平面解析几何初步典型例题整理后
- 格式:doc
- 大小:490.50 KB
- 文档页数:9
平面解析几何的应用题在解析几何中,我们学习了如何利用坐标系和代数方法来研究和解决平面上的几何问题。
平面解析几何的应用非常广泛,可以帮助我们解决实际生活中的很多实际问题。
本文将通过几个具体的应用题来展示平面解析几何的应用。
1. 题目一:平面上两点的中点坐标已知平面上两点A和B的坐标分别为A(x1, y1)和B(x2, y2),求这两点的中点坐标M。
解析:根据中点的定义,我们知道中点M的横坐标为xM = (x1 + x2) / 2,纵坐标为yM = (y1 + y2) / 2。
因此,我们可以得出中点M的坐标为M((x1 + x2) / 2, (y1 + y2) / 2)。
2. 题目二:平面上两点间的距离已知平面上两点A和B的坐标分别为A(x1, y1)和B(x2, y2),求这两点之间的距离AB。
解析:根据两点间的距离公式,我们可以利用坐标差值和勾股定理来计算距离。
首先计算x轴上的差值dx = x2 - x1,y轴上的差值dy = y2 - y1。
然后,根据勾股定理,我们有距离AB = √(dx^2 + dy^2)。
3. 题目三:平面上直线的斜率和截距已知平面上一条直线L过点A(x1, y1)且斜率为k,求直线L的方程和截距。
解析:直线L的方程可以表示为y = kx + b,其中b为截距。
由于直线L过点A(x1, y1),代入得到y1 = kx1 + b。
因此,截距b可以通过解方程y1 = kx1 + b来求解。
4. 题目四:平面上两直线的交点坐标已知平面上两条直线L1和L2的方程分别为y = k1x + b1和y = k2x + b2,求这两条直线的交点坐标。
解析:将直线L1和L2的方程联立,我们得到k1x + b1 = k2x + b2。
通过移项整理,我们可以解出x坐标。
然后,将求得的x坐标代入其中一个方程中求解y坐标,即可得到交点的坐标。
5. 题目五:平面上两直线的夹角已知平面上两条直线L1和L2的斜率分别为k1和k2,求这两条直线的夹角。
高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
数学一轮总复习平面解析几何的解法技巧在数学一轮总复习的过程中,平面解析几何是一个重要的内容。
平面解析几何涉及到点、直线、圆等几何图形与坐标之间的关系,通过采用坐标系和代数运算方法来解决几何问题。
本文将介绍平面解析几何的解法技巧,以帮助同学们更好地应对考试。
一、平面解析几何基本概念复习在开始解析几何的问题之前,我们需要对平面解析几何的基本概念进行复习。
1. 坐标系:平面直角坐标系由两条相互垂直的数轴x轴和y轴构成,其中原点为坐标系的交点,通常表示为O(0,0)。
x轴和y轴的正向分别向右和向上延伸,形成四个象限。
2. 点的坐标:在平面直角坐标系中,点P的坐标表示为P(x,y),其中x表示点在x轴上的投影,y表示点在y轴上的投影。
3. 直线的方程:直线的方程有多种形式,常见的有一般式和斜截式。
一般式方程表示为Ax + By + C = 0,斜截式方程表示为y = kx + b,其中A、B、C、k和b为常数。
4. 圆的方程:圆的方程表示为(x - a)² + (y - b)² = r²,其中(a,b)表示圆心的坐标,r表示圆的半径。
二、平面解析几何解法技巧在解决平面解析几何问题时,我们可以采取以下的解法技巧。
1. 利用直线的性质解题:在平面解析几何中,直线是一个重要的概念。
我们可以根据直线的性质,例如平行、垂直、相交等来解题。
例如,当我们需要证明两条直线平行时,可以比较两条直线的斜率是否相等。
当我们需要判断两条直线是否相交时,可以比较两条直线的方程是否有解。
2. 利用圆的性质解题:圆是平面解析几何中常见的几何图形之一,我们可以根据圆的性质来解题。
例如,当我们求两个圆的交点时,可以将两个圆的方程联立,并求解方程组来找到交点的坐标。
3. 利用坐标系解题:在平面解析几何中,坐标系是非常重要的工具。
我们可以通过建立坐标系,将几何图形转化为代数表达式,从而用代数运算来解决几何问题。
例如,当我们需要证明一个点在一条直线上时,可以通过代入点的坐标到直线的方程中,判断等式是否成立。
解析几何例题解析几何是数学中的一个重要分支,它研究的是几何图形在坐标平面上的性质和变换规律。
通过解析几何的方法,我们可以更加直观地理解和推导几何图形的性质。
下面我们来分析一些典型的解析几何例题,以便更好地掌握这一知识点。
例题一:直线的方程已知直线L过点A(1,2)和点B(3,4),求直线L的方程。
解析:设直线L的方程为y=ax+b,其中a为斜率,b为截距。
由于直线L 过点A和点B,代入相应的点坐标得到两个方程:2=a+b (1)4=3a+b (2)解这个方程组,可以求得a=1/2,b=3/2。
所以直线L的方程为y=x/2+3/2。
例题二:直线的垂直平分线已知直线L的方程为y=2x+1,求直线L的垂直平分线的方程。
解析:直线L的斜率为2,垂直平分线的斜率为-1/2(斜率互为倒数且符号相反),设垂直平分线的方程为y=ax+b。
由于垂直平分线过直线L的中点M,求中点M的坐标。
直线L上任意两点的横坐标和纵坐标分别求平均,得到中点M的坐标为:x=(1+3)/2=2,y=(2+4)/2=3。
代入直线L的方程,得到3=2*2+1=5,所以点M的坐标为(2,3)。
垂直平分线通过点M,代入点坐标得到方程:3=a*2+b,所以b=1-4a。
垂直平分线的方程为y=-1/2*x+1-2a。
例题三:圆的方程已知圆C的圆心为点O(2,3),半径为r=4,求圆C的方程。
解析:圆C上任意一点P(x,y)到圆心O的距离等于半径r,可以得到方程:sqrt((x-2)^2+(y-3)^2)=4对上式进行平方处理得到:(x-2)^2+(y-3)^2=16所以圆C的方程为(x-2)^2+(y-3)^2=16。
例题四:两条直线的交点已知直线L1的方程为y=2x+1,直线L2的方程为y-3=3(x-2),求直线L1和L2的交点坐标。
解析:将直线L2的方程变形为y=3x-3+3=3x,得到y=3x。
将L1的方程和L2的方程联立,解这个方程组即可求出交点的坐标。
平面解析几何1.(2020届安徽省“江南十校”高三综合素质检测)已知点P是双曲线2222:1(0,0,x y C a b c a b-=>>=上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为()ABCD .2【答案】A【解析】设点P 的坐标为(,)m n ,有22221m n a b-=,得222222b m a n a b -=.双曲线的两条渐近线方程为0bx ay -=和0bx ay +=,则点P 到双曲线C的两条渐近线的距离之积为222222222b m a n a b a b c-==+,所以222214a b c c =,则22244()a c a c -=,即()22220c a -=,故2220c a -=,即2222c e a ==,所以e =.故选A 。
2.(2020届河南省濮阳市高三模拟)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于()A.B .8C.D .4【答案】C【解析】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y xy x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|==,故选C 。
3.(2020届陕西省西安中学高三第一次模拟)已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO ,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得|PF′|=8=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36,于是b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=,故选B 。
