1l 与2l :(1)相交?(2)平行?(3)垂直? 8.已知三条直线10,280x y x y ++=-+=和350ax y +-=共有三个不同的交点,求实数a 满足的条件.9.试证明:如果两条直线斜率的乘积等于-1,那么它们互相垂直.10.(1)已知直线:0l Ax By C ++=,且直线1//l l ,求证:直线1l 的方程总可以写出110()Ax By C C C ++=≠;(2)已知直线:0l Ax By C ++=,且直线2l l ⊥,求证:直线2l 的方程总可以写成20Bx Ay C -+=.11.直线1l 和2l 的方程分别是1110A x B y C ++=和2220A x B y C ++=,其中11,A B 不全为220,,A B 也不全为0.试探求:(1)当12//l l 时,直线方程中的系数应满足什么关系?(2)当12l l ⊥时,直线方程中的系数应满足什么关系?例1 (1)求(1,3),(2,5)A B -两点间的距离;(2)已知(0,10),(,5)A B a -两点间的距离是17,求实数a 的值.例2 已知ABC ∆的顶点坐标为(1,5),(2,1),(4,7)A B C ---,求BC 边上的中线AM 的长和AM 所在直线的方程.例3 已知ABC ∆是直角三角形,斜边BC 的中点为M ,建立适当的直角坐标系,证明:12AM BC =.习题1.求线段AB 的长及其中点的坐标:(1)(8,10),(4,4)A B -; (2)((A B .2.已知ABC ∆的顶点坐标为(3,2),(1,0),(2A B C ,求AB 边上的中心CM 的长.3.已知两点(1,4),(3,2)P A -,求点A 关于点P 的对称点B 的坐标.思考你还能通过其他途径求点P 到直线l 的距离吗?例1 求点(1,2)P -到下列直线的距离:(1)2100x y +-=;(2)32x =.例2 求两条平行直线340x y +-=与2690x y +-=之间的距离.例3 建立适当的直角坐标系,证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.习题1.求下列点P 到直线l 的距离:(1)(3,2),:34250P l x y -+-=;(2)(2,1),:350P l y -+=.2.求下列两条平行直线之间的距离:(1)51220512150x y x y --=-+=与;(2)364502x y y x -+==与. 3.直线l 经过原点,且点(5,0)M 到直线l 的距离等于3,求直线l 的方程.习题2.1(3)1.求,A B 两点之间的距离:(1)(2,0),(2,3);A B ---(2)(0,3),(3,3)A B ---;(3)(3,5),(3,3)A B -.2.已知点(1,2)P -,分别求点P 关于原点、x 轴和y 轴的对称点的坐标.3.设点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(2,1)-,求线段AB 的长度.4.已知,A B 两点都在直线1y x =-上,且,A B ,A B 之间的距离.5.已知两点(2,3),(1,4)A B -,点(,)P x y 到点,A B 的距离相等,求实数,x y 满足的条件.6.已知点(,)P x y 在直线40x y +-=上,O 是原点,求OP 的最小值.7.求点P 到直线l 的距离:(1)(2,1),:230P l x +=;(2)(3,4),:34300P l x y --+=.8.直线l 到两条平行直线220x y -+=和240x y -+=的距离相等,求直线l 的方程.9.直线l 在y 轴上截距为10,且原点到直线l 的距离是8,求直线l 的方程.10.点P 在直线350x y +-=上,且点P 到直线10x y --=求点P 的坐标.11.已知(7,8),(10,4),(2,4)A B C -,求ABC ∆的面积. 12.已知直线l 经过点(2,3)-,且原点到直线l 的距离是2,求直线l 的方程.13.在ABC ∆中,点,E F 分别为,AB AC 的中点,建立适当的直角坐标系,证明://EF BC ,且12EF BC =. 14.过点(3,0)P 作直线l ,使它被两条相交直线220x y --=和30x y ++=所截得的线段恰好被P 点平分,求直线l 的方程.15.已知光线通过点(2,3)A -,经x 轴反射,其反射光线通过点(5,7)B ,求入射光线和反射光线所在直线的方程.16.已知光线通过点(2,3)A ,经直线10x y ++=反射,其反射光线通过点(1,1)B ,求入射光线和反射光线所在直线的方程.17.在直线20x y +=上求一点P ,使它到原点的距离与到直线230x y +-=的距离相等.18.已知直线:33l y x =+,求:(1)直线l 关于点(3,2)M 对称的直线的方程;(2)直线20x y --=关于l 对称的直线的方程.19.证明平行四边形四边的平方和等于两条对角线的平方和.20.求证:两点(,)A a b ,(,)B b a 关于直线y x =对称.21.已知(1,3)M -,(6,2)N ,点P 在x 轴上,且使PM PN +取最上值,求点P 的坐标.22.某人上午8时从山下大本营出发登山,下午4时到达山顶.次日上午8时从山顶沿原路返回,下午4时回到山下大本营.如果该人以同样的速度匀速上山、下山,那么两天中他可能在同一时刻经过途中同一地点吗?如果他在上山、下山过程中不是匀速行进,他还可能在同一时刻经过途中同一地点吗?2.2 圆与方程例1 求圆心(2,3)C -,且经过坐标原点的圆的方程.例2 已知隧道的截面是半径为4m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m ,高为3m 的货车能不能驶入这个隧道?思考假设货车的最大宽度为a m ,那么货车要驶入该隧道,限高为多少?例3 已知ABC ∆顶点的坐标为(4,3),(5,2),(1,0)A B C ,求ABC ∆外接圆的方程. 思考 本题还有其他解法吗例4 某圆拱梁的示意图如图2—2—4所示.该圆拱的跨度AB 是36m ,拱高OP 是6m ,在建造时,每隔3m 需要一个支柱支撑,求支柱22A P 的长(精确到0.01m ).习题1.写出下列各圆的方程:(1)圆心在原点,半径为6;(2)经过点(6,3)P ,圆心为(2,2)C -.2.求以点(1,5)C --为圆心,并且和y 轴相切的圆的方程.3.已知点(4,5),(5,1)A B ---,求以线段AB 为直径的圆的方程.4.下列方程各表示什么图形?若表示圆,则求其圆心和半径:(1)2240x y x +-=;(2)224250x y x y +--+=.5.求经过点(4,1),(6,3),(3,0)A B C -的圆的方程.6.如果方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,那么必有( ).A.D E =B.D F =C.E F =D.D E F ==习题2.2(1)1.求满足下列条件的圆的方程:(1)过点(2,2)P -,圆心是(3,0);C(2)与两坐标轴都相切,且圆心在直线2350x y -+=上;(3)经过点(3,5)A 和(3,7)B -,且圆心在x 轴上.2.已知圆内接正方形相对的两个顶点的坐标分别是(5,6),(3,4)A C -,求这个圆的方程.3.已知半径为5的圆过点(3,4)P -,且圆心在直线210x y -+=上,求这个圆的方程.4.求经过三点(1,5),(5,5),(6,2)A B C --的圆的方程.5.已知圆222420x y x by b ++++=与x 轴相切,求b 的值.6.求过两点(0,4),(4,6)A B ,且圆心在直线220x y --=上的圆的标准方程.7.已知点(1,1)P 在圆22()()4x a y a -++=的内部,求实数a 的取值范围.8.画出方程1x -=. 9.求圆222210x y x y ++-+=关于直线30x y -+=对称的圆的方程.10.已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所形成的曲线.11.河道上有一座圆拱桥,在正常水位时,拱圈最高点距水面为9m ,拱圈内水面宽22m.一条船在水面以上部分高6.5m ,船顶部宽4m ,故通行无阻.近日水位暴涨了2.7m ,为此,必须加得船载,降低船身,才能通过桥洞.试问:船身应该降低多少?例1 求直线430x y +=和圆22100x y +=的公共点坐标,并判断它们的位置关系.例2 自点(1,4)A -作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程.例3 求直线0x +=被圆224x y +=截得的弦长.习题1.判断下列各组中直线l 与圆C 的位置关系:(1):10l x y +-=,22:4C x y +=; (2):4380,l x y --=22:(1)1;C x y ++= (3):40l x y +-=, 22:20C x y x ++=.2.若直线1ax by +=与圆221x y +=相交,则点(,)P a b 与圆的位置关系是( )A.在圆上B.在圆外C.在圆内D.不能确定3.(1)求过圆224x y +=上一点的圆的切线方程;(2)求过原点且与圆22(1)(2)1x y -+-=相切的直线的方程.4.求直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长.5.从圆22(1)(1)1x y -+-=外一点(2,3)P 向圆引切线,求切线长.例1 判断下列两圆的位置关系:(1)22(2)(2)1x y ++-=与22(2)(5)16x y -+-=;(2)22670x y x ++-=与226270x y y ++-=.例2 求过点(0,6)A 且与圆22:10100C x y x y +++=切于原点的圆的方程.习题1.判断下列两个圆的位置关系:(1)22(3)(2)1x y -++=与22(7)(1)36x y -+-=;(2)2222320x y x y +-+=与22330x y x y +--=.2.已知圆22x y m +=与圆2268110x y x y ++--=相交,求实数m 的取值范围.习题2.2(2)1.过点(3,4)P --作直线l ,当l 的斜率为何值时,(1)直线l 将圆22(1)(2)4x y -++=平分?(2)直线l 与圆22(1)(2)4x y -++=相切?(3)直线l 与圆22(1)(2)4x y -++=相交,且所截得的弦长为2?2.已知过点(1,1)A --的直线l 与圆222660x y x y +-++=相交,求直线l 斜率的取值范围.3.,且与直线23100x y +-=切于点(2,2)P 的圆的方程.4.已知以(4,3)C -为圆心的圆与圆221x y +=相切,求圆C 的方程.5.求圆心在y 轴上,且与直线1:43120l x y -+=,直线2:34120l x y --=都相切的圆的方程.6.已知一个圆经过直线:240l x y ++=与圆22:2410C x y x y ++-+=的两个交点,并且有最小面积,求此圆的方程.7.已知圆C 的方程是222x y r +=,求证:经过圆C 上一点00(,)M x y 的切线方程200x x y y r +=.8.已知圆222:C x y r +=,直线2:l ax by r +=.(1)当点(,)P a b 在圆C 上时,直线l 与圆C 具有怎样的位置关系?(2)当点(,)P a b 在圆C 外时,直线l 具有什么特点?2.3 空间直角坐标系例1 在空间直角坐标系中,作出点(5,4,6)P .例2 如图2—3—4,在长方体ABCD A B C D ''''-中,12,8, 5.AB AD AA '===以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA '分别为x 轴、y 轴和x 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.