当前位置:文档之家› 非线性控制理论的应用

非线性控制理论的应用

非线性控制理论的应用
非线性控制理论的应用

现代控制理论及应用

现代控制理论及应用李嗣福教授、博士生导师 中国科学技术大学自动化系

一、现代控制理论及应用发展简介 1. 控制理论及应用发展概况 2. 自动控制系统和自动控制理论 以单容水槽水位控制和电加热器温度控制为例说明什么是自动控制、控制律(或控制策略)、自动控制系统以及自动控制系统组成结构和自动控制理论所研究的内容。 2.1自动控制:利用自动化仪表实现人的预期控制目标。 2.2自动控制系统及其组成结构 自动控制系统:指为实现自动控制目标由自动化仪表与被控对象所联接成闭环系统。 自动控制系统组成结构:是由被控对象、测量代表、控制器或调节器和执行器构成反馈闭环结构,其形式有单回路形式和串级双回路形式。 控制系统性能指标:定性的有稳(定性)、准(确性)、快(速性)。 控制律(或控制策略、控制算法):控制系统中控制器或调节器所采用的控制策略,即用系统偏差量如何确定控制量的数学表示式。 2.3自动控制系统类型主要有:按系统参数输入信号形式分:定值控制系统或调节系统和随动系统。 按系统结构形式分:前馈控制系统(即开环系统)和反馈控制系统以及复合控制系统; 按系统中被控对象的控制输入量数目和被控输出量数目分:单变量控制系统和多变量控制系统; 按被控对象特性分:线性控制系统和非线性控制系统; 按系统中的信号形式分:模拟(或时间连续)控制系统、数字(或时间离散)控制系统以及混合控制系统。 2.4自动控制理论:研究自动控制系统分析与综合设计的理论和方法。 3. 古典(传统)控制理论: 采用数学变换方法(即拉普拉斯变换和富里叶变换)按照系统输出量

与输入量之间的数学关系(即系统外部特性)研究控制系统分析和综合设计问题。具体方法有:根轨迹法;频率响应法。 主要特点:理论方法的物理概念清晰,易于理解;设计出控制律一般较简单,易于仪表实现 主要缺点: ① 设计需要凭经验试凑,设计结果与设计经验关系很大; ② 系统分析和设计只着眼于系统外部特性; ③一般只能处理单变量系统分析和设计问题,而不能处理复杂的多变量系统分析和设计。 4. 现代控制理论及其主要内容 现代控制理论:狭义的是指60年代发展起来的采用状态空间方法研究实现最优控制目标的控制系统综合设计理论。广义的是指60年代以来发展起来的所有新的控制理论与方法。 控制系统状态空间设计理论: (1) 用一阶微方程组表征系统动态特性,一般形式(连续系统)为 )()()(t BU t AX t X +=——状态方程(连续的一阶微分方程组) )()(t CX t Y =——输出方程 离散系统: )()()1(t BU t AX k X +=+——状态方程(离散的一阶差分方程组) )()(k CX k Y = k ——为大于等于零整数,表示离散时间序号; ?????? ??? ???=)() ()()(21k x k x k x k X n ——状态向量,其中)(k x i ,()n i ,,1 =为状态变量; ????? ???? ???=)() ()()(21k u k u k u k U m ——输入向量,其中)(k u i , ()m i ,,1 =为各路输入;

现代控制理论复习题库

一、选择题 1.下面关于建模和模型说法错误的是( C )。 A.无论是何种系统,其模型均可用来提示规律或因果关系。 B.建模实际上是通过数据、图表、数学表达式、程序、逻辑关系或各种方式的组合表示状态变量、输入变量、输出变量、参数之间的关系。 C.为设计控制器为目的建立模型只需要简练就可以了。 D.工程系统模型建模有两种途径,一是机理建模,二是系统辨识。 &&&&的类型是( B ) 。 2.系统()3()10() y t y t u t ++= A.集中参数、线性、动态系统。B.集中参数、非线性、动态系统。 C.非集中参数、线性、动态系统。D.集中参数、非线性、静态系统。 3.下面关于控制与控制系统说法错误的是( B )。 A.反馈闭环控制可以在一定程度上克服不确定性。 B.反馈闭环控制不可能克服系统参数摄动。 C.反馈闭环控制可在一定程度上克服外界扰动的影响。 D.控制系统在达到控制目的的同时,强调稳、快、准、鲁棒、资源少省。 x Pz说法错误的是( D )。 4.下面关于线性非奇异变换= A.非奇异变换阵P是同一个线性空间两组不同基之间的过渡矩阵。 B.对于线性定常系统,线性非奇异变换不改变系统的特征值。 C.对于线性定常系统,线性非奇异变换不改变系统的传递函数。 D.对于线性定常系统,线性非奇异变换不改变系统的状态空间描述。 5.下面关于稳定线性系统的响应说法正确的是( A )。 A.线性系统的响应包含两部分,一部是零状态响应,一部分是零输入响应。 B.线性系统的零状态响应是稳态响应的一部分。 C.线性系统暂态响应是零输入响应的一部分。 D.离零点最近的极点在输出响应中所表征的运动模态权值越大。 6.下面关于连续线性时不变系统的能控性与能观性说法正确的是( A ) 。 A.能控且能观的状态空间描述一定对应着某些传递函数阵的最小实现。 B.能控性是指存在受限控制使系统由任意初态转移到零状态的能力。 C.能观性表征的是状态反映输出的能力。 D.对控制输入的确定性扰动影响线性系统的能控性,不影响能观性。 7.下面关于系统Lyapunov稳定性说法正确的是( C ) 。