平面解析几何初步解析几何是几何学和代数学的交叉领域,它研究平面内的点、线、圆等形状及其相互关系,利用代数方法进行分析和计算。
在平面解析几何中,我们将重点讨论直线、圆和二次曲线及其性质。
本文将介绍平面解析几何的基本概念和常见问题,以及一些解题技巧。
一、直线的方程在平面解析几何中,直线是最基本的几何元素之一。
一条直线可以由其上的两个点确定,我们可以通过计算斜率和截距来表示直线的方程。
直线的方程有多种形式,常见的有点斜式和截距式。
1. 点斜式方程点斜式方程形如 y-y₁ = k(x-x₁),其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。
通过给定一点和斜率,我们可以轻松写出直线的方程。
例如,已知直线上的点 A(2,3) 和斜率 k=2,我们可以得到直线的点斜式方程为 y-3=2(x-2)。
点斜式方程的优点在于直接给出了直线的一般形式,但不适用于垂直于 x 轴的直线。
对于垂直于 x 轴的直线,我们可以使用斜截式。
2. 截距式方程斜截式方程形如 y=mx+b,其中 m 是直线的斜率,b 是直线在 y 轴上的截距。
斜截式方程适用于所有类型的直线,包括垂直于 x 轴的直线。
例如,有一条直线经过点 B(3,4) 且斜率为 1/2,我们可以得到直线的斜截式方程为 y=(1/2)x+2。
二、圆的方程圆是解析几何中的另一个重要概念,它由平面上与固定点的距离等于常数的点构成。
在平面解析几何中,圆的方程一般形式为 (x-a)² + (y-b)² = r²,其中 (a,b) 是圆的圆心坐标,r 是圆的半径。
根据圆的方程,我们可以计算圆心和半径,以及圆上的点。
例如,对于方程 (x-2)² + (y+3)² = 9,我们可以得到圆的圆心坐标为 (2,-3),半径为 3。
利用这些信息,我们可以描绘出圆的几何形状。
三、二次曲线的方程除了直线和圆,二次曲线也是平面解析几何中的重要对象。
高一数学平面解析几何初步试题答案及解析1.设A(3,3,1),B(1,0,5),C(0,1,0),AB的中点M,则A.B.C.D.【答案】C【解析】先求得M(2,,3)点坐标,利用两点间距离公式计算得,故选C。
【考点】本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用。
点评:简单题,应用公式计算。
2.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D 的坐标为A.(,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)【答案】D【解析】设D的坐标为(x,y,z)。
AC的中点和BD的中点重合,所以有x+2=4+3,y-5=1+7,z+1=3-5所以,x="5," y="13," z=-3,D的坐标为(5,13,-3),故选D。
【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。
点评:本题解法利用了平行四边形的性质,也可利用向量知识。
3.点到坐标平面的距离是A.B.C.D.【答案】C【解析】点在坐标平面的正投影为,所以点到坐标平面的距离是,故选C。
【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。
点评:认识到点在坐标平面的正投影为,结合图形分析。
4.已知点,,三点共线,那么的值分别是A.,4B.1,8C.,-4D.-1,-8【答案】C【解析】因为点,,三点共线,=(3,4,-8),=(x-1,y+2,4),所以,,故选C。
【考点】本题主要考查空间直角坐标系的概念及其应用。
点评:利用空间向量知识,简化解题过程。
5.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是A.B.C.D.【答案】A【解析】依题意,构建正方体。
即求棱长为的正方体对角线长,计算得,故选A。
【考点】本题主要考查空间直角坐标系的概念及其应用。
点评:根据几何体的特征,认识点的坐标。
6.(12分)如图,长方体中,,,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,,,,E,F各点的坐标.【答案】A(3,0,0),B(3,5,0),C(0,5,0),D(0,0,0);(3,0,3),(3,5,3),(0,5,3),(0,0,3); E();F(,5,)。
第七章平面解析几何初步§7。
1直线和圆的方程一、知识导学1.两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|2-1|或|AB|=|2-1|.2.定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比。
这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是。
当P点为AB的中点时,λ=1,此时中点坐标公式是。
3.直线的倾斜角和斜率的关系(1)每一条直线都有倾斜角,但不一定有斜率.(2)斜率存在的直线,其斜率与倾斜角α之间的关系是=tanα.4.确定直线方程需要有两个互相独立的条件。
直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。
5.两条直线的夹角.当两直线的斜率,都存在且·≠—1时,tanθ=,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断。
(1)斜率存在且不重合的两条直线1∶,2∶,有以下结论:①1∥2=,且b1=b2②1⊥2·= —1(2)对于直线1∶,2∶,当1,2,1,2都不为零时,有以下结论:①1∥2=≠②1⊥212+12 = 0③1与2相交≠④1与2重合==7.点到直线的距离公式.(1)已知一点P()及一条直线:,则点P到直线的距离d=;(2)两平行直线1:,2:之间的距离d=.8.确定圆方程需要有三个互相独立的条件。
圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;(2)圆的一般方程:(>0),圆心坐标为(-,—),半径为=.二、疑难知识导析1.直线与圆的位置关系的判定方法.(1)方法一直线:;圆:.一元二次方程(2)方法二直线:;圆:,圆心(,b)到直线的距离为d=2.两圆的位置关系的判定方法。
专题09平面解析几何(第一部分)一、填空题1.圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.2.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.3.已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=的距C 的方程为. 4y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =.5.若直线()00x y m m -+=>与圆()()22113x y -+-=相交所得的弦长为m ,则m =.6.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为.二、解答题7.已知椭圆22221(0)x y a b a b+=>>的左右顶点分别为12,A A ,右焦点为F ,已知123,1A F A F ==.(1)求椭圆的方程和离心率;(2)点P 在椭圆上(异于椭圆的顶点),直线2A P 交y 轴于点Q ,若三角形1A PQ 的面积是三角形2A PF 面积的二倍,求直线2A P 的方程.8.