思考在空间直角坐标系中,x 轴上的点、xOy 平面内的点的坐标分别具有什么特点?例3 (1)在空间直角坐标系O xyz -中,画出不共线的3个点,,P Q R ,使得这3个点的坐标都满足3z =,并画出图形;(2)写出由这三个点确定的平面内的点的坐标应满足的条件.习题1.在空间直角坐标系中,画出下列各点:(0,0,3),(1,2,3),(2,0,4),(1,2,2).A B C D --2.在长方体ABCD A B C D ''''-中,6,4,7AB AD AA '===.以这个长方体的顶点B 为坐标原点,射线,,AB BC BB '分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.3.写出空间直角坐标系yOz 平面内的点的坐标应满足的条件.例1 求空间两点12(3,2,5),(6,01)P P --间的距离12PP .例2 平面上到坐标原点的距离为1的点的轨迹是单位圆,其方程为221x y +=.在空间中,到坐标原点的距离为1的点的轨迹是什么?试写出它的方程.思考 连结平面上两点111222(,),(,)P x y P x y 的线段12PP 的中点M 的坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭,那么,已知空间中两点11112222(,,),(,,)P x y z P x y z ,线段12PP 的中点M 的坐标是什么呢?练习1.运用两点间距离公式求图2—3—4中线段,OC B C ''的长度.2.一个长方体的8个顶点的坐标为(0,0,0),(0,1,0)(3,0,0),(3,1,0),(3,1,9),(3,0,9),(0,0,0),(0,1,9).(1)在空间直角坐标系中画出这个长方体;(2)求这个长方体的体积.3.已知正四棱锥P ABCD -的底面边长为13,试建立适当的空间直角坐标系,写出各顶点的坐标.4.已知(2,5,6),A -在y 轴上求一点P ,使7PA =.5.已知空间三点(1,0,1),(2,4,3),(5,8,5)A B C -,求证:,,A B C 在同一条直线上.6.(1)求点(4,3,7)P -关于xOy 平面的对称点的坐标;(2)求点(2,1,4)P 关于坐标原点的对称点的坐标;(3)求点(3,2,4)P -关于点(0,1,3)A -的对称点的坐标.7.在你的教室或房间里建立适当的空间直角坐标系,以此确定电灯、门锁或开关的位置,写出相应的坐标.复习题1.已知直线350ax y +-=经过点(2,1)A ,求实数a 的值.2.已知过两点(,3),(5,)A a B a --的直线的斜率为1,求a 的值及这两点间的距离.3.如果0,0AC BC <>,那么直线0Ax By C ++=不通过( ).A.第一象限B.第二象限C.第三象限D.第四象限4.已知直线10mx ny +-=经过第一、三、四象限,求实数,m n 满足的条件.5.已知直线l 过点(5,4)P --,且与两坐标轴围成的三角形的面积为5个平方单位,求直线l 的方程.6.直线过点(5,6)P ,它在x 轴上的截距是在y 轴上的截距的2倍,求此直线的方程.7.已知直线22x ay a +=+与直线1ax y a +=+平行,求实数a 的值.9.已知点A 与点(1,1)P -的距离为5,且到y 轴的距离等于4,求A 点的坐标.10.已知两条平行直线2360x y +-=和230x y a ++=之间的距离等于2,求实数a 的值.11.求圆224440x y x y +-++=被直线50x y --=所截得的弦的长度.12.求与点(32,10),(42,0),(0,)A B C 的距离都相等的点的坐标.13.求与圆22:(5)3C x y ++=相切,且在x 轴、y 轴上的截距相等的直线的方程.14.判断两圆222200x y x y ++--=与2225x y +=的位置关系.15.过点(1,2)P 作一直线l ,使直线l 与点(2,3)M 和点(4,5)N -的距离相等,求直线l 的方程.16.在空间直角坐标系中作出下列点,并求两点间的距离和连结两点的线段的中点坐标:(1)(2,4,1),(4,6,7);A B --- (2)(8,3,2),(4,5,2).C D --17.河北省赵县的赵州桥,是世界上历史最悠久的石拱桥,赵州桥的跨度约为37.4 m ,圆拱高约为7.2m ,试写出这个圆拱所在的圆的方程.18.已知平面内两点(4,1),(3,1)A B --,直线2y kx =+与线段AB 恒有公共点,求实数k 的取值范围.19.求证:无论k 取任何实数,直线(14)2(3)(214)0k x k y k +--+-=必经过一个定点,并求出定点的坐标.20.设集合22222{(,)|4},{(,)|(1)(1)(0)}M x y x y N x y x y r r =+≤=-+-≤>.当M N N = 时,求实数r 的取值范围.21.已知点(1,3),(5,2),M N -在x 轴上取一点P ,使得||PM PN -最大,求P 点的坐标.22.如图,在矩形ABCD 中,已知3,,AB AD E F =为AB 的两个三等分点,,AC DF 交于点G ,建立适当的直角坐标系,证明:EG DF ⊥.23.已知ABC ∆的一条内角平分线CD 的方程为210x y +-=,两个顶点为(1,2),(1,1)A B --,求第三个顶点C 的坐标.24.若直角y x b =+与曲线x =b 的取值范围.25.在直角坐标系中,已知射线:0(0),30(0)OA x y x OB y x -=≥+=≥,过点(1,0)P 作直线分别交射线,OA OB 于点,.A B(1)当AB 中点为P 时,求直线AB 的方程;(2)当AB 中点在直线12y x =上时,求直线AB 的方程. 26.已知点P 在xOy 平面内,点A 的坐标为(0,0,4),5PA =,那么,满足此条件的点P 组成什么曲线?27.已知圆222440x y x y +-+-=,是否存在斜率为1的直线l ,使以l 被圆C 截得的弦AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,说明理由.28.把函数()y f x =在x a =和x b =之间的一段图象近似地看做直线,且设a c b <<,试用(),()f a f b 来估计()f c .。
二、命题分析从近几年各省份的高考信息可以看出,高考对本单元的命题呈现如下特点:(1)高考题型中选择、填空、解答题均有所涉及,分值约占20分左右,比重较高.3.过P1(x1,y1),P2(x2,y2)的直线方程(1)若x1=x2,且y1≠y2时,直线垂直于x轴,方程为;(2)若x1≠x2,且y1=y2时,直线垂直于y轴,方程为;(3)若x1=x2=0,且y1≠y2时,直线即为y轴,方程为;[解析] 由已知,直线的斜率解得tan α=3或tan α=-13(舍去).由点斜式得y -1=3(x -2),即3x -y -5=0.(3)解方程组⎩⎪⎨⎪⎧x -2y -3=02x -3y -2=0,得⎩⎪⎨⎪⎧x =-5y =-4,即两条直线的交点为(-5,-4).由两点式得y -1-4-1=x -2-5-2,即5x -7y -3=0.(四)典型例题1.命题方向:直线的倾斜角与斜率[例1] 已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,求实数m 的取值范围.[分析] 求m 的范围,关键是能够画出它们的图像,结合图像求解,能够知道直线l 过定点(0,-1).[解析] 当m =0时,直线l 的方程为x =0,显然l 与PQ 相交. 当m ≠0时,k PA =-1-10--=-2,k QA =-1-20-2=32,l :y +1=-1mx .因为l 与线段PQ 相交, -1m ≥32或-1m≤-2, ∴m ∈⎣⎢⎡⎭⎪⎫-23,0或m ∈⎝ ⎛⎦⎥⎤0,12.所以m 的取值范围为⎣⎢⎡⎦⎥⎤-23,12.[点评] 解答已知直线过定点A 且与已知线段PQ 有交点,求其中参数的取值范围问题时,常用数形结合法,求出定点A 与线段PQ 的两个端点连线的斜率,根据图形列出不等式组,解不等式组即可. 注意:研究两直线的位置关系时,一定要注意斜率不存在的情况.跟踪练习1:(2)在分析直线的倾斜角和斜率的关系时,要根据正切函数到π2(α≠π2)时,k 由0增大到+∞,当负无穷大趋近于0.解决此类问题时,也可采用数形结合思想,借助图形直观作出判断.,d<0,a>c,d>0,a<cd>0,从而c<a<0,b<0,c始终平分圆x2+y2+2x-4y+1=A .(-∞,1]B .(0,1]C .(0,1)D .(-∞,1)[答案] A[解析] 由题意知直线过圆心(-1,-2), ∴-2a -2b +4=0,∴a +b =2, ∴ab ≤a 2+b 22=a +b2-2ab2,∴ab ≤1.4.已知直线l 1∶y =x ,l 2∶ax -y =0,其中a 为实数,当这两条直线的夹角在(0,π12)内变动时,a 的取值范围是( ) A .(33,1)∪(1,3) B .(33,3) C .(33,1)D .(1,3)[答案] A[解析] 因为k 1=1,k 2=a ,由数形结合知,直线l 2的倾斜角α∈(π6,π4)∪(π4,π3),所以直线l 2的斜率a ∈(33,1)∪(1,3). 5.过点P (-1,2)且方向向量为a =(-1,2)的直线方程为( ) A .2x +y =0 B .x -2y +5=0 C .x -2y =0D .x +2y -5=0[答案] A[解析] 因为方向向量a =(-1,2), 所以直线的斜率k =-2,又过点P (-1,2), 所以由点斜式求得直线方程为2x +y =0.6.(2011·山东济宁)已知点A (1,3),B (-2,-1),若直线l ∶y =k (x -2)+1与线段AB 相交,则k 的取值范围( )A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12[答案] D[解析] 如图,l 过P (2,1),k PA ≤k ≤k PB ,k PA =3-11-2=-2,而k PB =12,∴-2≤k ≤12.7.过抛物线y 2=43x 的焦点,且与圆x 2+y 2-2y =0相切的直线方程是( ) A.3x +y -3=0,y =0B.3x -y -3=0,y =0C.3x +y +3=0,3x -y +3=0D.3x +3y -3=0,3x -3y -3=0 [答案] A[解析] 抛物线焦点F (3,0),圆的方程x 2+(y -1)2=1,由图知过焦点F 且与圆相切的直线有两条,其中一条是y =0故排除C 、D.另一条斜率小于0,故选A.8.已知f (x )=log 2(x +1),且a >b >c >0,则f a a ,f b b ,f cc的大小关系是( ) A.f a a >f b b >f cc B.f c c >f b b >f aa C.f b b >f a a >f ccD.f a a >f c c >f bb[答案] B[解析] 作函数f (x )=log 2(x +1)的图像,易知f x x 表示直线的斜率.∴f c c >f b b >f a a,故选B.二、填空题9.一条直线l 过点P (1,4),分别交x 轴,y 轴的正半轴于A 、B 两点,O 为原点,则△AOB 的面积最小时直线l 的方程为________.[答案] 4x +y -8=0[解析] 设l :x a +y b=1(a ,b >0). 因为点P (1,4)在l 上, 所以1a +4b =1.由1=1a +4b ≥24ab⇒ab ≥16,所以S △AOB =12ab ≥8.解方程组⎩⎪⎨⎪⎧2x -y -2=0-x +-y +3=0得⎩⎪⎨⎪⎧x =113y =163,k =163-0113-3=8.∴所求的直线方程为y =8(x -3),即8x -y -24=0. 