自动控制原理非线性系统习题题库

8-1考虑并回答下面的问题: (a )在确定非线性元件的描述函数时,要求非线性元件不是时间的函数,并要求有斜对称性,这是为什么 (b )什么样的非线性元件是无记忆的什么样的非线性元件是有记忆的它们的描述函数各有什么特点 (c )线性元件的传递函数与非线性元件的描述函数,有什么是相同的有什么是不同的线性元件可以有描述函数吗非线性元件可以有传递函数吗 (d )非线性系统线性部分的频率特性曲线与非线性元件的负倒描述函数曲线相交时,系统一定能够产生稳定的自激振荡吗 8-2设非线性元件的输入、输出特性为 35135()()()()y t b x t b x t b x t =++ 证明该非线性元件的描述函数为 2413535 ()48 N A b b A b A =++ 式中A 为非线性元件输入正弦信号的幅值。 8-3某非线性元件的输入、输出特性如图所示。 图 习题8-3图 (a )试求非线性元件的描述函数。 (b )将图所示非线性元件表示为有死区继电器和有死区放大器的并联,用非线性元件并联描述函数的求法求它的描述函数,并与(a )中的结果相比较。 8-4滞环继电特性如图(a )所示,证明它的描述函数可以表示为 4()arcsin M a N A A A π??= ∠ ???

且负倒描述函数的虚部为常值,负倒描述函数曲线如图(b )所示。 (a ) (b ) 图 习题8-4图 8-5大对数控制系统的控制器后面都带有限幅器。对图(a )所示PI 调节器输出带有限幅器的情况,在输入信号发生大的阶跃变化时,系统输出将出现比较大的退饱和超调。所谓退饱和超调是指,在大的误差信号e 作用下,PI 调节器的输出将很快将到达饱和值,经限幅器限幅后控制作用u 维持在最大值max u 。在max u 的作用下,输出c 逐渐增大,误差e 逐渐减小,但只要误差未改变符号,PI 调节器的积分项就将继续增大,0e =时积分项的值一般要远大于限幅器的限幅值max u 。当输出超调以后,误差的符号变负,调节器积分项的值开始下降,但在一段时间内仍将维持在很大的数值上,因此会导致很大的超调。 为降低或消除上述系统的退饱和超调,可以有图(b )或图(c )所示的限幅器设计方案,可以保证调节器的积分项被限制在限幅值以内,试分别说明它们的工作原理。 (a ) (b )

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

3.有电路如图1-28所示。以电压U(t)为输入量,求以电感中的电流和电 容上的电压作为状态变量的状态方程,和以电阻 R 2上的电压作为输出 量的输出方程。 4.建立图P12所示系统的状态空间表达式。 M 2 1 f(t) 5.两输入u i ,U 2,两输出y i ,y 的系统,其模拟结构图如图 1-30所示, 练习题 ,输出为,试自选状态变量并列写出其状 2. 有电路如图所示,设输入为 态空间表达式。 C ri _ l- ------- s R 2 U i U ci L u A ------ — 2 R i