椭圆()222210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB =. (1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN V三、单选题9.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=10.已知双曲线22221(0,0)x y a b a b -=>>的左、右焦点分别为12F F 、.过2F 向一条渐近线作垂线,垂足为P .若22PF =,直线1PF ,则双曲线的方程为( )A .22184x y -=B .22148x y -=C .22142x y -=D .22124x y -=11.已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=12.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A .22144x y -=B .2214y x -=C .2214x y -=D .221x y -=13.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=14.【陕西省西安市长安区第一中学上学期期末考】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=15.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=16.已知双曲线222=14x y b-(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -17.已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为A .B .C .D .18.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()2223x y -+=相切,则双曲线的方程为A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=19.已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=20.已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )AB C .2 D .321.已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为AB C .2D。
第2章 平面解析几何初步2.1 直线与方程如图2—1—2(1),已知两点1122(,),(,)P x y Q x y ,如果12x x ≠,那么直线PQ 的斜率(slope)为211221()y y k x x x x -=≠-.例 1 如图2—1—3,直线123,,l l l 都经过点(3,2),P 又123,,l l l 分别经过点123(2,1),(4,2),(3,2)Q Q Q ----,试计算直线123,,l l l 的斜率.例2 经过点(3,2)画直线,使直线的斜率分别为: (1)34;(2)45-.在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角(inclination),并规定: 与x 轴平行或重合的直线的倾斜角为0︒由定义可知,直线的倾斜角α的取值范围是0180α︒≤<︒.当直线的斜率为正时,直线的倾斜角为锐角(图2—1—5(1)),此时,tan .y BNk x ANα∆===∆当直线的斜率为负时,直线的倾斜角为钝角(图2—1—5(2)),此时,tan tan(180).y BNk x ANθα∆===-=-︒-∆-练习1.分别求经过下列两点的直线的斜率: (1)(2,3),(4,5);(2)(-2,3),(2,1);(3)(―3,―1),(2,―1);(3)(―1,3),2.根据下列条件,分析画出经过点P ,且斜率为k 的直线: (1)(1,2),3P k =; (2)3(2,4),4P k =-; (3)(1,3),0P k -=;(3)(2,0),P -斜率不存在.3.设过点A 的直线的斜率为k ,试分别根据上列条件写出直线上另一点B 的坐标(答案不惟一):(1)4,(1,2);k A =(2)2,(2,3);k A =--- (3)3,(2,4);2k A =--(4)4,(3,2).3k A =- 4.分别判断下列三点是否在同一直线上: (1)(0,2)(2,5),(3,7); (2)(―1,4),(2,1),(―2,5).若直线l 经过点(1,3)A -,斜率为2-,点P 在直线l 上运动,那么点P 的坐标(,)x y 满足什么条件(图2—1—6)?一般地,设直线l 经过点111(,)P x y ,斜率为k ,直线l 上任意一点P 的坐标是(,)x y . 当点(,)P x y (不同于点1P )在直线l 上运动时,1PP的斜率恒等于k ,即 11y y k x x -=-, 故11()y y k x x -=-.可以验证:直线l 上的每个点(包括点1P )的坐标都是这个方程的解;反过来,以这个方程的解为坐标的点都在直线l 上.这个方程就是过点1P ,斜率为k 的直线l 的方程.方程11()y y k x x -=-叫做直线的点斜式方程.当直线l 与x 轴垂直时,斜率不存在,其方程不能用点斜式表示.但因为l 上每一点的横坐标都等于1x ,所以它的方程是1x x =例1 已知一直线经过点(2,3)P -,斜率为2,求这条直线的方程.例2 已知直线l 的斜率为k ,与y 轴的交点是(0,)P b ,求直线l 的方程. 练习1.根据下列条件,分别写出直线的方程: (1)经过点(4,2)-,斜率为3;(2)经过点(3,1),斜率为12; (3)斜率为2-,在y 轴上的截距为2-;(4,与x 轴交点的横坐标为7-. 2.直线(1)(0)y k x k =+>的图象可能是( ).3.若一直线经过点(1,2)P ,且斜率与直线23y x =-+的斜率相等,则该直线的方程是 .4.任一条直线都可以用点斜式方程表示吗?斜截式方程可以改写成点斜式方程吗? 思考(1)方程121121y y y y x x x x --=--的左、右两边各具有怎样的几何意义?它表示什么图表? (2)方程121121y y y y x x x x --=--和方程112121y y x x y y x x --=--表示同一图形吗? 例1 已知直线l 经过两点(,0),(0,)A a B b ,其中0ab ≠,求直线l 的方程(图2—1—8).例2 已知三角形的顶点是(5,0),(3,3),(0,2)A B C --(图2—1—9),试求这个三角形三边所在直线的方程.1.分别写出经过下列两点的直线的方程: (1)(1,3),(-1,2);(2)(0,3),(-2,0).2.已知两点(3,2),(8,12)A B . (1)求出直线AB 的方程;(2)若点(2,)C a -在直线AB 上,求实数a 的值.3.求过点(3,4)M -,且在两坐标轴上的截距相等的直线的方程.4.回答下列问题:(1)任一条直线都有x 轴上的截距和y 轴上的截距吗?(2)如果两条直线有相同的斜率,但在x 轴上的截距不同,那么它们在y 轴上的截距可能相同吗?(3)如果两条直线在y 轴上的截距相同,但是斜率不同,那么它们在x 轴上的截距可能相同吗?(4)任一条直线都可以用截距式方程表示吗? 思考平面内任意一条直线是否都可以用形如0Ax By C ++=(,A B 不全为0)的方程来表示?例1 求直线:35150l x y +-=的斜率以及它在x 轴、y 轴上的截距,并作图.例2 设直线l 的方程为260x my m +-+=,根据下列条件分别确定m 的值: (1)直线l 在x 轴上的截距是3-; (2)直线l 的斜率是1.1.如果直线326x y +=的斜率为k ,在y 轴上的截距为b ,那么有( ).A.3,32k b =-=B.2,33k b =-=- C.3,32k b =-=-D.2,23k b =-= 2.