方法二 设所求的直线方程y =k (x -3),则⎩⎪⎨⎪⎧y =k x -2x -y -2=0,解得⎩⎪⎨⎪⎧ x A =3k -2k -2y A=4kk -2由⎩⎪⎨⎪⎧y =k x -x +y +3=0,解得⎩⎪⎨⎪⎧x B =3k -3k +1y B=-6kk +1∵P (3,0)是线段AB 的中点, ∴y A +y B =0,即4k k -2+-6k k +1=0, ∴k 2-8k =0,解得k =0或k =8. 又∵当k =0时,x A =1,x B =-3, 此时x A +x B 2=1-32≠3,∴k =0舍去,∴所求的直线方程为y =8(x -3), 即8x -y -24=0.方法三 设点A (x 1,y 1)在l 1上,点B (x 2,y 2)在l 2上,则 ⎩⎪⎨⎪⎧2x 1-y 1-2=0x 2+y 2+3=0x 1+x 2=6y 1+y 2=0,解得⎩⎪⎨⎪⎧ x 1=113y 1=163或⎩⎪⎨⎪⎧x 2=73y 2=-163∴k =k AB =-163-16373-113=8,∴所求的直线方程为8x -y -24=0.13.已知i =(1,0),j =(0,1),经过原点O 以u =i +m j 为方向向量的直线与经过定点A (0,1),以v =m i -j 为方向向量的直线相交于点P ,其中m ∈R ,当点P 变动时,试问是否存在一个定点Q ,使得|PQ |为定值?若存在,求出的前提下,参数的个数越少越好..有一个附近有进出水管的容器,每单位时间进出的水量是一定的,设从某时刻开始分钟内既进水又出水,得到时间x(分)本题是一个实际应用问题,综合性较强,通过分析题意可知是一个分段函数问题,即直线的方程.因此,由直线的点斜式方程即可求出.时,直线段过点O(0,0),A(10=2010==30-2040-10=13,=13(=13x +503.=13,所以=-53.=-53,又过点=-53(=-53+2903.综上所述,y =⎩⎪⎨⎪⎧2x x13x +503x ,-53x +2903x若点P 1、P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22y =y 1+y22,此公式为线段P 1P 2的中点坐标公式. 3.直线l 1A 1x +B 1y +C 1=0与l 2A 2x +B 2y +C 2=0的交点坐标就是⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的 .4.点A (x 1,y 1)、B (x 2,y 2)间的距离:|AB |=x 2-x 12+y 2-y 125.点P (x 0,y 0)到直线lAx +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.6.两平行线间距离: 两平行直线l 1Ax +By +C 1=0与l 2Ax +By +C 2=0间的距离为d =|C 2-C 1|A 2+B 2. (三)基础自测1.(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A[解析] 该题考查直线方程的求法(点斜式)所求直线斜率为12,过点(1,0)由点斜式y =12(x -1),即x -2y -1=0.2.(2009·安徽文)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0 [答案] A[解析] 本题考查直线方程的点斜式,以及两条的垂直关系.∵直线l 与直线2x -3y +4=0垂直, ∴直线l 的斜率k =-32,又∵直线l 过点(-1,2), ∴其方程为y -2=-32(x +1),即3x +2y -1=0.3.曲线y =k |x |及y =x +k (k >0)能围成三角形,则k 的取值范围是( ) A .0<k <1 B .0<k ≤1 C .k >1 D .k ≥1 [答案] C[解析] 数形结合法.在同一坐标系中作出两函数的图像,可见k ≤1时围不成三角形,k >1时能围成三角形.4.(2011·庐江模拟)若直线x a +y b=1通过点M (cos α,sin α),则( )∴-3a +b +4=0,即b =3a -4(不合题意) ∴此种情况不存在,即k 2≠0. 若k 2≠0,即k 1,k 2都存在,∵k 1=a b,k 2=1-a ,l 1⊥l 2, ∴k 1·k 2=-1,即a b(1-a )=-1①又∵l 1过点(-3,-1),∴-3a +b +4=0② 由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在,∴k 1=k 2. 即a b=1-a ③又∵坐标原点到这两条直线的距离相等,l 1∥l 2. ∴l 1,l 2在y 轴上的截距互为相反数. 即4b=b ④由③④联立解得⎩⎪⎨⎪⎧a =2b =-2或⎩⎪⎨⎪⎧a =23b =2.∴a ,b 的值为2和-2或23和2.(四)典型例题1.命题方向:两直线的位置关系[例1] 已知两条直线l 1(3+m )x +4y =5-3m ,l 22x +(5+m )y =8.当m 分别为何值时,l 1与l 2:(1)相交?(2)平行?(3)垂直?[解析] 当m =-5时,显然l 1与l 2相交;当m ≠-5时,易得两直线l 1和l 2的斜率分别为k 1=-3+m 4,k 2=-25+m, 它们在y 轴上的截距分别为b 1=5-3m 4,b 2=85+m .(1)由k 1≠k 2,得-3+m 4≠-25+m,m ≠-7且m ≠-1.∴当m ≠-7且m ≠-1时,l 1与l 2相交.(2)由⎩⎪⎨⎪⎧k 1=k 2,b 1≠b 2,得⎩⎪⎨⎪⎧-3+m 4=-25+m ,5-3m 4≠85+m ,解得m =-7.∴当m =-7时,l 1与l 2平行.(3)由k 1k 2=-1,得-3+m 4·(-25+m )=-1,解得m =-133.∴当m =-133时,l 1与l 2垂直.[点评] 运用有斜率的两直线平行或垂直的条件处理两直线位置关系时,要紧紧抓住k 1,k 2及b 1,b 2之间的关系,需要注意的是“有斜率”这一前提条件,否则会使解题不严谨甚至导致错误.如题:当k 取何值时,两直线x +ky =0和kx +(1-k )y =0互相垂直?很可能漏掉解k =0.判断两条直线平行、垂直、重合时,不要忘记考虑两条直线中有一条或两条直线的斜率均不存在的情况.在两条直线l 1、l 2斜率都存在且不重合的条件下,才有l 1∥l 2⇔k 1=k 2与l 1⊥l 2⇔k 1·k 2=-1.在斜率不存在或斜率为零情况下讨论两直线位置关系宜用数形结合求解. 跟踪练习1已知两直线l 1x +y sin θ-1=0和l 22x sin θ+y +1=0,试求θ的值,使得: (1)l 1∥l 2; (2)l 1⊥l 2.[解析] (1)方法1:当sin θ=0时,l 1的斜率不存在,l 2的斜率为0,l 1显然不平行于l 2, 当sin θ≠0时,k 1=-1sin θ,k 2=-2sin θ.欲使l 1∥l 2,只要-1sin θ=-2sin θ,即sin θ=±22.∴θ=k π±π4,k ∈Z ,此时两直线截距不相等.∴当θ=k π±π4,k ∈Z 时,l 1∥l 2.方法2:要使l 1∥l 2,需2sin 2θ-1=0,且1+sin θ≠0, 即sin θ=±22,∴θ=k π±π4,k ∈Z. ∴当θ=k π±π4,k ∈z 时,l 1∥l 2.(2)方法1:当sin θ=0时,l 1的斜率不存在,l 2的斜率为0,故l 1⊥l 2.此时θ=k π(k ∈Z). 当sin θ≠0时,k 1=-1sin θ,k 2=-2sin θ,要使l 1⊥l 2,则k 1·k 2=-1,即-1sin θ·(-2sin θ)=-1, 显然无解,故当θ=k π(k ∈Z)时,l 1⊥l 2.[解析] 解法1:若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A ′(3,-4)、B ′(3,-9),截得的线段A ′B ′的长|A ′B ′|=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1(k ≠-1).解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +1=0,得A (3k -2k +1,-4k -1k +1).解方程组⎩⎪⎨⎪⎧y =k x -+1,x +y +6=0,得B (3k -7k +1,-9k -1k +1).由|AB |=5.得(3k -2k +1-3k -7k +1)2+(-4k -1k +1+9k -1k +1)2=52.解之得,k =0,∴直线l 方程为y =1. 综上可知,所求l 的方程为x =3或y =1. 解法2:因为平行线间的距离d =|6-1|2=522,如图,直线l 被两平行线截得的线段为5, 设直线l 与两平行线的夹角为θ, 则sin θ=22,∴θ=45°. 因为两平行线的斜率是-1, 故所求直线的斜率不存在或零. 又因为直线l 过点P (3,1), 所以直线l 的方程为x =3或y =1.3.命题方向:对称问题[例3] 求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程. [分析] 转化为点关于直线的对称,利用方程组求解.[解析] 解法1:由⎩⎪⎨⎪⎧y =2x +3y =x +1得直线l 1与l 2的交点坐标为(-2,-1),在l 1上任取一点A (0,3),则A 关于直线l 的对称点B (x 1,y 1)一定在l 2上,由⎩⎪⎨⎪⎧y 1-3x 1=-1y 1+32=x 12+1得⎩⎪⎨⎪⎧x 1=2y 1=1,即B (2,1).∴l 2的方程为y -1=1+12+2(x -2).即x -2y =0.解法2:设所求直线上一点P (x ,y ),则在直线l 1上必存在一点P 1(x 0,y 0)与点P 关于直线l 对称. 由题设:直线PP 1与直线l 垂直,且线段PP 1的中点P 2⎝⎛⎭⎪⎫x +x 02,y +y 02在直线l 上.∴⎩⎪⎨⎪⎧y 0-yx 0-x ·1=-1y +y 02=x +x 02+1,变形得⎩⎪⎨⎪⎧x 0=y -1y 0=x +1,代入直线l 1:y =2x +3得x +1=2×(y -1)+3, 整理得x -2y =0.所以所求直线方程为x -2y =0.解法3:由⎩⎪⎨⎪⎧y =2x +3y =x +1知直线l 1与l 的交点坐标为(-2,-1),∴设直线l 2的方程为y +1=k (x +2),即kx -y +2k -1=0.在直线l 上任取一点(1,2),由题设知点(1,2)到直线l 1、l 2的距离相等, 由点到直线的距离公式得|k -2+2k -1|12+k 2=|2-2+3|22+-2, 解得k =12(k =2舍去),[点评] 对称问题是解析几何中的一个重要题型,是高考热点之一.两条曲线关于一条直线对称常转化为曲线上的点关于直线对称来解决.求点P (x 0,y 0)关于直线l :Ax +By +C =0的对称点Q (x 1,y 1)的坐标,可利用PQ ⊥l 及线段PQ 被l 平分这两个条件建立方程组求解,本题解法2就是利用这种方法结合“代入法”求轨迹方程的思想方法解题的.这是解这类问题的一个通法.∴直线l 2的方程为x -2y =0.跟踪练习3在直线l 3x -y -1=0上求一点P ,使得: (1)P 到A (4,1)和B (0,4)的距离之差最大; (2)P 到A (4,1)和C (3,4)的距离之和最小.[分析] (1)在直线l 上求一点P ,使P 到两定点的距离之和最小①当两定点A 、B 在直线l 的异侧时,由两点之间线段最短及三角形中任意两边之和都大于第三边可知,点P 为AB 连线与l 的交点;点P 到两定点距离之和的最小值为②当两定点A 、B 在直线l 的同侧时,作点A 、B 的距离之和最小.(2)在直线上求一点P ,使P 到两定点的距离之差的绝对值最大①当两定点A 、B 在直线l 的同侧时l 上任取一点P ′,则有||P ′B②当两定点A 、B 在直线l 的异侧时,作点||PB |-|PA ′||=|A ′B |时,达到最大.∵||P ′B |-|P ′A ′||≤|A ′B[解析] (1)如图(1)所示,设点则k BB ′·k l =-1,即3·b -a∴a +3b -12=0①又由于线段BB ′的中点坐标为即3a -b -6=0②解①②得a =3,b =3.