试求其状态空间表达式和传递函数阵。 6.系统的结构如图所示。以图中所标记的 x 1、x 2、x 3作为状态变量,推 导其状态空间表达式。 其中,u 、y 分别为系统的输入、 输出,1、 2 试求图中所示的电网络中,以电感 L i 、L 2上的支电流x i 、X 2作为状态 变量的状态空间表达式。这里 u 是恒流源的电流值,输出 y 是R 3上的 支路电压。 8. 已知系统的微分方程 y y 4y 5y 3u ,试列写出状态空间表达式。 9. 已知系统的微分方程 2y 3y u u , 试列写出状态空间表达式。 10. 已知系统的微分方程 y 2y 3y 5y 5u 7u ,试列写出状态空间 表达式。 7. 3均为标量。

11. 系统的动态特性由下列微分方程描述 y 5 y 7 y 3y u 3u 2u 列写其相应的状态空间表达式,并画出相应的模拟结构图。 12. 已知系统传递函数 W(s) 坐 卫 2 ,试求出系统的约旦标准型 s(s 2)(s 3) 的实现,并画出相应的模拟结构图 13. 给定下列状态空间表达式 X 1 0 1 0 X 1 0 X 2 2 3 0 X 2 1 u X 3 1 1 3 X 3 2 X 1 y 0 0 1 x 2 X 3 (1)画出其模拟结构图;(2)求系统的传递函数 14. 已知下列传递函数,试用直接分解法建立其状态空间表达式,并画出状 态变量图。 15. 列写图所示系统的状态空间表达式。 16. 求下列矩阵的特征矢量 0 1 0 A 3 0 2 12 7 6 17. 将下列状态空间表达式化成约旦标准型(并联分解) (1)g(s ) s 3 s 1 3 2 s 6s 11s 6 ⑵ g(s ) s 2 2s 3 3 c 2 s 2s 3s 1

非线性控制理论和方法

非线性控制理论和方法 姓名:引言 人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,现实生活中,大多数的系统都是非线性的。非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。控制理论的发展目前面临着一系列严重的挑战, 其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。 1.传统的非线性研究方法及其局限性 传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。相平面法是Poincare于1885年首先提出的一种求解常微分方程的图解方法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。描述函数法是 P. J.Daniel于1940

机电系统非线性控制方法的发展方向

机电系统非线性控制方法的发展方向 摘要 控制理论的发展经过了经典控制理阶段和现代控制理论阶段。但是两者所针对的主要是线性系统。然而,实际工程问题中所遇到的系统大多是非线性的,采用上述两种理论只能是对实际系统进行近似线性化。在一定范围内采用这种近似现行化的方法可以达到需要的精度。但是在某些情况下,比如本质非线性就无法采用前述方法。这种情况下就必须采用非线性控制理论。 非线性控制的经典方法主要有相平面法,描述函数法,绝对稳定性理论,李亚普诺夫稳定性理论,输入输出稳定性理论。但是这些经典理论存在着局限性,不够完善。 随着非线性科学的发展,一些新的方法随之产生。最新的发展成果主要有:微分几何法,微分代数法,变结构控制理论,非线性控制系统的镇定设计,逆系统方法,神经网络方法,非线性频域控制理论和混沌动力学方法。这些新成果对于解决非线性系统的控制问题,完善非线性系统理论具有重要作用,也是今后非线性系统控制的发展方向。 关键词非线性控制;最新发展成果;发展方向

引言 迄今为止,控制理论的发展经过了经典控制理论和现代控制理论阶段。经典控制阶段主要针对的是单输入单输出(SISO)线性系统,通过在时域和频域内对系统进行建模实现对系统的定量和定性分析,经典控制理论在工程界得到了广泛的应用,而且经典控制方法已经形成了完善的理论体系。然而,随着科学技术的发展,经典控制方法也暴露出了其自身的缺陷,经典控制方法并不关心系统内部的状态变化,而只是局限于将被控对象看作一个整体,并不能准确了解系统内部的状态变化。为了克服经典控制方法的这种缺陷,现代控制方法产生了。现代控制理论只要是在时域内对系统进行建模分析,通过建立系统的状态方程,了解系统内部的状态变化,对系统的了解更加全面透彻。该理论主要针对多输入多输出(MIMO)的线性系统。经典控制理论和现代控制理论的结合使得控制理论在线性问题的控制上达到了完善的地步,在工程界得到了广泛的应用。 然而,经典控制论和现代控制论所针对的是线性系统,实际问题大多是非线性系统,早期的处理方法是将非线性问题线性化,然后再应用上述两种理论。这种方法在一定的范围和精度内可以很好的满足工程需要。随着科学技术的发展,上述两种方法遇到了挑战,例如本质非线性问题,这种问题无法进行局部线性化。因此,要解决这类问题就必须要有一套相应的非线性控制理论。 本文通过阐述控制理论的发展过程中各种理论的应用范围和局限性,特别是针对非线性问题的处理方法,介绍了非线性控制理论要解决的问题,非线性控制的经典方法和最新发展成果,并阐述了非线性控制理论的发展方向。