直线52100x y --=在x 轴上的截距为a ,在y 轴上的截距为b ,则( ). A.2,5a b ==B.2,5a b ==-C.2,5a b =-=D.2,5a b =-=-3.设直线l 的方程为0Ax By C ++=(,A B 不同时为0),根据下列条件,求出,,A B C 应满足的条件:(1)直线l 过原点;(2)直线l 垂直于x 轴; (3)直线l 垂直于y 轴;(3)直线l 与两条坐标轴都相交.4.写出下列图中各条直线的方程,并化为一般式:习题2.1(1)1.根据下列条件,分别写出直线的方程:(1)过点(3,2)-,斜率为3; (2)过点(3,0)-,且与x 轴垂直; (3)斜率为4-,且在y 轴上的截距为7;(4)经过点(1,8),(4,2)--.2.写出过点(3,1)P ,且分别满足下列条件的直线l 的方程; (1)直线l 垂直于x 轴; (2)直线l 垂直于y 轴; (3)直线l 过原点.3.分别求下列直线与两坐标轴围成的三角形的面积: (1)2360x y --=;(2)5320x y ++=.4.一根弹簧挂4kg 的物体时,长20cm.在弹性限度内,所挂物体的质量每增加1kg ,弹簧伸长1.5cm.试写出弹簧的长度l (cm )和所挂物体质量m (kg )之间的关系.5.一根铁棒在40℃时长12.506m ,在80℃时长12.512m.已知长度l (m )和温度t (℃)之间的关系可以用直线方程来表示,试求出这个方程,并根据这个方程求出这根铁棒在100℃时的长度.6.已知菱形的两条对角线长分别为8和6,以菱形的中心为坐标原点,较长对角线所在的直线为x 轴,建立直角坐标系,求出菱形各边所在直线的方程.7.直线l 经过点(3,1)-,且与两条坐标轴围成一个等腰直角三角形,求直线l 的方程. 8.设直线l 的方程为2(3)260(3)x k y k k +--+=≠,根据下列条件分别确定k 的值; (1)直线l 的斜率为-1;(2)直线l 在x 轴、y 轴上截距之和等于0.9.设直线l 的方程为3(2)y k x -=+,当k 取任意实数时,这样的直线具有什么共同的特点?10.已知两条直线1110a x b y ++=和2210a x b y ++=都过点(1,2)A ,求过两点111222(,),(,)P a b P a b 的直线的方程.11.“坡度”常用来刻画道路的倾斜程度,这个词与直线的斜率有何关系?坡度为4%的道路很陡吗?调查一些山路或桥面的坡度,并与同学交流.例1 求证:顺次连结7(2,3),5,,(2,3),(4,4)2A B C D ⎛⎫--- ⎪⎝⎭四点所得的四边形是梯形(图2—1—12).例2 求过点(2,3)A -,且与直线250x y +-=平行的直线的方程. 思考如果两条直线12,l l 中的一条斜率不存在,那么这两条直线什么时候互相垂直?逆命题成立吗?例3 (1)已知四点(5,3),(10,6),(3,4),(6,11)A B C D --,求证:AB CD ⊥; (2)已知直线1l 的斜率134k =,直线2l 经过点,且12l l ⊥,求实数a 的值.例4 如图2—1—14,已知三角形的顶点为(2,4),(1,2),(2,3)A B C --,求BC 边长的高AD 所在直线的方程.例5 在路边安装路灯,路宽23m ,灯杆长2.5m ,且与灯柱成120°角.路灯采用锥形灯罩轴线与灯杆垂直.当灯柱高h 为多少米时,灯罩轴线正好通过道路路面的中线?(精确到0.01m ) 习题1.分别判断下列直线AB 与CD 是否平行: (1)(3,1),(1,1)A B --;(3,5),(5,1)C D -;(2)(2,4),(4)A B --; (0,1),(4,1).C D 2.已知17(4,2),(1,1),(5,5),(,)32A B C D ----,求证:四边形ABCD 是梯形. 3.以(1,1),(2,1),(1,4)A B C --为顶点的三角形是( ). A.锐有三角形B.直角三角形C.钝角三角形4.求过点(2,3)A ,且分别适合下列条件的直线的方程:(1)平行于直线2530x y +-=; (2)垂直于直线20x y --=.例1 分别判断下列直线1l 与2l 是否相交,若相交,求出它们的交点: (1)1:27,l x y -=2:3270;l x y +-= (2)1:2640,l x y -+= 2:41280;l x y -+=(3)1:4240,l x y ++= 2:2 3.l y x =-+例2 直线l 经过原点,且经过另两条直线2380,10x y x y ++=--=的交点,求直线l 的方程.例3 某商品的市场需求量1y (万件)、市场供应量2y (万件)与市场价格x (元/件)分别近似地满足下列关系:1270,220y x y x =-+=-.当12y y =时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量. (1)求平衡价格和平衡需求量;(2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?思考已知直线1:10l x y ++=和2:240l x y -+=,那么方程1(24)0x y x y λ+++-+=(λ为任意实数)表示的直线有什么特点? 习题1.与直线230x y --=相交的直线的方程是( ). A.4260x y --= B.2y x = C.25y x =+D.23y x =-+2.若三角直线2380,10x y x y ++=--=和102x ky k +++=相交于一点,则k 的值等于( )A .-2B.12-C.2D.123.已知直线l 经过两条直线2330x y --=和20x y ++=的交点,且与直线310x y +-=平行,求直线l 的方程.4.在例3中,求当每件商品征税3元时新的平衡价格. 习题2.1(2)1.分别求满足下列条件的直线的方程:(1)经过点(3,2)A ,且与直线420x y +-=平行; (2)经过点(3,0)B ,且与直线250x y +-=垂直;(3)经过点(2,3)C -,且平行于过两点(1,2)M 和(1,5)M --的直线. 2.三角形三个项点是(4,0),(6,7),(0,3)A B C ,求AB 边上高所在直线的方程. 3.根据下列条件,求直线的方程:(1)斜率为-2,且过两条直线340x y -+=和40x y +-=的交点;(2)过两条直线230x y -+=和290x y +-=的交点和原点;(3)过两条直线22100x y -+=和3420x y +-=的交点,且垂直于直线3240x y -+=;(4)过两条直线280x y +-=和210x y -+=的交点,且平行于直线4370x y --=.4.三条直线280ax y ++=,4310x y +=和210x y -=相交于一点,求a 的值.5.已知(1,3),(3,2),(6,1),(2,4)A B C D ---,求证:四边形ABCD 为平行四边形.6.已知两条直线210ax ay ++=和(1)(1)10a x a y --+-=互相垂直,求垂足的坐标.7.已知两条直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=,当m 为何值时,1l 与2l :(1)相交?(2)平行?(3)垂直? 8.已知三条直线10,280x y x y ++=-+=和350ax y +-=共有三个不同的交点,求实数a 满足的条件.9.试证明:如果两条直线斜率的乘积等于-1,那么它们互相垂直.10.(1)已知直线:0l Ax By C ++=,且直线1//l l ,求证:直线1l 的方程总可以写出110()Ax By C C C ++=≠;(2)已知直线:0l Ax By C ++=,且直线2l l ⊥,求证:直线2l 的方程总可以写成20Bx Ay C -+=.11.直线1l 和2l 的方程分别是1110A x B y C ++=和2220A x B y C ++=,其中11,A B 不全为220,,A B 也不全为0.