∴B ′(3,3).∴3×a 2-b +42-1=0.即3a -b -6=0②解①②得a =3,b =3.∴B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧3x -y -1=02x +y -9=0,得⎩⎪⎨⎪⎧x =2y =5,即l 与AB ′的交点坐标为P (2,5).(2)如图(2)所示,设C 关于l 的对称点为C ′,求出C ′的坐标为(35,245),∴AC ′所在直线的方程为19x +17y -93=0,AC ′和l 交点坐标为(117,267),故P 点坐标为(117,267).(五)思想方法点拨1.求两直线交点坐标就是解方程组.即把几何问题转化为代数问题.2.要理解“点点距”、“点线距”、“线线距”之间的联系及各公式的特点.特别提示:求两平行线间的距离时,一定化成l 1Ax +By +C 1=0,l 2Ax +By +C 2=0的形式.3.在使用点到直线的距离公式时,应注意以下几点:(1)若给出的方程不是一般式,则应先把方程化为一般式,再利用公式求点到直线的距离; (2)若P 在直线l 上,则点P 到直线l 的距离为0,公式仍成立.4.在使用两平行线间的距离公式时,要先把两直线中x 、y 的系数化为相同,且都化成一般式后再用公式. 5.判断两条直线平行或垂直时,不要忘记考虑两条直线中有一条或两条直线均无斜率的情形,在两条直线l 1、l 2斜率都存在,且不重合的条件下,才有l 1∥l 2⇔k 1=k 2与l 1⊥l 2⇔k 1k 2=-1.用直线的一般式方程判断两直线的位置关系时,A 1A 2+B 1B 2=0⇔两直线垂直,但A 1B 2-A 2B 1=0与两直线平行不等价.用比例关系A 1A 2≠B 1B 2判断相交,A 1A 2=B 1B 2≠C 1C 2判断平行,A 1A 2=B 1B 2=C 1C 2判断重合,应用方便,但前提是A 2B 2C 2≠0,它们都不是等价条件.6.直线系方程有些问题中所给的直线方程常常含有一个参数,对于含有一个参数的直线方程,往往不是平行线系,就是过定点的直线系.(1)平行线系.①与直线Ax +By +C =0平行的直线系方程为Ax +By +m =0(m ≠C ),其中m 为参数. ②与直线Ax +By +C =0垂直的直线系方程为Bx -Ay +m =0,其中m 为参数. ③斜率为k (定值)的平行线系方程为y =kx +b ,其中k 为常数,b 为参数. (2)过定点的直线系.①过定点P (x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0(A 、B 不全为零).②过两条直线l 1A 1x +B 1y +C 1=0和l 2A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x+B 2y +C 2)=0(λ∈R)(不包括直线l 2).7.对称问题对称性问题是解析几何应用较为广泛的的一类问题,归纳起来有 (1)点关于点的对称点.①点P (x ,y )关于O (0,0)的对称点P ′(-x ,-y ). ②点P (x ,y )关于点(a ,b )的对称点P ′(2a -x,2b -y ). (2)点关于直线的对称点.①点(x ,y )关于x 轴,y 轴,直线y =x 的对称点分别为(x ,-y ),(-x ,y ),(y ,x ). ②点A (a ,b )关于直线x +y +C =0的对称点A ′的坐标为(-b -C ,-a -C ). ③点A (a ,b )关于直线x -y +C =0的对称点A ′的坐标为(b -C ,a +C ).④点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′的坐标为(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a -AB=-1,A a +m 2+B b +n2+C =0.(3)曲线Cf (x ,y )=0与曲线C ′g (x ,y )=0关于点P (a ,b )对称,则曲线C ′上任一点M ′(x ,y ),关于P 的对称点M (2a -x,2b -y )在曲线C 上,即f (2a -x,2b -y )=0.(4)曲线Cf (x ,y )=0关于直线y =kx +b 对称曲线为C ′g (x ,y )=0,则C ′上任一点P 关于直线y =kx+b 对称的点,必在曲线C 上,即曲线关于直线的对称问题转化为点.关于直线的对称问题。
第3课时一般式学习目标核心素养1.了解二元一次方程与直线的对应关系,掌握直线的一般形式.(重点、难点)2.根据确定直线位置的几何要素,探索并掌握直线方程几种形式之间的关系.(易错、易混点)3.能灵活应用直线方程的几种形式求直线方程.(重点)通过学习本节内容来提升学生的数学运算和数学建模核心素养。
1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)来表示.(2)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)都表示一条直线.2.直线的一般式方程(1)在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程;任何关于x,y的二元一次方程都表示直线.方程Ax+By+C=0(A,B不全为0)叫做直线方程的一般式.(2)对于直线Ax+By+C=0,当B≠0时,其斜率为-错误!,在y 轴上的截距为-错误!;当B=0时,在x轴上的截距为-错误!;当AB≠0时,在两轴上的截距分别为-错误!,-错误!.(3)直线一般式方程的结构特征①方程是关于x,y的二元一次方程.②方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列.③x的系数一般不为分数和负数.④虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.1。
思考辨析(1)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0都表示一条直线.()(2)直线的点斜式方程、两点式方程都可以化成一般式方程,反之,直线的一般式方程也都可以化成点斜式方程、两点式方程.( )(3)直线方程的一般式同二元一次方程Ax+By+C=0(A,B 不同时为零)之间是一一对应关系.()(4)方程①x+2y-3=0;②x-3=0;③y+1=0均表示直线.( )[答案] (1)×(2)×(3)√(4)√2.过点(1,2),斜率为0的直线对应的二元一次方程为________.y-2=0 [过点(1,2),斜率为0的直线方程为y=2,其对应的二元一次方程为y-2=0.]3.方程错误!-错误!=1,化成一般式为________.2x-3y-6=0 [由错误!-错误!=1,得2x-3y-6=0。
2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。
2011元旦假期数学作业高一平面解析几何初步复习讲义1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根. 2.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.第1课时 直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.变式训练1.(1)直线3y – 3 x +2=0的倾斜角是 ( ) A .30° B.60° C.120° D.150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7B .-77C .77D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.例3. 已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:23++x y 的最大值与最小值.典型例题变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值为 ( ) A.21B.33 C.23D.3例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA 取最小值时,求直线l 的方程.1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.小结归纳第2课时直线与直线的位置关系(一)平面内两条直线的位置关系有三种________.1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定2(二)点到直线的距离、直线与直线的距离1.P(x0,y0)到直线Ax+By+C=0 的距离为______________.2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.(三)两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1.直线l1到l2的角θ满足.2.直线l1与l2所成的角(简称夹角)θ满足.(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.(五)五种常用的直线系方程.① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+ (A2x+B2y+C2)=0(不含l2).② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?例2. 直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A(-4,2)、B(3,1),求点C 的坐标并判断△ABC 的形状.例3. 设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点p ,使PB PA 为最小,并求出这个最小值.变式训练3:已知过点A (1,1)且斜率为-m(m>0)的直线l 与x 、y 轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.1.处理两直线位置关系的有关问题时,要注意其满足的条件.如两直线垂直时,有两直线斜率都存在和斜率为O 与斜率不存在的两种直线垂直.2.注意数形结合,依据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决.3.利用直线系方程可少走弯路,使一些问题得到简捷的解法.4.解决对称问题中,若是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4第3课时 圆的方程1. 圆心为C(a 、b),半径为r 的圆的标准方程为_________________.2.圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为,半径r=.3.二元二次方程Ax2+Bxy +Cy2+Dx+Ey+F=0表示圆的方程的充要条件是.4.圆C:(x-a)2+(y-b)2=r2的参数方程为_________.x2+y2=r2的参数方程为________________.5.过两圆的公共点的圆系方程:设⊙C1:x2+y2+D1x+E1y+F1=0,⊙C2:x2+y2+D2x+E2y+F2=0,则经过两圆公共点的圆系方程为.典型例题例1. 根据下列条件,求圆的方程.(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上.(2) 经过P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长为6.变式训练1:求过点A(2,-3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程.例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.变式训练2:已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(例3. 知点P (x ,y )是圆(x+2)2+y 2=1上任意一点.(1)求P 点到直线3x+4y+12=0的距离的最大值和最小值; (2)求x-2y 的最大值和最小值; (3)求12--x y 的最大值和最小值.变式训练3:已知实数x 、y 满足方程x 2+y 2-4x+1=0. (1)求y-x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.例4. 设圆满足:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件①②的所有圆中,求圆心到直线l :x -2y=0的距离最小的圆的方程。