现代控制理论

1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。 答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。 2、什么是状态观测器?简述构造状态观测器的原则。 答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。 3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。 答:基本思想:从能量观点分析平衡状态的稳定性。(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。 4、举例说明系统状态稳定和输出稳定的关系。 答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。 举例: A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。 5、什么是实现问题?什么是最小实现?说明实现存在的条件。 答:(1)由系统的运动方程或传递函数建立SS表达式的问题叫做实现问题;(2)维数最小的实现方式时最小实现;(3)存在条件是m小于等于n。 6、从反馈属性、功能和工程实现说明状态反馈和输出反馈的优缺点。 答:(1)状态反馈为全属性反馈,输出反馈为部分信息反馈;(2)状态反馈在功能上优于输出反馈;(3)从工程上讲输出反馈优于状态反馈。 7、说明李氏第一法判断稳定性的基本思想和局限性。 答:(1)基本思想:将状态方程在平衡状态附近进行小偏差线性化,由系统矩阵的特征值判断系统稳定性。(2)局限性:对非线性系统,只能得出局部稳定性;系统虚轴上有特征值时不能判断稳定性。 8、简述线性时不变系统能控性定义,并说出两种判断能控性的方法。 答:(1)定义:如果存在一个分段连续的输入U(t),能在有限时间区间{t0,tf}内,使系统由某一初始化状态x(t0),转移到指定的任一终端状态x(tf),则此状态是能控的。若系统所有状态都是能控的,则完全能控,否则不完全能控。(2)方法:约旦标准型判据,秩判据。 9、说明系统传递函数零、极点对消与系统能控能观性关系。

智能控制理论及应用的发展现状

●专家论谈  智能控制理论及应用的发展现状 杭州浙江大学工业控制技术研究所 (310027) 许晓鸣 孙优贤上海交通大学自动化系 (200030) 熊 刚 在控制工程实践中,人们常常涉及到传感器、执行器、通信系统、计算机以及控制策略和具体算法。它们构成的控制系统可以比拟成一个人,如图1。传感器用来采集反映被控对象特性的信息,它就象人的五官;执行器用来把控制决策命令施加于被控对象,它好比人的四肢;通信技术把传感器采集到的信息及时送到控制器,就象人们的神经系统;计算机是控制器的硬件环境,就象人的脑袋。这四部分在控制系统设计中占去人们大部分精力, 但是控制策略和具体算法就好象人的大脑一样,是控制系统的“指挥中心”。设计尽量“聪明”和适用的控制算法是控制理论发展的动力和内容。 图1 控制系统的构成框图 1 智能控制的兴起 111 自动控制的发展与挫折 本世纪40~50年代,以频率法为代表的单变量系统控制理论逐步发展起来,并且成功地用在雷达及火力控制系统上,形成了今天所说的“古典控制理论”。60~70年代,数学家们在控制理论发展中占了主导地位,形成了以状态空间法为代表的“现代控制理论”。他们引入了能控、能观、满秩等概念,使得控制理论建立在严密精确的数学模型之上,从而造成了理论与实践之间的巨大分歧。70年代后,又出现了“大系统理论”。但是,由于这种理论解决实际问题的能力更弱,它很快被人们放到了一边。112 人工智能的发展 斯坦福大学人工智能研究中心的N ilsson 教授认为:“人工智能是关于知识的科学——怎样表示知识以及怎样获得知识并使用知识的科学”。M IT 的W in ston 教授指出:“人工智能就是研究如何使计算机去做过去只有人才做的智能性工作”。 1956年以前是人工智能的萌芽期。英国数学家图灵(A 1M 1T u ring 1912 ~1954)为现代人工智能作了大量开拓性的贡献;1956年~1961年是人工智能的发展期,人们重点研究了诸如用机器解决数学定义,通用问题求解程序等。1961年以后人工智能进入了飞跃期,主要内容涉及知识工程、自然语言理解等。 人们研究人工智能方法也分为结构模拟派和功能模拟派,分别从脑的结构和脑的功能入手进行研究。113 智能控制的兴起 建立于严密的数学理论上的控制理论发展受到挫折,而模拟人类智能的人工智能却迅速发展起来。 控制理论从人工智能中吸取营养求发展成为必然。 工业系统往往呈现高维、非线性、分布参数、时变、不确定性等复杂特征。特别是非线性对控制结果的影响复杂,控制工程人员很难深入理解,更谈不上设计出合适的控制算法。不确定性是最难以解决的问题,也是导致大系统理论失败的根本原因。但是,对这些问题用工程控制专家经验来解决则往往是成功的。人是最聪明的控制器,模仿人是一种途径。 萨里迪斯(Saridis )于1977年提出了智能控制的三元结构定义,即把智能控制看作为人工智能、自动控制和运筹学的交点。在智能控制发展初期,美国普渡大学的傅京孙(K 1S 1Fu )教授首先提出了学习控制的概念,引入了人工智能的直觉推理。后来在人工智能的概念模拟基础上,发展了许多智能控制方法,如自整定、参数调整P I D 等。再后来则以发展实用的智能控制算法为主,尤以专家系统和神经元网络最为突出。 2 智能控制的发展框架 图2 智能控制的发展框架 现在有关智能控制方面的论文很多,我们可以把

