第一章 第一节数与式实数及其运算
- 格式:ppt
- 大小:2.97 MB
- 文档页数:51
初中代数知识点第一节实数一、实数的分类1.有理数(1)有理数总可以用整数、有限小数或无限循环小数表示.的形式,其中,m,n均为整数,且n≠0.(2)所有有理数都可以表示为mn2.无理数(较难,以下是常见形式)(1)最简结果中含有π的式子;(2)根号内含有开方开不尽的数;(3)无限不循环小数;(4)某些三角函数式:sin35°.二、实数的相关概念(必考)1.数轴(1)三要素:规定了原点、正方向和单位长度的直线.(2)实数与数轴上的点是一一对应的.(3)数轴上两个点表示的数,右边的总比左边的大.2.相反数(1)数a的相反数是−a,0的相反数是0(相反数等于它本身的数是0).(2)a,b互为相反数⇔a+b=0⇔a=−b(3)几何意义:在数轴上,互为相反数的两个数对应的点在原点的两侧,并且到原点的距离相等.3.倒数(1)乘积是1的两个数互为倒数:a,b互为倒数⇔ab=1(2)非零实数a的倒数是1;0没有倒数;倒数等于它本身的数是±1。
a4.绝对值(1)|a|={a a>00 a=0−a a<0(2)|a|≥0(非负性)(3)若|a|=|b|,则a=±b(4)几何意义:在数轴上,一个数a的绝对值就是表示数a的点到原点的距离.(5)|a−b|表示点a到点b的距离.5.科学记数法(必考)把一个数用科学记数法表示成a×10n的形式,其中1≤|a|<10,n为整数.万(四个0):0000 亿(八个0):00000000例:123000=1.23×1050.00123=1.23×10-3123万=123×10000=1.23×106123亿=123×100000000=1.23×1010 6.近似数一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.例:0.315精确到0.1为0.3,精确到0.01为0.32三、平方根、算术平方根、立方根四、实数的大小比较1.数轴法:将两数分别表示在数轴上,右边的点表示的数总比左边的点表示的数大。
第一章数与式第一节实数及其运算一.选择题1.﹣sin60°的倒数为()A.﹣2B.C.﹣D.﹣2.的平方根是()A.±9B.9C.3D.±33.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5克B.3.7×10﹣6克C.37×10﹣7克D.3.7×10﹣8克4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.已知实数a、b在数轴上的位置如图所示,实数x满足条件a≤x≤b,则下列选项中的x 值,不满足条件的是()A.B.C.3﹣D.﹣|﹣|6.将14465000元,用科学记数法表示(保留3个有效数字)()A.1.45×107B.1.44×107C.1.40×107D.0.145×1087.用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万8.近似数1.23×103精确到()A.百分位B.十分位C.个位D.十位9.下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为()A.3B.﹣1C.3或﹣1D.710.实数a在数轴上的位置如图所示,则﹣化简后为()A.7B.﹣7C.2a﹣15D.无法确定11.2009年,面对国际金融危机影响的严峻挑战,安徽整体经济运行企稳早、回升快,保持了平稳较快增长的良好头.初步核算,全年安徽全省生产总值10052.9亿元,按可比价格计算,比上年增长12.9%,连续6年保持两位数增长.生产总值10052.9亿元用科学记数法表示并保留三个有效数字为()A.1.00×1013B.0.101×1013C.1.01×1011D.1.01×1012 12.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)()A.1.2×1011B.1.3×1011C.1.26×1011D.0.13×1012 13.在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2|B.20C.2﹣1D.14.的立方根是()A.﹣1B.0C.1D.±115.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.916.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B17.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣518.实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m|C.﹣m>|n|D.|m|<|n|19.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.二.填空题(共8小题)20.下列各数:0,,﹣,,﹣,﹣2,,|1﹣|,,.0.10010001…(两个1之间依次多1个0)中,整数有,有理数有,无理数有.21.若与(y+4)2互为相反数,则x+y的平方根为.22.用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.23.6﹣的整数部分是.24.的算术平方根的平方根是.25.|x﹣3|=3﹣x,则x的取值范围是.26.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C 所表示的数是.27.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).三.解答题(共3小题)28.计算:(﹣1)2019+(﹣2)﹣2+(3.14﹣π)0﹣4cos30°+|2﹣|29.计算:(﹣)﹣2+2cos30°﹣|1﹣|+(π﹣2019)0.30.计算:(﹣1)2019+(﹣)﹣2+|﹣2|+3tan30°.。
第1课时 实数的概念与运算1.实数的分类(1)按定义分类 (2)按正负性分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负分数正分数分数负整数正整数整数有理数实数0 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数正无理数正分数正整数正有理数正实数实数0 有理数: 有限小数或无限循环小数;无理数: 无限不循环小数。
2.数轴: 规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与实数是一一对应的关系。
3.相反数: 只有符号不同的两个数互为相反数。
数 的相反数是— ;若 和 互为相反数, 则 + =0。
4.绝对值: 在数轴上, 表示数 的点到原点的距离, 叫做数 的绝对值, 记作 。
正数的绝值是它的本身, 负数的绝对值是它的相反数, 0的绝对值是0。
即5、倒数: 乘积为1的两个数互为倒数。
数 的倒数是 ;若 和 互为倒数, 则6、科学记数法:把一个数表示成 , 为不等于0的整数)形式的方法叫做科学记数法。
7、近似数与有效数字:一个与实际值很接近的数叫做近似数。
一般地, 近似数由四舍五入取得, 四舍五入到哪一位, 就说这个近似数精确到哪一位。
这时, 从左边第一个不是0的数字起, 到精确到的这位止, 所有的数字都叫做这个数的有效数字。
8、平方根、算术平方根、立方根:(1)若 , 则称 为 的平方根, 记作 , 其中 叫做 的算术平方根, 0的算术平方根是0。
同样 , 则称 为 的立方根, 记作 , 0的立方方根是0。
(2)一个正数的平方根有两个, 它们互为相反数。
负数没有平方根。
一个数的立方根只有一个。
9、实数的大小比较:(1)数轴表示法: 将两个实数分别表示在数轴上, 右边的数总比左边的数大。
(2)代数比较法:正数大于0, 0大于负数;两个负数比较, 绝对值大的反而小。
(3)根式比较:若 > ≥0, 则 > 。