高中数学专题讲义:平面解析几何第1讲 直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知 识 梳 理1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0;③范围:直线的倾斜角α的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan__α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.2.直线方程的五种形式名称 几何条件 方程 适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线 截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线3.若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)直线的倾斜角越大,其斜率就越大.( ) (2)直线的斜率为tan α,则其倾斜角为α.( ) (3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示.( )(5)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )解析 (1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k 1=-1,k 2=1,k 1<k 2. (2)当直线斜率为tan(-45°)时,其倾斜角为135°. (3)两直线的斜率相等,则其倾斜角一定相等.(4)当直线的斜率不存在时,不可以用方程y -y 0=k (x -x 0)表示. 答案 (1)× (2)× (3)× (4)× (5)√2.(2017·衡水金卷)直线x -y +1=0的倾斜角为( ) A.30°B.45°C.120°D.150°解析 由题得,直线y =x +1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B. 答案 B3.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( ) A.第一象限B.第二象限C.第三象限D.第四象限解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限. 答案 C4.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =______.解析 ∵A ,B ,C 三点共线,∴k AB =k AC ,∴7-54-3=x -5-1-3,∴x =-3.答案 -35.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析 当纵、横截距为0时,直线方程为3x -2y =0;当截距不为0时,设直线方程为x a +y a =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0. 答案 3x -2y =0或x +y -5=0考点一 直线的倾斜角与斜率(典例迁移)【例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤π4,2π3 (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎢⎡⎦⎥⎤π6,π3,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 又θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤π4,π3,即倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,π3.(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴直线l 的斜率k ∈(-∞,-3]∪[1,+∞). 答案 (1)B (2)(-∞,-3]∪[1,+∞)【迁移探究1】 若将题(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围.解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎢⎡⎦⎥⎤13,3.【迁移探究2】 将题(2)中的B 点坐标改为B (2,-1),其他条件不变,求直线l 倾斜角的范围. 解 如图:直线P A 的倾斜角为45°, 直线PB 的倾斜角为135°,由图象知直线l 的倾斜角的范围为[0°,45°]∪[135°,180°).规律方法 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【训练1】 (2017·惠州一调)直线x sin α+y +2=0的倾斜角的取值范围是( ) A.[0,π) B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫π2,π 解析 设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以-1≤ tan θ≤1,又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π,故选B. 答案 B考点二 直线方程的求法【例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π), 从而cos α=±31010,则k =tan α=±13. 故所求直线方程为y =±13(x +4). 即x +3y +4=0或x -3y +4=0.(2)由题设知纵横截距不为0,设直线方程为xa +y12-a=1, 又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0. 由点线距离公式,得|10-5k |k 2+1=5,解得k =34. 故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性. 【训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)设直线l 在x ,y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1, ∵l 过点(4,1),∴4a +1a =1, ∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1), 即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用【例3】 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.(1)证明 直线l 的方程可化为k (x +2)+(1-y )=0, 令⎩⎨⎧x +2=0,1-y =0,解得⎩⎨⎧x =-2,y =1.∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k ≥1,解得k >0; 当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞).(3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k =12⎝ ⎛⎭⎪⎫4k +1k +4 ≥12×(2×2+4)=4,“=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 在求直线方程的过程中,若有以直线为载体的求面积、距离的最值问题,则可先设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 解 法一 设直线方程为x a +yb =1(a >0,b >0), 点P (3,2)代入得3a +2b =1≥26ab ,得ab ≥24,从而S △ABO =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23, 从而所求直线方程为2x +3y -12=0. 法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝ ⎛⎭⎪⎫3-2k ,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k=12⎣⎢⎡⎦⎥⎤12+(-9k)+4(-k)≥12⎣⎢⎡⎦⎥⎤12+2(-9k)·4(-k)=12×(12+12)=12.当且仅当-9k=4-k,即k=-23时,等号成立,即△ABO的面积的最小值为12.故所求直线的方程为2x+3y-12=0.[思想方法]1.直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.(2)直线的倾斜角α和斜率k之间的对应关系:α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<02.在求直线方程时,.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.[易错防范]1.求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2.根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.基础巩固题组(建议用时:30分钟)一、选择题1.直线3x-y+a=0(a为常数)的倾斜角为()A.30°B.60°C.120°D.150°解析 直线的斜率为k =tan α=3,又因为0°≤α<180°,所以α=60°. 答案 B2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0D.x -y +3=0解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0. 答案 D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,π C.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π D.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π 解析 ∵直线的斜率k =-1a 2+1,∴-1≤k <0,则倾斜角的范围是⎣⎢⎡⎭⎪⎫3π4,π. 答案 B4.(2017·高安市期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A.6x -4y -3=0B.3x -2y -3=0C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A5.