现代控制理论试题与答案

现代控制理论 1、经典-现代控制区别: 经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接与输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具、可以应用于非线性,时变系统,多输入-多输出系统以及随机过程、2、实现-描述 由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题、实现就是非唯一的、 3、对偶原理 系统=∑1(A1,B1,C1)与=∑2(A2,B2,C2)就是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性、或者说,若∑1就是状态完全能控的(完全能观的),则∑2就是状态完全能观的(完全能控的)、对偶系统的传递函数矩阵互为转置 4、对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件就是的不能观子系统为渐近稳定 第一章控制系统的状态空间表达式 1、状态方程:由系统状态变量构成的一阶微分方程组 2、输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式 3、状态空间表达式:状态方程与输出方程总合,构成对一个系统完整动态描述 4、友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为0 5、非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du、T为任意非奇异阵(变换矩阵),空间表达式非唯一 6、同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量 第二章控制系统状态空间表达式的解 1、状态转移矩阵:eAt,记作Φ(t) 2、线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ 第三章线性控制系统的能控能观性 1、能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态就是能控的、若系统的所有状态都就是能控的,称系统就是状态完全能控 2、系统的能控性,取决于状态方程中系统矩阵A与控制矩阵b 3、一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0、(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的 4、在系统矩阵为约旦标准型的情况下,系统能观的充要条件就是C中对应每个约旦块开头的一列的元素不全为0 5、约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型 6、最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式就是最常用的、 第五章线性定常系统综合 1、状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入、K为r*n维状态反馈系数阵或状态反馈增益阵 2、输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵 3、从输出到状态矢量导数x的反馈:A+GC 4、线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都就是常矩阵 动态补偿器:引入一个动态子系统来改善系统性能 5、(1)状态反馈不改变受控系统的能控性 (2)输出反馈不改变受控系统的能控性与能观性 6、极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件就是∑0完全能控

智能控制理论与方法

智能控制理论与方法 智能控制是自动控制发展的高级阶段,是人工智能、控制论、系统论、信息论、仿生学、神经生理学、进化计算和计算机等多种学科的高度综合与集成,是一门新兴的边缘交叉学科。它不仅包含了自动控制、人工智能、运筹学和信息论的内容,而且还从计算机科学、生物学、心理学等学科中汲取营养。什么又是智能控制理论呢? 智能控制的概念和原理是针对被控对象及其环境、控制目标或任务的复杂性和不确定性而提出来的。对“智能控制”这一术语没有确切的定义,但是也有前辈做过归纳总结的,例如,IEEE控制系统协会归纳为:只能控制系统必须具有模拟人类学习(Learning)和自适应(Adaptation)的能力。智能控制系统是智能机自动完成其目标的控制过程,由智能机参与生产过程自动控制的系统称为智能控制系统。定性的说,智能控制系统应具有学习、记忆和大范围的自适应和自组织能力;能够及时地适应不断变化的环境;能有效的处理各种信息,以减小不确定性;能够以安全和可靠地方式进行规划、生产和执行控制动作而达到预定的目的和良好的性能指标。 智能控制系统一般具有以知识表示的非数学广义模型和艺术学模型表示的混合控制过程。它适用于含有复杂性、不完全性、模糊性、不确定和不存在的已知算法的生产过程。它根据被控动态过程特征辨识,采用开闭环控制盒定性与定量控制相结合的多模态的控制方式。 智能控制器具有分层信息处理和决策机构。它实际上是对人神经