试探求:(1)当12//l l 时,直线方程中的系数应满足什么关系?(2)当12l l ⊥时,直线方程中的系数应满足什么关系?例1 (1)求(1,3),(2,5)A B -两点间的距离;(2)已知(0,10),(,5)A B a -两点间的距离是17,求实数a 的值.例2 已知ABC ∆的顶点坐标为(1,5),(2,1),(4,7)A B C ---,求BC 边上的中线AM 的长和AM 所在直线的方程.例3 已知ABC ∆是直角三角形,斜边BC 的中点为M ,建立适当的直角坐标系,证明:12AM BC =.习题1.求线段AB 的长及其中点的坐标:(1)(8,10),(4,4)A B -; (2)((A B .2.已知ABC ∆的顶点坐标为(3,2),(1,0),(2A B C ,求AB 边上的中心CM 的长.3.已知两点(1,4),(3,2)P A -,求点A 关于点P 的对称点B 的坐标.思考你还能通过其他途径求点P 到直线l 的距离吗?例1 求点(1,2)P -到下列直线的距离:(1)2100x y +-=;(2)32x =.例2 求两条平行直线340x y +-=与2690x y +-=之间的距离.例3 建立适当的直角坐标系,证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.习题1.求下列点P 到直线l 的距离:(1)(3,2),:34250P l x y -+-=;(2)(2,1),:350P l y -+=.2.求下列两条平行直线之间的距离:(1)51220512150x y x y --=-+=与;(2)364502x y y x -+==与. 3.直线l 经过原点,且点(5,0)M 到直线l 的距离等于3,求直线l 的方程.习题2.1(3)1.求,A B 两点之间的距离:(1)(2,0),(2,3);A B ---(2)(0,3),(3,3)A B ---;(3)(3,5),(3,3)A B -.2.已知点(1,2)P -,分别求点P 关于原点、x 轴和y 轴的对称点的坐标.3.设点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(2,1)-,求线段AB 的长度.4.已知,A B 两点都在直线1y x =-上,且,A B ,A B 之间的距离.5.已知两点(2,3),(1,4)A B -,点(,)P x y 到点,A B 的距离相等,求实数,x y 满足的条件.6.已知点(,)P x y 在直线40x y +-=上,O 是原点,求OP 的最小值.7.求点P 到直线l 的距离:(1)(2,1),:230P l x +=;(2)(3,4),:34300P l x y --+=.8.直线l 到两条平行直线220x y -+=和240x y -+=的距离相等,求直线l 的方程.9.直线l 在y 轴上截距为10,且原点到直线l 的距离是8,求直线l 的方程.10.点P 在直线350x y +-=上,且点P 到直线10x y --=求点P 的坐标.11.已知(7,8),(10,4),(2,4)A B C -,求ABC ∆的面积. 12.已知直线l 经过点(2,3)-,且原点到直线l 的距离是2,求直线l 的方程.13.在ABC ∆中,点,E F 分别为,AB AC 的中点,建立适当的直角坐标系,证明://EF BC ,且12EF BC =. 14.过点(3,0)P 作直线l ,使它被两条相交直线220x y --=和30x y ++=所截得的线段恰好被P 点平分,求直线l 的方程.15.已知光线通过点(2,3)A -,经x 轴反射,其反射光线通过点(5,7)B ,求入射光线和反射光线所在直线的方程.16.已知光线通过点(2,3)A ,经直线10x y ++=反射,其反射光线通过点(1,1)B ,求入射光线和反射光线所在直线的方程.17.在直线20x y +=上求一点P ,使它到原点的距离与到直线230x y +-=的距离相等.18.已知直线:33l y x =+,求:(1)直线l 关于点(3,2)M 对称的直线的方程;(2)直线20x y --=关于l 对称的直线的方程.19.证明平行四边形四边的平方和等于两条对角线的平方和.20.求证:两点(,)A a b ,(,)B b a 关于直线y x =对称.21.已知(1,3)M -,(6,2)N ,点P 在x 轴上,且使PM PN +取最上值,求点P 的坐标.22.某人上午8时从山下大本营出发登山,下午4时到达山顶.次日上午8时从山顶沿原路返回,下午4时回到山下大本营.如果该人以同样的速度匀速上山、下山,那么两天中他可能在同一时刻经过途中同一地点吗?如果他在上山、下山过程中不是匀速行进,他还可能在同一时刻经过途中同一地点吗?2.2 圆与方程例1 求圆心(2,3)C -,且经过坐标原点的圆的方程.例2 已知隧道的截面是半径为4m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m ,高为3m 的货车能不能驶入这个隧道?思考假设货车的最大宽度为a m ,那么货车要驶入该隧道,限高为多少?例3 已知ABC ∆顶点的坐标为(4,3),(5,2),(1,0)A B C ,求ABC ∆外接圆的方程. 思考 本题还有其他解法吗例4 某圆拱梁的示意图如图2—2—4所示.该圆拱的跨度AB 是36m ,拱高OP 是6m ,在建造时,每隔3m 需要一个支柱支撑,求支柱22A P 的长(精确到0.01m ).习题1.写出下列各圆的方程:(1)圆心在原点,半径为6;(2)经过点(6,3)P ,圆心为(2,2)C -.2.求以点(1,5)C --为圆心,并且和y 轴相切的圆的方程.3.已知点(4,5),(5,1)A B ---,求以线段AB 为直径的圆的方程.4.下列方程各表示什么图形?若表示圆,则求其圆心和半径:(1)2240x y x +-=;(2)224250x y x y +--+=.5.求经过点(4,1),(6,3),(3,0)A B C -的圆的方程.6.如果方程22220(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,那么必有( ).A.D E =B.D F =C.E F =D.D E F ==习题2.2(1)1.求满足下列条件的圆的方程:(1)过点(2,2)P -,圆心是(3,0);C(2)与两坐标轴都相切,且圆心在直线2350x y -+=上;(3)经过点(3,5)A 和(3,7)B -,且圆心在x 轴上.2.已知圆内接正方形相对的两个顶点的坐标分别是(5,6),(3,4)A C -,求这个圆的方程.3.已知半径为5的圆过点(3,4)P -,且圆心在直线210x y -+=上,求这个圆的方程.4.求经过三点(1,5),(5,5),(6,2)A B C --的圆的方程.5.已知圆222420x y x by b ++++=与x 轴相切,求b 的值.6.求过两点(0,4),(4,6)A B ,且圆心在直线220x y --=上的圆的标准方程.7.已知点(1,1)P 在圆22()()4x a y a -++=的内部,求实数a 的取值范围.8.画出方程1x -=. 9.求圆222210x y x y ++-+=关于直线30x y -+=对称的圆的方程.10.已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所形成的曲线.11.河道上有一座圆拱桥,在正常水位时,拱圈最高点距水面为9m ,拱圈内水面宽22m.一条船在水面以上部分高6.5m ,船顶部宽4m ,故通行无阻.近日水位暴涨了2.7m ,为此,必须加得船载,降低船身,才能通过桥洞.试问:船身应该降低多少?例1 求直线430x y +=和圆22100x y +=的公共点坐标,并判断它们的位置关系.例2 自点(1,4)A -作圆22(2)(3)1x y -+-=的切线l ,求切线l 的方程.例3 求直线0x +=被圆224x y +=截得的弦长.