(2016·广州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13B.-13C.-32D.23解析 依题意,设点P (a ,1),Q (7,b ),则有⎩⎨⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.答案 B6.(2017·深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 答案 B7.(2016·衡水一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A.y =3x +2 B.y =3x -2 C.y =3x +12D.y =-3x +2解析 ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A. 答案 A8.(2017·福州模拟)若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴、y 轴上的截距之和的最小值为( ) A.1B.2C.4D.8解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·ab =4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4. 答案 C 二、填空题9.已知三角形的三个顶点A (-5,0,),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析 BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.答案 x +13y +5=010.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1. 当2π3≤α<π时,-3≤tan α<0, 3≤k <0,∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0).答案 [-3,0)∪⎣⎢⎡⎭⎪⎫33,111.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________. 解析 ①若直线过原点,则k =-43, 所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +ya =1, 即x +y =a .则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案 4x +3y =0或x +y +1=012.直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点________. 解析 直线l 的方程变形为a (x +y )-2x +y +6=0, 由⎩⎨⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2). 答案 (2,-2)能力提升题组 (建议用时:15分钟)13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( )A.4x -3y -3=0B.3x -4y -3=0C.3x -4y -4=0D.4x -3y -4=0解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝ ⎛⎭⎪⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案 D14.(2017·成都诊断)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-12 B.[-1,0] C.[0,1]D.⎣⎢⎡⎦⎥⎤12,1 解析 由题意知y ′=2x +2,设P (x 0,y 0),则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.答案 A15.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.解析 设直线l 与线段2x +y =8(2≤x ≤3)的公共点为P (x ,y ). 则点P (x ,y )在线段AB 上移动,且A (2,4),B (3,2),设直线l 的斜率为k .又k OA =2,k OB =23.如图所示,可知23≤k ≤2. ∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2.答案 ⎣⎢⎡⎦⎥⎤23,216.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是________. 解析 直线OA 的方程为y =x , 代入半圆方程得A (1,1),∴H (1,0),直线HB 的方程为y =x -1, 代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32. 所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案3x +y -3-1=0第2讲 两直线的位置关系最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解;重合⇔方程组有无数个解.3.距离公式(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=(x2-x1)2+(y2-y1)2. 特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=x2+y2.(2)点到直线的距离公式平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2.(3)两条平行线间的距离公式一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.()(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.()(3)若两直线的方程组成的方程组有唯一解,则两直线相交.()(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.()(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.()解析(1)两直线l1,l2有可能重合.(2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在.答案(1)×(2)×(3)√(4)√(5)√2.(2016·北京卷)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C. 2D.2 2解析圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=|-1-0+3|12+(-1)2= 2.答案 C3.(2017·郑州调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3D.-2或-3解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.故选C. 答案 C4.直线2x +2y +1=0,x +y +2=0之间的距离是________. 解析 先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324. 答案3245.(必修2P89练习2改编)已知P (-2,m ),Q (m ,4),且直线PQ 垂直于直线x +y +1=0,则m =________.解析 由题意知 m -4-2-m =1,所以m -4=-2-m ,所以m =1.答案 1考点一 两直线的平行与垂直【例1】 (1)已知两条直线l 1:(a -1)x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A.-1 B.2 C.0或-2D.-1或2(2)已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________.解析 (1)若a =0,两直线方程分别为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0;当a ≠0时,两直线平行,则有a -11=2a ≠13,解得a =-1或2. (2)因为l 1⊥l 2,所以k 1k 2=-1.即(-1)·⎝ ⎛⎭⎪⎫-a 2=-1,解得a =-2. 答案 (1)D (2)-2规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (1)(2017·重庆一中检测)若直线l 1:(a -1)x +y -1=0和直线l 2:3x +ay +2=0垂直,则实数a 的值为( ) A.12B.32C.14D.34(2)(2017·西安模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析 (1)由已知得3(a -1)+a =0,解得a =34.(2)由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝ ⎛⎭⎪⎫2a +3b =13+6a b +6b a ≥13+26a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案 (1)D (2)25考点二 两直线的交点与距离问题【例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)法一由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k 2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限, ∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.法二 如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2). 而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线. ∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k P A <k <k PB . ∵k P A =-16,k PB =12. ∴-16<k <12.(2)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1), 即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0. 当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1规律方法 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.【训练2】 (1)曲线y =2x -x 3在横坐标为-1的点处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010(2)(2017·河北省“五个一名校联盟”质检)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2B.823C. 3D.833解析 (1)曲线y =2x -x 3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k =y ′|x =-1=2-3×(-1)2=-1,故切线l 的方程为y -(-1)=-1×[x -(-1)],整理得x +y +2=0.