结构或专家决策机构的一种模仿。复杂的系统中,通常采用任务分块、控制分散方式。智能控制核心在高层控制,它对环境或过程进行组织、决策和规划,实现广义求解。要实现此任务需要采集符号信息处理、启发式程序设计、知识展示及自动推理和决策的相关技术。底层控制也属于智能控制系统不可缺少的一部分,一般采用常规控制。智能控制器也具有非线性。这是因为认得思维具有非线性,作为模仿人的思维进行决策的智能控制也具有非线性。由于智能控制器具有在线特征辨识、特征记忆和拟人特点,在整个控制过程中计算机在线获取信息和实时处理并给出控制决策,通过不断优化参数和寻找控制器的最佳结构方式,以获取整体最有控制性能。 模糊控制系统是智能控制的重要组成部分。模糊控制器是非线性控制器,许多传统的建模、分析和设计方法可以直接采用。任何的控制都有其数学理论和数学基础,模糊控制系统的数学基础是模糊集合、模糊规则和模糊推理。模糊集合就是指具有某个模糊概念所描述的属性的对象的全体,这一概念是美国加利福尼亚大学控制论专家L.A.扎德于 1965 年首先提出的。模糊集合这一概念的出现使得数学的思维和方法可以用于处理模糊性现象,从而构成了模糊集合论(中国通常称为模糊性数学)的基础。 模糊控制的核心就是利用模糊集合理论,把表达的人控制策略的自然语言转化为计算机能够承受的算法语言的控制算法,这种方法不仅能实现控制,而且能模拟人的思维方式,对一些无法构造的数学模 型的被控对象进行有效的控制。模糊控制与一般的自动控制的根本区

非线性系统学习控制理论的发展与展望

非线性系统学习控制理论的发展与展望 谢振东谢胜利刘永清 摘要:论述了学习控制的基本理论问题,给出了学习与学习控制系统的基本定义,着重讨论了学习控制方法产生的历史背景、目前非线性系统学习控制的研究状况,提出了一些有待继续研究的问题. 关键词:非线性系统;学习控制;发展与展望 文献标识码:A Development and Expectation for Learning Control Theory of Nonlinear Systems XIE Zhendong,XIE Shengli and LIU Yongqing (Depatrment of Automatic Control Engineering, South China University of Technology. Guangzhou, 510640, P.R.China) Abstract:In this paper, the problem for the basic theory of learning control is discussed. After giving the basic definition of learning and learning control, we mainly discuss the background of learning control and the research status for learning control of nonlinear systems, and put forward some problems need to be researched. Key words:nonlinear systems; learning control; development and expectation▲ 1 非线性系统学习控制的研究背景(Research background for learning control theory of nonlinear systems) 1.1 引言(Introduction) 对于高速运动机械手的控制,Uchiyama提出一个思想[1]:不断重复一个轨线的控制尝试,并以此修正控制律,能达到较好的控制效果.日本学者Arimoto[2]等人根据这种思想于1984年针对机器人系统的控制研究,提出了迭代学习控制这一新颖方法.这种控制方法只是利用控制系统先前的控制经验,根据测量系统的实际输出信号和期望信号来寻求一个理想的输入,使被控对象产生期望的运动.而“寻找”的过程就是学习的过程,在学习的过程中,只需要测量系统的输出信号和期望信号,不象适应控制那样,对系统要进行复杂的参数估计[3,4],也不象一般控制方法那样,不能简化被控对象的动力学描述.特别是在一类具有较强的非线性耦合和较高的位置重复精度的动力学系统(如工业机器人、数控机床等)中,学习控制有着很好的应用,如T.Sugie[5],M.Katic[6],H.Park[7]的工作.迭代学习控制方法提出后,受到了控制界的广泛关注,人们不仅针对各种机器人系

《现代控制理论》复习提纲2017

现代控制理论复习提纲 第一章: 绪论 (1)现代控制理论的基本内容 包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波 (2)现代控制理论与经典控制理论的区别 第二章:控制系统的状态空间描述 1.状态空间的基本概念; 系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程 2.状态变量图 概念、绘制步骤; 3.由系统微分方程建立状态空间表达式的建立; 1.2.1 第三章:线性控制系统的动态分析 1.状态转移矩阵的性质及其计算方法 (1)状态转移矩阵的基本定义; (2)几个特殊的矩阵指数; (3)状态转移矩阵的基本性质(以课本上的5个为主); (4)状态转移矩阵的计算方法 掌握: 2.2.2 方法一:定义法 方法二:拉普拉斯变换法例题2-2 第四章:线性系统的能控性和能观测性 (1)状态能控性的概念 状态能控、系统能控、系统不完全能控、状态能达 (2)线性定常连续系统的状态能控性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算