习题1.判断下列各组中直线l 与圆C 的位置关系:(1):10l x y +-=,22:4C x y +=; (2):4380,l x y --=22:(1)1;C x y ++= (3):40l x y +-=, 22:20C x y x ++=.2.若直线1ax by +=与圆221x y +=相交,则点(,)P a b 与圆的位置关系是( )A.在圆上B.在圆外C.在圆内D.不能确定3.(1)求过圆224x y +=上一点的圆的切线方程;(2)求过原点且与圆22(1)(2)1x y -+-=相切的直线的方程.4.求直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长.5.从圆22(1)(1)1x y -+-=外一点(2,3)P 向圆引切线,求切线长.例1 判断下列两圆的位置关系:(1)22(2)(2)1x y ++-=与22(2)(5)16x y -+-=;(2)22670x y x ++-=与226270x y y ++-=.例2 求过点(0,6)A 且与圆22:10100C x y x y +++=切于原点的圆的方程.习题1.判断下列两个圆的位置关系:(1)22(3)(2)1x y -++=与22(7)(1)36x y -+-=;(2)2222320x y x y +-+=与22330x y x y +--=.2.已知圆22x y m +=与圆2268110x y x y ++--=相交,求实数m 的取值范围.习题2.2(2)1.过点(3,4)P --作直线l ,当l 的斜率为何值时,(1)直线l 将圆22(1)(2)4x y -++=平分?(2)直线l 与圆22(1)(2)4x y -++=相切?(3)直线l 与圆22(1)(2)4x y -++=相交,且所截得的弦长为2?2.已知过点(1,1)A --的直线l 与圆222660x y x y +-++=相交,求直线l 斜率的取值范围.3.,且与直线23100x y +-=切于点(2,2)P 的圆的方程.4.已知以(4,3)C -为圆心的圆与圆221x y +=相切,求圆C 的方程.5.求圆心在y 轴上,且与直线1:43120l x y -+=,直线2:34120l x y --=都相切的圆的方程.6.已知一个圆经过直线:240l x y ++=与圆22:2410C x y x y ++-+=的两个交点,并且有最小面积,求此圆的方程.7.已知圆C 的方程是222x y r +=,求证:经过圆C 上一点00(,)M x y 的切线方程200x x y y r +=.8.已知圆222:C x y r +=,直线2:l ax by r +=.(1)当点(,)P a b 在圆C 上时,直线l 与圆C 具有怎样的位置关系?(2)当点(,)P a b 在圆C 外时,直线l 具有什么特点?2.3 空间直角坐标系例1 在空间直角坐标系中,作出点(5,4,6)P .例2 如图2—3—4,在长方体ABCD A B C D ''''-中,12,8, 5.AB AD AA '===以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA '分别为x 轴、y 轴和x 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.思考在空间直角坐标系中,x 轴上的点、xOy 平面内的点的坐标分别具有什么特点?例3 (1)在空间直角坐标系O xyz -中,画出不共线的3个点,,P Q R ,使得这3个点的坐标都满足3z =,并画出图形;(2)写出由这三个点确定的平面内的点的坐标应满足的条件.习题1.在空间直角坐标系中,画出下列各点:(0,0,3),(1,2,3),(2,0,4),(1,2,2).A B C D --2.在长方体ABCD A B C D ''''-中,6,4,7AB AD AA '===.以这个长方体的顶点B 为坐标原点,射线,,AB BC BB '分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.3.写出空间直角坐标系yOz 平面内的点的坐标应满足的条件.例1 求空间两点12(3,2,5),(6,01)P P --间的距离12PP .例2 平面上到坐标原点的距离为1的点的轨迹是单位圆,其方程为221x y +=.在空间中,到坐标原点的距离为1的点的轨迹是什么?试写出它的方程.思考 连结平面上两点111222(,),(,)P x y P x y 的线段12PP 的中点M 的坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭,那么,已知空间中两点11112222(,,),(,,)P x y z P x y z ,线段12PP 的中点M 的坐标是什么呢?练习1.运用两点间距离公式求图2—3—4中线段,OC B C ''的长度.2.一个长方体的8个顶点的坐标为(0,0,0),(0,1,0)(3,0,0),(3,1,0),(3,1,9),(3,0,9),(0,0,0),(0,1,9).(1)在空间直角坐标系中画出这个长方体;(2)求这个长方体的体积.3.已知正四棱锥P ABCD -的底面边长为13,试建立适当的空间直角坐标系,写出各顶点的坐标.4.已知(2,5,6),A -在y 轴上求一点P ,使7PA =.5.已知空间三点(1,0,1),(2,4,3),(5,8,5)A B C -,求证:,,A B C 在同一条直线上.6.(1)求点(4,3,7)P -关于xOy 平面的对称点的坐标;(2)求点(2,1,4)P 关于坐标原点的对称点的坐标;(3)求点(3,2,4)P -关于点(0,1,3)A -的对称点的坐标.7.在你的教室或房间里建立适当的空间直角坐标系,以此确定电灯、门锁或开关的位置,写出相应的坐标.复习题1.已知直线350ax y +-=经过点(2,1)A ,求实数a 的值.2.已知过两点(,3),(5,)A a B a --的直线的斜率为1,求a 的值及这两点间的距离.3.如果0,0AC BC <>,那么直线0Ax By C ++=不通过( ).A.第一象限B.第二象限C.第三象限D.第四象限4.已知直线10mx ny +-=经过第一、三、四象限,求实数,m n 满足的条件.5.已知直线l 过点(5,4)P --,且与两坐标轴围成的三角形的面积为5个平方单位,求直线l 的方程.6.直线过点(5,6)P ,它在x 轴上的截距是在y 轴上的截距的2倍,求此直线的方程.7.已知直线22x ay a +=+与直线1ax y a +=+平行,求实数a 的值.9.已知点A 与点(1,1)P -的距离为5,且到y 轴的距离等于4,求A 点的坐标.10.已知两条平行直线2360x y +-=和230x y a ++=之间的距离等于2,求实数a 的值.11.求圆224440x y x y +-++=被直线50x y --=所截得的弦的长度.12.求与点(32,10),(42,0),(0,)A B C 的距离都相等的点的坐标.13.求与圆22:(5)3C x y ++=相切,且在x 轴、y 轴上的截距相等的直线的方程.14.判断两圆222200x y x y ++--=与2225x y +=的位置关系.15.过点(1,2)P 作一直线l ,使直线l 与点(2,3)M 和点(4,5)N -的距离相等,求直线l 的方程.16.在空间直角坐标系中作出下列点,并求两点间的距离和连结两点的线段的中点坐标:(1)(2,4,1),(4,6,7);A B --- (2)(8,3,2),(4,5,2).C D --17.河北省赵县的赵州桥,是世界上历史最悠久的石拱桥,赵州桥的跨度约为37.4 m ,圆拱高约为7.2m ,试写出这个圆拱所在的圆的方程.18.已知平面内两点(4,1),(3,1)A B --,直线2y kx =+与线段AB 恒有公共点,求实数k 的取值范围.19.求证:无论k 取任何实数,直线(14)2(3)(214)0k x k y k +--+-=必经过一个定点,并求出定点的坐标.20.