由点到直线的距离公式,得点P (3,2)到直线l 的距离为|3+2+2|12+12=722. (2)因为l 1∥l 2,所以1a -2=a 3≠62a ,所以⎩⎨⎧a (a -2)=3,2a 2≠18,a ≠2,a ≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x-y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823,故选B.答案 (1)A (2)B 考点三 对称问题【例3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程.解(1)设A ′(x ,y ),再由已知⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.规律方法 (1)解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.(2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题.(3)若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.【训练3】 光线沿直线l 1:x -2y +5=0射入,遇直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.解 法一 由⎩⎨⎧x -2y +5=0,3x -2y +7=0,得⎩⎨⎧x =-1,y =2.∴反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设P 关于直线l 的对称点P ′(x 0,y 0), 由PP ′⊥l 可知,k PP ′=-23=y 0x 0+5.而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0.由⎩⎪⎨⎪⎧y 0x 0+5=-23,32(x 0-5)-y 0+7=0.得⎩⎪⎨⎪⎧x 0=-1713,y 0=-3213.根据直线的两点式方程可得所求反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点为P ′(x ,y ),则y 0-y x 0-x=-23,又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧y 0-y x 0-x =-23,3×x +x 02-(y +y 0)+7=0.可得P 点的横、纵坐标分别为 x 0=-5x +12y -4213,y 0=12x +5y +2813, 代入方程x -2y +5=0中,化简得29x -2y +33=0, ∴所求反射光线所在的直线方程为29x -2y +33=0.[思想方法]1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l 1,l 2,l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意.2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题. [易错防范]1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑.2.在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数分别化为相同的形式.基础巩固题组 (建议用时:30分钟)一、选择题1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A.平行B.垂直C.相交但不垂直D.不能确定解析 直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率为k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C. 答案 C2.(2017·刑台模拟)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 依题意得,直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎨⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,因此选C. 答案 C3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ) A.19x -9y =0 B.9x +19y =0 C.19x -3y =0D.3x +19y =0解析 法一由⎩⎨⎧x -3y +4=0,2x +y +5=0,得⎩⎪⎨⎪⎧x =-197,y =37,则所求直线方程为:y =37-197x =-319x ,即3x +19y =0.法二 设直线方程为x -3y +4+λ(2x +y +5)=0, 即(1+2λ)x -(3-λ)y +4+5λ=0,又直线过点(0,0), 所以(1+2λ)·0-(3-λ)·0+4+5λ=0, 解得λ=-45,故所求直线方程为3x +19y =0. 答案 D4.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A.x +2y -1=0 B.2x +y -1=0 C.x +2y +3=0D.x +2y -3=0解析 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0. 答案 D5.(2017·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A.7B.172C.14D.17解析 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离10,所以|2m +3|4+36=10,求得m =172,故选B. 答案 B6.平面直角坐标系中直线y =2x +1关于点(1,1)对称的直线方程是( ) A.y =2x -1 B.y =-2x +1 C.y =-2x +3D.y =2x -3解析 在直线y =2x +1上任取两个点A (0,1),B (1,3),则点A 关于点(1,1)对称的点为M (2,1),点B 关于点(1,1)对称的点为N (1,-1).由两点式求出对称直线MN 的方程为y +11+1=x -12-1,即y =2x -3,故选D. 答案 D7.(2017·成都调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( ) A.(3,3) B.(2,3) C.(1,3)D.⎝⎛⎭⎪⎫1,32解析 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).故选C. 答案 C8.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A.x +2y -4=0B.2x +y -1=0C.x +6y -16=0D.6x +y -8=0解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确. 答案 A 二、填空题9.点(2,1)关于直线x -y +1=0的对称点为________.解析设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0,解得⎩⎨⎧x 0=0,y 0=3,故所求对称点为(0,3).答案 (0,3)10.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 解析 由⎩⎨⎧y =2x ,x +y =3,得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案 -911.(2017·沈阳检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, ∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=012.(2016·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6), 所以所求直线的方程为y -06-0=x -12-1, 即6x -y -6=0. 答案 6x -y -6=0能力提升题组 (建议用时:15分钟)13.(2017·洛阳模拟)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( ) A.102B.10C.5D.10解析 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,∴M 位于以PQ 为直径的圆上,∵|PQ |=9+1=10,∴|MP |2+|MQ |2=|PQ |2=10,故选D. 答案 D14.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.210 B.6 C.3 3D.2 5解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离. 于是|A 1A 2|=(4+2)2+(2-0)2=210. 答案 A15.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析 易知A (0,0),B (1,3)且两直线互相垂直, 即△APB 为直角三角形,∴|P A |·|PB |≤|P A |2+|PB |22=|AB |22=102=5.当且仅当|P A |=|PB |时,等号成立. 答案 516.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析 设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2, ∴直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又∵k BD =5-(-1)1-7=-1,∴直线BD的方程为y-5=-(x-1),即x+y-6=0.②由①②得⎩⎨⎧2x-y=0,x+y-6=0,解得⎩⎨⎧x=2,y=4,所以M(2,4).答案(2,4)第3讲圆的方程最新考纲掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:⎝⎛⎭⎪⎫-D2,-E2半径r=12D2+E2-4F2.平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时才表示圆.答案(1)√(2)×(3)×(4)√2.(2015·北京卷)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析由题意得圆的半径为2,故该圆的方程为(x-1)2+(y-1)2=2,故选D.答案 D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-1<a<1.答案 A4.(2016·浙江卷)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是________,半径是________.解析由已知方程表示圆,则a2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4) 55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,所以圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.