(3)状态能观测性的概念 状态能观测、系统能观测、系统不能观测 (4)线性定常连续系统的状态能观测性判别 包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据 掌握秩判据、PBH判据的计算 (5)能控标准型和能观测标准型 只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II型的计算方法 第五章:控制系统的稳定性分析 (1)平衡状态 (2)李雅普诺夫稳定性定义: 李雅普诺夫意义下的稳定概念、渐进稳定概念、大范围稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析 例4-6 第六章线性系统的综合 (1)状态反馈与输出反馈 (2)反馈控制对能控性与观测性的影响

控制理论与应用

控制理论与应用 第34卷第5期2017年5月 目次 综述与评论 果蝇优化算法研究进展·························································王凌,郑晓龙(557) 论文与报告 插电式混合动力汽车车速预测及整车控制策略·············································连静,刘爽,李琳辉,周雅夫,杨帆,袁鲁山(564)通讯信息约束下具有全局稳定性的分布式系统预测控制(英文)··············郑毅,李少远,魏永松(575)基于卡尔曼滤波器组的多重故障诊断方法研究····························符方舟,王大轶,李文博(586)考虑作动器动态补偿的飞机增量滤波非线性控制··················周池军,朱纪洪,袁夏明,雷虎民(594)不确定时滞关联大系统的全局稳定模糊容错控制··································郭涛,陈为胜(601)带相关噪声、随机观测滞后和丢失的随机不确定系统的最优线性估值器·············王欣,孙书利(609)高通量筛选系统的双子代数建模·························································李丹菁(619) N连接糖基化过程的动态图建模·························杨岱巍,王晶,周靖林,吴海燕,靳其兵(627)多端高压直流输电系统自适应无源控制···························杨博,黄琳妮,张孝顺,余涛(637)模型参数失配有界下的扩展集员估计方法·································宋莎莎,赵忠盖,刘飞(648)卫星姿态的状态转移控制································································谭天乐(655) 短文 控制饱和约束下的自主水面船编队·······························付明玉,余玲玲,焦建芳,徐玉杰(663)融合概率分布和单调性的支持向量回归算法······································张青,颜学峰(671)三类不动点与一类随机动力系统的稳定性········································王春生,李永明(677)一类3阶非线性系统的非奇异终端滑模控制································蒲明,蒋涛,刘鹏(683)带有非线性扰动的时变时滞系统的稳定性准则·····················武斌,王长龙,徐锦法,胡永江(692) 期刊基本参数:CN44–1240/TP*1984*m*A4*144*zh*P*¥15.00*1300*17*2017–05

控制理论在生活中的应用以及社会控制系统

控制理论在生活中的应用以及社会控制系统 摘要:在工程上为了对某个机械系统进行控制常常会对其建立模型,然后利用一些控制算法对其进行控制,从而使输出跟随输入。而对于社会管理来说,我们可以把社会看成是一个大的系统,各种政策法令便是控制算法,对社会进行控制,从而使社会和谐。本文将先介绍控制论的基本定义以及常用的控制算法,接着介绍控制论在生活中的应用,最后介绍对社会这个大系统的控制模型的建立即各种政策法令。 关键词:控制论,机械系统,社会系统,政策,法令,道德 1、概述 控制系统的基本思想是根据误差来调控被控系统,从而消除误差。在我们生活中控制理论随处可见,它广泛的应用在我们的生活中,如空调,空调会根据室内的温度来实时调控温度,当室内的温度高于设定的温度时,空调便会开启,通过压缩机来制冷,使得温度降低,当室内的温度与设定的温度相同时,或在允许的误差范围内时,空调便会停止工作,这样既能节能减排,又可以实时的监控室内的温度,使人们处于一个较舒适的温度下。类似于这样的例子很多,本文将会在第三部分进行介绍。 而当把社会比作一个大的控制系统时,我们可以对它进行建模,然后按照控制论的思想对其进行反馈控制,即根据社会中出现的问题,即社会的实际状况与我