设集合22222{(,)|4},{(,)|(1)(1)(0)}M x y x y N x y x y r r =+≤=-+-≤>.当M N N = 时,求实数r 的取值范围.21.已知点(1,3),(5,2),M N -在x 轴上取一点P ,使得||PM PN -最大,求P 点的坐标.22.如图,在矩形ABCD 中,已知3,,AB AD E F =为AB 的两个三等分点,,AC DF 交于点G ,建立适当的直角坐标系,证明:EG DF ⊥.23.已知ABC ∆的一条内角平分线CD 的方程为210x y +-=,两个顶点为(1,2),(1,1)A B --,求第三个顶点C 的坐标.24.若直角y x b =+与曲线x =b 的取值范围.25.在直角坐标系中,已知射线:0(0),30(0)OA x y x OB y x -=≥+=≥,过点(1,0)P 作直线分别交射线,OA OB 于点,.A B(1)当AB 中点为P 时,求直线AB 的方程;(2)当AB 中点在直线12y x =上时,求直线AB 的方程. 26.已知点P 在xOy 平面内,点A 的坐标为(0,0,4),5PA =,那么,满足此条件的点P 组成什么曲线?27.已知圆222440x y x y +-+-=,是否存在斜率为1的直线l ,使以l 被圆C 截得的弦AB 为直径的圆过原点?若存在,求出直线l 的方程;若不存在,说明理由.28.把函数()y f x =在x a =和x b =之间的一段图象近似地看做直线,且设a c b <<,试用(),()f a f b 来估计()f c .。
平面解析几何初步§7.1直线和圆的方程经典例题导讲[例1]直线l 经过P (2,3),且在x,y 轴上的截距相等,试求该直线方程. 解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:230203=--=k , ∴直线方程为y=23x 综上可得:所求直线方程为x+y-5=0或y=23x . [例2]已知动点P 到y 轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P 的轨迹方程.解: 接前面的过程,∵方程①化为(x-52 )2+(y-3)2 = 214 ,方程②化为(x+12 )2+(y-3)2= - 34 ,由于两个平方数之和不可能为负数,故所求动点P 的轨迹方程为: (x-52 )2+(y-3)2= 214 (x ≥0)[例3]m 是什么数时,关于x,y 的方程(2m 2+m-1)x 2+(m 2-m+2)y 2+m+2=0的图象表示一个圆?解:欲使方程Ax 2+Cy 2+F=0表示一个圆,只要A=C ≠0,得2m 2+m-1=m 2-m+2,即m 2+2m-3=0,解得m 1=1,m 2=-3,(1) 当m=1时,方程为2x 2+2y 2=-3不合题意,舍去.(2) 当m=-3时,方程为14x 2+14y 2=1,即x 2+y 2=114,原方程的图形表示圆.[例4]自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线L 所在的直线方程.解:设反射光线为L ′,由于L 和L ′关于x 轴对称,L 过点A(-3,3),点A 关于x 轴的对称点A ′(-3,-3), 于是L ′过A(-3,-3).设L ′的斜率为k ,则L ′的方程为y-(-3)=k [x-(-3)],即kx-y+3k-3=0,已知圆方程即(x-2)2+(y-2)2=1,圆心O 的坐标为(2,2),半径r =1 因L ′和已知圆相切,则O 到L ′的距离等于半径r =1即11k 5k 51k 3k 32k 222=+-=+-+-整理得12k 2-25k+12=0解得k =34或k =43 L ′的方程为y+3=34(x+3);或y+3=43(x+3)。
即4x-3y+3=0或3x-4y-3=0因L 和L ′关于x 轴对称故L 的方程为4x+3y+3=0或3x+4y-3=0.[例5]求过直线042=+-y x 和圆014222=+-++y x y x 的交点,且满足下列条件之一的圆的方程:(1) 过原点;(2)有最小面积.解:设所求圆的方程是:()04214222=+-++-++y x y x y x λ 即:()()04122222=+++-+++λλλy x y x (1)因为圆过原点,所以041=+λ,即41-=λ 故所求圆的方程为:0274722=-++y x y x . (2) 将圆系方程化为标准式,有:()545245222222+⎪⎭⎫ ⎝⎛+=--+⎪⎭⎫ ⎝⎛++λλλy x当其半径最小时,圆的面积最小,此时52-=λ为所求. 故满足条件的圆的方程是54585422=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+y x .[例6](06年辽宁理科)已知点A(11,y x ),B(22,y x )(21x x ≠0)是抛物线)0(22>=p px y 上的两个动点,O 是坐标原点,向量,满足|+|=|-|.设圆C 的方程为0)()(212122=+-+-+y y y x x x y x (1)证明线段AB 是圆C 的直径;(2)当圆C 的圆心到直线02=-y x 的距离的最小值为552时,求p 的值. 解:(1)证明 ∵|OB OA +|=|OB OA -|,∴(OB OA +)2=(OB OA -)2, 整理得:⋅=0 ∴21x x +21y y =0设M (y x ,)是以线段AB 为直径的圆上的任意一点,则⋅=0 即 ))((21x x x x --+))((21y y y y --=0 整理得:0)()(212122=+-+-+y y y x x x y x 故线段AB 是圆C 的直径.(2)设圆C 的圆心为C (y x ,),则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x∵1212px y =,)0(2222>=p px y∴22221214py y x x =又∵21x x +21y y =0 ,21x x =-21y y∴-21y y 222214py y =∵21x x ≠0,∴21y y ≠0 ∴21y y =-42p2121222122212141)2(41)(412y y py y y y p y y p x x x -++=+=+==)2(122p y p+ 所以圆心的轨迹方程为222p px y -= 设圆心C 到直线02=-y x 的距离为d,则=pp p y y p y py x 5|)(|5|2)2(1|5|2|2222+-=-+=-当y =p 时,d有最小值5p ,由题设得5p =552 ∴p =2.圆锥曲线经典例题导讲[例1]设双曲线的渐近线为:x y 23±=,求其离心率. 解:由双曲线的渐近线为x y 23±=是不能确定焦点的位置在x 轴上的,当焦点的位置在y 轴上时,32=a b ,故本题应有两解,即: 213122=+==ab ac e 或313.[例2]设点P(x,y)在椭圆4422=+y x 上,求y x +的最大、最小值.剖析:本题中x 、y 除了分别满足以上条件外,还受制约条件4422=+y x 的约束.当x=1时,y 此时取不到最大值2,故x+y 的最大值不为3.其实本题只需令θθsin 2,cos ==y x ,则)sin(5sin 2cos ψθθθ+=+=+y x ,故其最大值为5,最小值为5-. [例3]已知双曲线的右准线为4=x ,右焦点)0,10(F ,离心率2=e ,求双曲线方程. 解法一: 设),(y x P 为双曲线上任意一点,因为双曲线的右准线为4=x ,右焦点)0,10(F ,离心率2=e ,由双曲线的定义知.2|4|)10(22=-+-x y x 整理得.14816)2(22=--yx 解法二: 依题意,设双曲线的中心为)0,(m ,则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+.21042acm c m c a 解得 ⎪⎩⎪⎨⎧===.284m c a ,所以 ,481664222=-=-=a c b故所求双曲线方程为.14816)2(22=--y x [例4]设椭圆的中心是坐标原点,长轴x 在轴上,离心率23=e ,已知点)23,0(P 到这个椭圆上的最远距离是7,求这个椭圆的方程. 