高一平面解析几何初步复习讲义
- 格式:doc
- 大小:206.00 KB
- 文档页数:7
平面解析几何 高考复习知识点一、直线的倾斜角、斜率1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。
2、直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。
例题:例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析: ∵, ∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.类型二:斜率定义例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan150°= k AC =tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.类型三:斜率公式的应用例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.例4、过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或. 经检验不适合,舍去. 故.例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.思路点拨:如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.解析:∵A 、B 、C 三点在一条直线上,∴k AB =k AC .即二、直线方程的几种形式1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
平面解析几何初步引言平面解析几何是数学中的一个重要分支,它研究了平面上点、直线、曲线的性质和相互关系。
本文将从平面上的点、直线以及曲线这三个方面,初步介绍平面解析几何的基本概念和方法。
一、平面上的点在平面解析几何中,点是最基本的概念之一。
点可以用坐标表示,常用的表示方法有直角坐标和极坐标两种。
1. 直角坐标系直角坐标系是平面上最常用的坐标系之一。
在直角坐标系中,平面被分成四个象限,每个象限有一个唯一的坐标表示。
点的坐标表示为(x, y),其中x表示横坐标,y表示纵坐标。
2. 极坐标系极坐标系是另一种常用的坐标系。
在极坐标系中,点的位置由极径和极角来确定。
极径表示点到原点的距离,极角表示点与正半轴的夹角。
二、平面上的直线直线是平面解析几何中的另一个重要概念。
直线可以用多种方式表示和描述,例如点斜式、一般式和截距式等。
1. 点斜式点斜式是一种常用的直线表示方法。
它通过给定直线上一点的坐标和直线的斜率来确定直线的方程。
点斜式的一般形式为y - y1 = k(x - x1),其中(x1, y1)为直线上的一点,k为直线的斜率。
2. 一般式一般式是另一种常用的直线表示方法。
它通过直线的一般方程来描述直线的性质。
一般式的一般形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
3. 截距式截距式是直线的另一种表示方法。
它通过直线与坐标轴的交点来确定直线的方程。
截距式的一般形式为x/a + y/b = 1,其中a和b分别表示直线与x轴和y轴的截距。
三、平面上的曲线曲线是平面解析几何中的另一个重要概念。
曲线可以通过方程或参数方程来表示和描述。
1. 方程曲线的方程是最常用的表示方法之一。
通过给定曲线上点的坐标满足的方程来确定曲线的性质。
常见的曲线方程有圆的方程、椭圆的方程、双曲线的方程等。
2. 参数方程参数方程是曲线的另一种表示方法。
通过给定曲线上点的坐标与参数之间的关系来确定曲线的性质。
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
二、平面解析几何初步【知识网络】第六章直线的方程专题一直线的倾斜角与斜率1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 【典例1】 (1)直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是 . (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为 .【答案】 (1)⎣⎢⎡⎦⎥⎤π4,π3 (2)(-∞,-3]∪1,+∞)(2)如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪1,+∞).【迁移训练1】 (1)直线x cos α+3y +2=0的倾斜角的范围是 .(2)已知实数x ,y 满足2x +y =8,当2≤x ≤3时,则yx的最大值为 ;最小值为 . 【答案】 (1)⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π (2)2 23(2)本题可先作出函数y =8-2x (2≤x ≤3)的图象,把yx看成过点(x ,y )和原点的直线的斜率进行求解.如图,设点P (x ,y ),因为x ,y 满足2x +y =8,且2≤x ≤3,所以点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标分别是(2,4),(3,2).因为y x的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23. 专题二 求直线的方程名称 方程 适用范围 点斜式 y -y 1=k (x -x 1) 不含直线x =x 1 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1 (x 1≠x 2)和直线y =y 1 (y 1≠y 2)截距式x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0(A ,B 不全为0)平面直角坐标系内的直线都适用【典例2】 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.(2)由题设知截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.【思维升华】在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况. 【迁移训练2】 求适合下列条件的直线方程: (1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 【解析】 (1)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过点(0,0)及(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +y a=1, ∵l 过点(4,1), ∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.专题三 直线方程的综合应用【典例3】 (1)(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则PA ·PB 的最大值是 .(2)(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为 . 【答案】 (1)5 (2)-12【解析】 (1)∵直线x +my =0与mx -y -m +3=0分别过定点A ,B ,∴A (0,0),B (1,3).当点P 与点A (或B )重合时,PA ·PB 为零; 当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点, 且易知此两直线垂直, ∴△APB 为直角三角形, ∴AP 2+BP 2=AB 2=10, ∴PA ·PB ≤PA 2+PB 22=102=5,当且仅当PA =PB 时,上式等号成立. (2)∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.【迁移训练3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 【解析】【方法二】依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0),且有A ⎝⎛⎭⎪⎫3-2k,0,B (0,2-3k ),∴S △ABO =12(2-3k )⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+-9k +4-k≥12⎣⎢⎡⎦⎥⎤12+2 -9k4-k =12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立. 即△ABO 的面积的最小值为12.故所求直线的方程为2x+3y-12=0.第七章两条直线的位置关系专题一两条直线的平行与垂直(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l1、l2,若其斜率分别为k1、k2,则有l1∥l2⇔k1=k2(k1,k均存在).2(ⅱ)当直线l1、l2不重合且斜率都不存在时,l1∥l2.②两条直线垂直:(ⅰ)如果两条直线l1、l2的斜率存在,设为k1、k2,则有l1⊥l2⇔k1·k2=-1 (k1,k均存在).2(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l1⊥l2.【典例1】(1)已知两条直线l1:(a-1)·x+2y+1=0,l2:x+ay+3=0平行,则a=________.(2)已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=________.【答案】(1)-1或2 (2)-2【思维升华】(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x、y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【迁移训练1】已知两直线l1:x+y sin α-1=0和l2:2x·sin α+y+1=0,求α的值,使得:(1)l1∥l2;(2)l1⊥l2.【解析】(1)【方法一】当sin α=0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α. 要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22.所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.专题二 两条直线的交点与距离问题1、两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2、几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离P 1P 2=x 2-x 12+y 2-y 12.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 【典例2】 (1)已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.(2)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l __________________________.【答案】 (1)⎝ ⎛⎭⎪⎫-16,12 (2)x +3y -5=0或x =-1 【解析】(1)【方法一】 由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行) ∴交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.【方法二】如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点), ∴动直线的斜率k 需满足k PA <k <k PB . ∵k PA =-16,k PB =12. ∴-16<k <12.【方法二】 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4).∴直线l 的方程为x =-1. 故所求直线l 的方程为x +3y -5=0或x =-1. 【思维升华】(1)求过两直线交点的直线方程的方法:求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; ②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等. 