们期望的状况之间的差别,通过制定相关的政策、法律以及运用道德来对其进行调整,从而消除差别,实现我们希望的社会状况。典型的例子如房地产的调控便是如此。房子作为人们日常社会的必需品,是每个家庭所必不可少的东西,然后,如今的房子却成了最最奢侈的奢侈品,它的价格已经完完全全超出了人们所能接受的范围,特别是对于一个刚毕业的普通大学生来说,买房子已经成为了遥不可及的梦。由于房价的过快增长已经引发了许许多多的社会问题,这些问题急需解决,房子的价格已经远远超出了人们的预期,这个系统的误差已经大到了不可不调整的地步了,此时便需要政府出面来对其进行调控,使得房子的价格回到一个合理的范围内,于是乎近年来政府相继出台了许许多多的政策来调控房价,这些政策便像是控制系统中的控制算法,本文将会在第四部分阐述社会系统中的控制算法。 2、机械控制理论 2.1 机械控制理论在工程中的应用发展 机械控制理论是在产业革命的背景下,在生产和军事需求的刺激下,自动控制、电子技术、计算机科学等多种学科相互交叉发展的产物。二次世界大战期间美国科学家维纳在研究火炮的自动控制时把火炮自动打飞机的动作与人狩猎的行为做了对比,并且提炼出了控制理论中最基本最重要的反馈概念。他提出,准确控制的方法可以把运动的结果所决定的量,作为信息再反馈回控制仪器中,这就是著名的负反馈概念。维纳等在1943年发表了《行为,目的和目的论》。同时火炮自动控制的研制获得了成功,这是控制论萌芽的重要实物标志。1948年,维纳所著《控制论》的出版,标志着这门科学的正式诞生。[1] 2.2 负反馈系统简介 如图所示,负反馈是指将系统的输出引回来与给定输入相比较,计算出输出与输入的误差,通过控制算法,使控制器的输出作为被控对象的输入,从而使被控对象的误差减小。

现代控制理论试题与答案

现代控制理论 1.经典-现代控制区别: 经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程. 2.实现-描述 由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的. 3.对偶原理 系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置 4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定 第一章控制系统的状态空间表达式 1.状态方程:由系统状态变量构成的一阶微分方程组 2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式 3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述 4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为0 5.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一 6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量 第二章控制系统状态空间表达式的解 1.状态转移矩阵:eAt,记作Φ(t) 2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ

现代控制理论习题

《现代控制理论》练习题 判断题 1. 由一个状态空间模型可以确定惟一一个传递函数。 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 4. 对系统Ax x = ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 5. 对一个系统,只能选取一组状态变量; 6. 由状态转移矩阵可以决定系统状态方程的系统矩阵,进而决定系统的动态特性; 7. 状态反馈不改变系统的能控性。 8. 若传递函数B A sI C s G 1)()(--=存在零极相消,则对应状态空间模型描述的系统是不能控的; 9. 若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的; 10. 相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。 11. 传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。 12. 状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。 13. 等价的状态空间模型具有相同的传递函数。 14. 互为对偶的状态空间模型具有相同的能控性。 15. 一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置无关。 16. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。 17. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。 18. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。 填空题 l .系统状态完全能控是指 。 2.系统状态的能观性是指 。 3.系统的对偶原理: 。 4.对于一个不能控和不能观的系统,按系统结构标准分解 为 、 、 、 、的四个子系统。

非线性系统理论

Introduction of Lyapunov-Based Control 1An Example of Nonlinear Systems Linear System ˙x=Ax+Bu y=Cx (1) it has the superposition property.Besides,the stability of the linear system completely depends on its parameters. Nonlinear System ˙x=f(x,u) y=g(x) (2) superposition does not hold for nonlinear systems,and the stability of a nonlinear system depends on both system parameters and initial conditions. Example:The dynamic model for a2-DOF overhead crane system(see Figure??)can be presented as follows M(q)¨q+V m(q,˙q)˙q+G(q)=u(3) q=[x(t)θ(t)]T(4) where x(t)∈R1denotes the gantry position,θ(t)∈R1denotes the payload angle with respect to the vertical,and M(q)∈R2×2,V m(q,˙q)∈R2×2,G(q)∈R2,and u(t)∈R2are de?ned as follows M(q)= m c+m p?m p L cosθ ?m p L cosθm p L2 , V m(q,˙q)= 0m p L sinθ˙θ 00 , G(q)= 0m p gL sinθ T,u(t)= F0 T,(5) where m c,m p∈R1represent the gantry mass and the payload mass,respectively,L∈R1represents the length of the rod to the payload,g∈R1represents the gravity coe?cient,and F(t)∈R1 represents the control force input acting on the gantry(see Figure??). 2Common Nonlinear Systems Behaviors 2.1Multiple Equilibrium Points For the system ˙x=f(x)(6) 1

相关主题
文本预览
相关文档 最新文档