自动控制理论第7章非线性系统的分析
- 格式:ppt
- 大小:1.20 MB
- 文档页数:62
自动控制原理非线性分析知识点总结自动控制原理是工程领域中的一门重要学科,它研究的是如何通过设备和技术手段,使得系统的运行能够自动控制并满足特定的性能要求。
非线性分析则是探讨系统在非线性条件下的行为特性。
在这篇文章中,我们将对自动控制原理中的非线性分析知识点进行总结。
一、非线性系统的定义与特点非线性系统是指系统的输出与输入之间的关系不是简单的比例关系,而是呈现出非线性的特征。
与线性系统相比,非线性系统具有以下几个特点:1. 非线性叠加性:系统的输出并不是输入信号的简单叠加,而是受到系统自身状态和非线性特性的影响。
2. 非线性失稳性:非线性系统可能会出现失稳现象,即系统的输出会趋向于无穷大或无穷小。
3. 非线性动态行为:非线性系统在输入信号发生变化时,其输出信号的变化可能是不连续的,出现跳跃、震荡等现象。
二、非线性系统的分析方法1. 相平面分析法:通过绘制相平面图,可以直观地了解系统的非线性行为。
相平面图可以显示出系统的轨迹、奇点等信息,帮助我们分析系统的稳定性和动态特性。
2. 频域分析法:利用频域分析方法,我们可以对非线性系统进行频谱分析,找出系统的频率响应和频率特性。
通过分析系统的幅频特性和相频特性,我们可以判断系统的稳定性和动态性能。
3. 时域响应分析法:时域分析是对系统的输入信号与输出响应进行时间上的观察和分析。
通过观察和分析系统的阶跃响应、脉冲响应、频率响应等,可以推断出系统的稳定性和动态特性。
4. 广义函数法:广义函数是处理非线性系统时常用的一种数学方法。
通过引入广义函数,我们可以简化非线性系统的数学描述,方便进行分析与计算。
5. 数值模拟方法:对于复杂的非线性系统,我们可以利用计算机进行仿真和数值模拟,通过对系统的模拟实验,得到系统的动态行为和性能参数。
三、非线性系统的稳定性分析1. 稳定性概念:稳定性是衡量系统响应的一种重要指标。
对于非线性系统,我们通常关注的是渐近稳定性和有界稳定性。
第7章 非线性系统分析一、选择题1.非线性系统的无穷多条相轨迹相交的点称为()。
[华中科技大学研]A.奇点B.会合点C.分离点D.终点【答案】A2.输出信号的一次谐波分量和输入信号的复数比定义为非线性环节的()。
[华中科技大学研]A.传递函数B.描述函数C.谐波函数D.频率特性【答案】B二、解答题1.已知非线性系统如图7-1所示,其中,T>0,K>0,现要求系统输入量c(t)的ωc=10,试确定参数T和K的数值。
(非线性环节自振振幅X c=0.1,角频率为)[上海交通大学研]图7-1解:由已知ωc =10,线性部分传递函数为即又由于ωc =10,自振振幅X c =0.1得因此有2.已知某非线性系统结构如图所示,试用描述函数法分析K (K >0)值对系统稳定性的影响。
[南京航空航天大学2006研]图7-2 非线性系统结构图解:该饱和特性的描述函数为负倒描述函数当A =1时,,当A→+∞时,,因此位于负实轴上的-1~-∞区段。
线性部分频率特性为令ImG (j ω)=0,得G (j ω)与负实轴交点的频率为,且在复平面上绘制G (j ω)曲线以及曲线如下图所示。
由图可见,当时,即0<K <6系统稳定;当时,即K >6系统产生自振。
自振频率,振幅A 由求得。
图7-33.某单位负反馈非线性系统如图所示,非线性环节的描述函数为,线性部分的传递函数如图所示。
试分析:(1)系统是否存在自振。
(2)若产生自振,计算自振频率及振幅,并讨论极限环的稳定性。
[浙江大学2008研]图7-4 非线性系统结构图解:非线性环节负倒描述函数为线性部分频率特性为且在复平面上绘制G(jω)曲线以及曲线如下图所示,相交于B点,有解得即系统存在自振的频率为1.155,振幅为11.246。
图7-54.已知非线性控制系统的结构图如图7-6所示。
为了使系统不产生自持振荡,试采用描述函数法确定图中非线性环节的特性参数a和b的数值。
[长安大学研][南京理工大学研][华中科技大学研]图7-6解:由题知非线性环节为死区继电器特性,则图形如图7-8所示。
第七章非线性控制系统分析练习题及答案7-1设一阶非线性系统的微分方程为xx3 x试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。
解令x0得3(21)(1)(1)0xxxxxxx系统平衡状态x e0,1,1其中:x0:稳定的平衡状态;ex1,1:不稳定平衡状态。