答案(x-2)2+y2=10考点一圆的方程【例1】(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得的弦长等于6,则圆C的方程为________.解析(1)法一由已知k AB=0,所以AB的中垂线方程为x=3.①过B点且垂直于直线x-y-1=0的直线方程为y-1=-(x-2),即x+y-3=0,②联立①②,解得⎩⎨⎧x=3,y=0,所以圆心坐标为(3,0),半径r=(4-3)2+(1-0)2=2,所以圆C的方程为(x-3)2+y2=2.法二设圆的方程为(x-a)2+(y-b)2=r2(r>0),∵点A(4,1),B(2,1)在圆上,故⎩⎨⎧(4-a)2+(1-b)2=r2,(2-a)2+(1-b)2=r2,又∵b-1a-2=-1,解得a=3,b=0,r=2,故所求圆的方程为(x-3)2+y2=2.(2)设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F=0),将P,Q两点的坐标分别代入得⎩⎨⎧2D-4E-F=20,3D-E+F=-10.①②又令y=0,得x2+Dx+F=0.③设x1,x2是方程③的两根,由|x1-x2|=6,得D2-4F=36,④由①,②,④解得D=-2,E=-4,F=-8,或D=-6,E=-8,F=0.故所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.答案(1)(x-3)2+y2=2(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0规律方法求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.【训练1】(1)(2016·天津卷)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到直线2x-y=0的距离为455,则圆C的方程为________.(2)(2017·武汉模拟)以抛物线y2=4x的焦点为圆心,与该抛物线的准线相切的圆的标准方程为________.解析(1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=|CM|=4+5=3,所以圆C的方程为(x-2)2+y2=9.(2)抛物线y2=4x的焦点为(1,0),准线为x=-1,故所求圆的圆心为(1,0),半径为2,所以该圆的标准方程为(x-1)2+y2=4.答案(1)(x-2)2+y2=9(2)(x-1)2+y2=4考点二与圆有关的最值问题【例2】已知实数x,y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.解原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.(1)yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.当直线y=kx与圆相切时,斜率k取最大值或最小值,此时|2k-0|k2+1=3,解得k=±3(如图1).所以yx的最大值为3,最小值为- 3.。
第四章平面解析几何初步1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.2.会用二元一次不等式表示平面区域.3.了解简单的线性规划问题,了解线性规划的意义,并会简单的应用.4.了解解析几何的基本思想,了解用坐标法研究几何问题的方法.在近几年的高考试题中,两点间的距离公式、中点坐标公式、直线方程的点斜式、斜截式、一般式、斜率公式及两条直线的位置关系,圆的方程及直线与圆、圆与圆的位置关系是考查的热点.但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,近年来,在高考中经常考查,但基本上以中易题出现.考查的数学思想方法,主要是数形结合、分类讨论、方程的思想和待定系数法等.第1课时直线的方程1.倾斜角:对于一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k=tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式.若x1=x2,则直线的斜率不存在,此时直线的倾斜角为90°. 3.直线方程的五种形式名称 方程 适用范围 斜截式 点斜式 两点式 截距式 一般式例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点. 解:(1) -1 ⑵ 2或-21⑶31或-2 ⑷-23⑸ 41变式训练1.(1)直线3y + 3 x +2=0的倾斜角是 ( )A .30°B .60°C .120°D .150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7B .-77 C .77D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 .解:(1)D .提示:直线的斜率即倾斜角的正切值是-33. (2)C .提示:用斜率计算公式1212y y x x --. (3)A .提示:两直线的斜率互为相反数.(4)2y +3x +1=0.提示:用直线方程的两点式或点斜式 例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上. 证明 方法一 ∵A (1,-1),B (3,3),C (4,5), ∴k AB =1313-+=2,k BC =3435--=2,∴k AB =k BC ,∴A 、B 、C 三点共线.方法二 ∵A (1,-1),B (3,3),C (4,5), ∴|AB|=25,|BC|=5,|AC|=35,∴|AB|+|BC|=|AC|,即A 、B 、C 三点共线. 方法三 ∵A (1,-1),B (3,3),C (4,5),典型例题∴AB =(2,4),BC =(1,2),∴AB =2BC . 又∵AB 与BC 有公共点B ,∴A 、B 、C 三点共线.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.证明 ∵A 、B 、C 三点共线,∴k AB =k AC , ∴ca c ab a b a --=--3333,化简得a 2+ab+b 2=a 2+ac+c 2,∴b 2-c 2+ab-ac=0,(b-c )(a+b+c )=0, ∵a 、b 、c 互不相等,∴b-c≠0,∴a+b+c=0. 例3. 已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1). 试求:23++x y 的最大值与最小值. 解: 由23++x y 的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB 上任一点(x,y)的直线的斜率k,如图可知:k PA ≤k≤k PB , 由已知可得:A (1,1),B (-1,5), ∴34≤k≤8, 故23++x y 的最大值为8,最小值为34. 变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值为 ( ) A.21B.33 C.23D.3答案D例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程. 解:Q 点在l 1: y =4x 上,可设Q(x 0,4x 0),则PQ 的方程为:6644400--=--x x x y 令y =0,得:x =1500-x x (x 0>1),∴ M(1500-x x,0) ∴ S △OQM =21·1500-x x ·4x 0=10·1020-x x=10·[(x 0-1)+110-x +2]≥40 当且仅当x 0-1=110-x 即x 0=2取等号,∴Q(2,8) PQ 的方程为:626484--=--x y ,∴x +y -10=0变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA ⋅取最小值时,求直线l 的方程.解:设l :y -1=k(x -2)(k <0) 则A(2-k1,0),B(0,1-2k) ①由S =21(1-2k)(2-k 1)=21(4-4k -k 1) ≥21⎥⎥⎦⎤⎢⎢⎣⎡-⋅-+)1()4(24k k =4当且仅当-4k =-k 1,即k =-21时等号成立 ∴△AOB 的面积最小值为4此时l 的方程是x +2y -4=0 ②∵|MA|·|MB|=224411k k+⋅+ =||)1(22k k +=2⎥⎦⎤⎢⎣⎡-+-)()1(k k ≥4 当且仅当-k =-k1即k =-1时等号成立 此时l 的方程为x +y -3=0(本题也可以先设截距式方程求解)1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.第2课时 直线与直线的位置关系(一)平面内两条直线的位置关系有三种________.1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定2(二)点到直线的距离、直线与直线的距离1.P(x 0,y 0)到直线Ax +By +C =0 的距离为______________.2.直线l 1∥l 2,且其方程分别为:l 1:Ax +By +C 1=0 l 2:Ax +By +C 2=0,则l 1与l 2的距离为 .(三)两条直线的交角公式若直线l 1的斜率为k 1,l 2的斜率为k 2,则 1.直线l 1到l 2的角θ满足 .2.直线l 1与l 2所成的角(简称夹角)θ满足 .(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.(五)五种常用的直线系方程.① 过两直线l 1和l 2交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不含l 2). ② 与直线y =kx +b 平行的直线系方程为y =kx +m (m≠b). ③ 过定点(x 0, y 0)的直线系方程为y -y 0=k(x -x 0)及x =x 0.④ 与Ax +By +C =0平行的直线系方程设为Ax +By +m =0 (m≠C). ⑤ 与Ax +By +C =0垂直的直线系方程设为Bx -Ay +C 1=0 (AB≠0).例1. 已知直线l 1:ax+2y+6=0和直线l 2:x+(a-1)y+a 2-1=0, (1)试判断l 1与l 2是否平行; (2)l 1⊥l 2时,求a 的值.解(1)方法一 当a=1时,l 1:x+2y+6=0, l 2:x=0,l 1不平行于l 2; 当a=0时,l 1:y=-3,l 2:x-y-1=0,l 1不平行于l 2; 当a≠1且a≠0时,两直线可化为 l 1:y=-x a 2-3,l 2:y=x a-11-(a+1), l 1∥l 2⇔⎪⎩⎪⎨⎧+-≠--=-)1(3112a a a,解得a=-1, 综上可知,a=-1时,l 1∥l 2,否则l 1与l 2不平行.方法二 由A 1B 2-A 2B 1=0,得a (a-1)-1×2=0, 由A 1C 2-A 2C 1≠0,得a(a 2-1)-1×6≠0,∴l 1∥l 2⇔⎪⎩⎪⎨⎧≠⨯--=⨯--061)1(021)1(2a a a a⇔⎪⎩⎪⎨⎧≠-=--6)1(0222a a a a ⇒a=-1,故当a=-1时,l 1∥l 2,否则l 1与l 2不平行.(2)方法一 当a=1时,l 1:x+2y+6=0,l 2:x=0,l 1与l 2不垂直,故a=1不成立.当a≠1时,l 1:y=-2ax-3, l 2:y=x a-11-(a+1), 由⎪⎭⎫⎝⎛-2a ·a-11=-1⇒a=32.方法二 由A 1A 2+B 1B 2=0,得a+2(a-1)=0⇒a=32.变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?解:当a=0时,直线l 1斜率为0,l 2斜率不存在,两直线显然垂直。