【迁移训练2】(1)如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.(2)正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. 【解析】点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5),则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 专题三 对称问题【典例3】 (1)过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.(2)已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为____________.(3)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.(3) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0. 【思维升华】 解决对称问题的方法 (1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决. 【迁移训练3】在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到原点P (如图).若光线QR 经过△ABC 的重心,则AP =________.【答案】 43【解析】建立如图所示的坐标系:可得B (4,0),C (0,4),故直线BC 的方程为x +y =4, △ABC 的重心为⎝⎛⎭⎪⎫0+0+43,0+4+03,设P (a,0),其中0<a <4,故直线QR 的方程为y =4-a4+a(x +a ),由于直线QR 过△ABC 的重心(43,43),代入化简可得3a 2-4a =0,解得a =43,或a =0(舍去),故P ⎝ ⎛⎭⎪⎫43,0,故AP =43.第八章 圆的方程专题一 求圆的方程 1.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =D 2+E 2-4F2.【典例1】 根据下列条件,求圆的方程.(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).(2)【方法一】如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.【方法二】 设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x 0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.【思维升华】 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.【迁移训练1】 (1)(2014·陕西)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为____________.(2)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________. 【答案】 (1)x 2+(y -1)2=1 (2)(x -3)2+y 2=2专题二 与圆有关的最值问题 命题点1 斜率型最值问题【典例2】 已知实数x 、y 满足方程x 2+y 2-4x +1=0,则求: (1)y x的最大值为________,最小值为________. (2)求y -x 的最小值和最大值. (3)求x 2+y 2的最大值和最小值. 【解析】 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆. 设y x=k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径时直线与圆相切,斜率取得最大、最小值. 由|2k -0|k 2+1=3,解得k 2=3, ∴k max =3,k min =- 3.(也可由平面几何知识,得OC =2,CP =3,∠POC =60°,直线OP 的倾斜角为60°,直线OP ′的倾斜角为120°)解(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图). 又因为圆心到原点的距离为-2+-2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值为(2-3)2=7-4 3.【思维升华】 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题. 【迁移训练2】(1)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则PQ 的最小值为 ________. 【答案】 4【解析】 PQ 的最小值为圆心到直线的距离减去半径.因为圆的圆心为(3,-1),半径为2,所以PQ 的最小值d =3-(-3)-2=4.(2)已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3). ①求MQ 的最大值和最小值; ②若M (m ,n ),求n -3m +2的最大值和最小值.②可知n -3m +2表示直线MQ 的斜率,设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. 专题三 与圆有关的轨迹问题【典例3】设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹. 【解析】如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况).【思维升华】 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.【迁移训练3】 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.(2)设PQ 的中点为N (x ,y ),连结BN . 在Rt△PBQ 中,PN =BN .设O 为坐标原点,连结ON ,则ON ⊥PQ , 所以OP 2=ON 2+PN 2=ON 2+BN 2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第九章 直线与圆、圆与圆的位置关系专题一 直线与圆的位置关系判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac ⎩⎨⎧>0⇔相交;=0⇔相切;<0⇔相离.【典例1】(1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d=1,故直线与圆相切.【思维升华】 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 【迁移训练1】 已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 2的最大值为4,此时AB 最小为27.专题二 圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).方法 位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2 一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2) 一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解【典例2】 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. (2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为____________.(3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是__________.【答案】 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2). 过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小. ∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为 ⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45. (3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2.依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2.∴a ∈(-22,0)∪(0,22)【思维升华】 判断圆与圆的位置关系时,一般用几何法,其步骤是(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|;(3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.【迁移训练2】 (1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.【答案】 内切(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆. 再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切.当半圆和圆相外切时,由OO ′=2=2a +a ,求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a ,求得a =22+2,故a 的取值范围是22-2,22+2],a 的最大值为22+2,最小值为22-2.专题三 直线与圆的综合问题【典例3】 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .【解析】 (1)由题设,可知直线l 的方程为y =kx +1,因为直线l 与圆C 交于两点,所以|2k -3+1|1+k2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2). 将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k +k 1+k2+8. 由题设可得4k +k 1+k 2+8=12,解得k =1, 所以直线l 的方程为y =x +1.故圆心C 在直线l 上,所以MN =2.【迁移训练3】 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过A 点作圆的切线有两条,则a 的取值范围是____________. 【答案】 (1)2 2 (2)⎝ ⎛⎭⎪⎫-233,233 【解析】 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.。
第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。
记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。
可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。
(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。
从点A 到点B的向量,记作AB 。
线段AB 的长叫做向量AB 的长度,记作|AB|。
我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。
例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。
注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。
③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。
(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。
对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。
已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。