解:若21<b ,则当b y -=时,2d (从而d )有最大值. 于是,)23()7(22+=b 从而解得矛盾与21,21237<>-=b b .所以必有21≥b ,此时当21-=y 时,2d (从而d )有最大值,所以22)7(34=+b ,解得.4,122==a b于是所求椭圆的方程为.1422=+y x [例5]从椭圆12222=+by a x ,(a >b>0)上一点M 向x 轴所作垂线恰好通过椭圆的左焦点F 1,A 、B 分别是椭圆长、短轴的端点,AB ∥OM 设Q 是椭圆上任意一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若⊿F 1PQ 的面积为203,求此时椭圆的方程解:本题可用待定系数法求解∵b=c, a =2c ,可设椭圆方程为22222=+cy c x∵PQ ⊥AB,∴k PQ =-21==bak AB ,则PQ 的方程为y=2(x-c), 代入椭圆方程整理得5x 2-8cx+2c 2=0, 根据弦长公式,得c PQ 526=, 又点F 1到PQ 的距离d=362 c ∴==∆d PQ S PQ F 2112534c ,由,2532053422==c c ,得 故所求椭圆方程为1255022=+y x [例6]已知椭圆:1922=+y x,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长解:a=3,b=1,c=22; 则F (-22,0)由题意知:)22(31:+=x y l 与1922=+y x 联立消去y 得: 01521242=++x x设A (),11y x 、B (),22y x ,则21,x x 是上面方程的二实根,由违达定理,2321-=+x x41521=⋅x x ,223221-=+=x x x M 又因为A 、B 、F 都是直线l 上的点,所以|AB|=21518324)(32||3112122121=-=-+⋅=-⋅+x x x x x x点评:也可利用“焦半径”公式计算[例7](06年全国理科)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ |的最大值.解: 依题意可设P (0,1),Q (y x ,),则|PQ |=22)1(-+y x ,又因为Q 在椭圆上,所以,)1(222y a x -=,|PQ |2=12)1(222+-+-y y y a =22212)1(a y y a ++--=22222111)11)(1(a aa y a -+-----. 因为||y ≤1,a >1,若a ≥2,则|11|2a -≤1,当211ay -=时,|PQ |取最大值11222--a a a ;若1<a <2,则当1-=y 时,|PQ |取最大值2.[例8]已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程解:设所求双曲线方程为)0,0(12222>>=-b a by a x ,由右焦点为(2,0)知C=2,b 2=4-a 2则双曲线方程为142222=--a y a x ,设直线MN 的方程为:)2(53-=x y ,代入双曲线方程整理得:(20-8a 2)x 2+12a 2x+5a 4-32a 2=0设M (x 1,y 1),N(x 2,y 2),则222182012a a x x --=+, 22421820a x x -=∴ ()212124531x x x x MN -+⋅⎪⎪⎭⎫⎝⎛+=482032548201258224222=--⋅-⎪⎪⎭⎫ ⎝⎛--⋅=a a a a a 解得 12=a ,142=-=∴b故所求双曲线方程为:322=-y x 点、直线和圆锥曲线经典例题导讲[例1]求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点.解: ①当所求直线斜率不存在时,即直线垂直x 轴,因为过点)1,0(,所以,0=x 即y 轴,它正好与抛物线x y 22=相切.②当所求直线斜率为零时,直线为y = 1平行x 轴,它正好与抛物线x y 22=只有一个交点.③一般地,设所求的过点)1,0(的直线为1+=kx y )0(≠k ,则⎩⎨⎧=+=x y kx y 212, ∴.01)22(22=+-+x k x k 令,0=∆解得k = 12 ,∴ 所求直线为.121+=x y 综上,满足条件的直线为:.121,0,1+===x y x y [例2]已知曲线C :2202x y -=与直线L :m x y +-=仅有一个公共点,求m 的范围. 解:原方程的对应曲线应为椭圆的上半部分.(如图),形易求得m 的范围为52525<<-=m m 或.注意:在将方程变形时应时时注意范围的变化,错.[例3]已知A 、B 是圆122=+y x 与x 轴的两个交点,直于AB 的动弦,直线AC 和DB 相交于点P 定点E 、F, 使 | | PE |-| PF | | F 的坐标;若不存在,请说明理由.解:由已知得 A (-1, 0 )、B ( 1, 0 ),设 P ( x, y ), C ( 00,y x ) , 则 D (00,y x - 由A 、C 、P 三点共线得 1100+=+x y x y① 由D 、B 、P 三点共线得1100--=-x y x y② ①×② 得 11202022--=-x y x y ③又 12020=+y x , ∴20201x y -=, 代入③得 122=-y x ,即点P 在双曲线122=-y x 上, 故由双曲线定义知,存在两个定点E (-2, 0 )、F (2, 0 )(即此双曲线的焦点),使 | | PE |-| PF | | = 2 (即此双曲线的实轴长为定值).[例4]已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y=x+1 与该椭圆相交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆的方程. 解:设所求椭圆的方程为2222by a x +=1.依题意知,点P 、Q 的坐标满足方程组:⎪⎩⎪⎨⎧+==+② ① 1x y 1by a x 2222 将②代入①,整理得0)1(2)(222222=-+++b a x a x b a , ③设方程③的两个根分别为1x 、2x ,则直线y=x+1和椭圆的交点为P(1x ,1x +1),Q(2x ,2x +1)由题设OP ⊥OQ ,|OP |=210,可得 ⎪⎪⎩⎪⎪⎨⎧=+-++--=+⋅+22122122211)210()]1()1[()(111x x x x x x x x整理得⎩⎨⎧=--+=+++ ② ①0516)(4012)(212212121x x x x x x x x解这个方程组,得⎪⎪⎩⎪⎪⎨⎧-=+=23412121x x x x 或 ⎪⎪⎩⎪⎪⎨⎧-=+-=21412121x x x x 根据根与系数的关系,由③式得(1)⎪⎪⎩⎪⎪⎨⎧=+-=+41)1(2322222222b a b a b a a 或 (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=+41)1(2122222222b a b a b a a解方程组(1)、(2)得⎪⎩⎪⎨⎧==32222b a 或⎪⎩⎪⎨⎧==23222b a故所求椭圆方程为32222y x + =1 , 或23222y x + =1.[例5](06年高考湖南)已知椭圆C 1:3422y x +=1,抛物线C 2:)0(2)(2>=-p px m y ,且C 1、C 2的公共弦AB 过椭圆C 1的右焦点。