e计算列表,画出相轨迹如图解7-1所示。
x-2-11301312x-600.3850-0.38506x112010211图解7-1系统相轨迹可见:当x(0)1时,系统最终收敛到稳定的平衡状态;当x(0)1时,系统发散;x(0)1 时,x(t);x(0)1时,x(t)。
注:系统为一阶,故其相轨迹只有一条,不可能在整个x~x平面上任意分布。
7-2试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。
(1)xxx0(2) x1x2xx122xx12解(1)系统方程为1:xxx0(x0):xxx0(x0)令xx0,得平衡点:x e0。
系统特征方程及特征根:132:ss10,sj(稳定的焦点)1,2222:ss10,s1.618,0.618(鞍点)1,2xf(x,x)xx, d xdxxxxdx dx 1xx,1xxx11I:1(x0)1II:1(x0)计算列表-∞-3-1-1/301/313∞x0:11-1-2/302-∞-4-2-4/3-1x0:11-1-4/3-2-4∞20-2/3-1用等倾斜线法绘制系统相平面图如图解7-2(a)所示。
2图解7-2(a)系统相平面图(2)xxx112①x22xx②12由式①:x2x1x1③式③代入②:(x1x1)2x1(x1x1)即x12x1x10④令x1x10得平衡点:x e0由式④得特征方程及特征根为2.4142ss2101,2(鞍点)0.414画相轨迹,由④式xx 11 d x1dxx12x1x1x 1 x1 2计算列表322.53∞11.52=1/(-2)∞210-1-2∞用等倾斜线法绘制系统相平面图如图解7-2(b)所示。
自动控制原理非线性系统知识点总结自动控制原理是现代控制领域中的核心学科,广泛应用于各个工程领域。
在自动控制原理课程中,非线性系统是一个重要的研究对象。
非线性系统具有较复杂的动态行为,与线性系统相比,其稳定性和性能分析更为困难。
在本文中,我们将对非线性系统的知识点进行总结。
1. 静态非线性系统静态非线性系统是最简单的非线性系统,其输出仅与输入的幅值相关。
常见的静态非线性函数有幂函数、指数函数、对数函数等。
分析静态非线性系统时,通常采用泰勒级数展开或者离散化的方法。
2. 动态非线性系统动态非线性系统是具有时间相关性的非线性系统。
其中最基本的形式是非线性微分方程。
在动态非线性系统中,常见的动力学行为有极值、周期、混沌等。
在分析动态非线性系统时,可以采用相位平面分析、Lyapunov稳定性分析等方法。
3. 线性化由于非线性系统分析的困难性,常常采用线性化的方法来近似描述非线性系统的行为。
线性化方法可以将非线性系统在某一操作点上进行线性近似,从而得到一个线性系统。
采用线性化方法时,需要注意选取适当的操作点,以保证线性化模型的准确性。
4. 系统稳定性非线性系统的稳定性是研究非线性系统的重点之一。
与线性系统相比,非线性系统的稳定性分析更为困难。
常用的方法有Lyapunov稳定性分析、输入输出稳定性分析等。
在稳定性分析时,需要考虑非线性系统的各种动力学行为,比如局部极大值点、周期分岔点、混沌行为等。
5. 非线性反馈控制非线性反馈控制是应用最广泛的非线性控制方法之一。
非线性反馈控制利用非线性函数对系统的输出进行修正,以实现系统的稳定性和性能要求。
其中,常见的非线性反馈控制方法有滑模控制、自适应控制、模糊控制等。
6. 非线性系统的鲁棒性鲁棒性是研究非线性系统控制的重要性能指标之一。
鲁棒控制能够保证系统在存在不确定性或者干扰的情况下,仍然保持稳定性和性能要求。
常见的鲁棒控制方法有H∞控制、鲁棒自适应控制等。
7. 非线性系统的最优控制最优控制是针对非线性系统的性能指标进行优化设计的方法。
第7章 非线性系统的分析1.试计算并绘制下列各微分方程的相平面图。
解:(1)求得运用积分法解得相轨迹方程为其相轨迹如图7-1所示。
(2)求得运用积分法解得相轨迹方程为其相轨迹如图7-2所示。
图7-1 系统的相轨迹 图7-2 系统的相轨迹(3)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。
①当α=0时,,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。
②当α→∞时,,表明相轨迹垂直穿过x轴。
③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。
最后根据等倾线作图法可得其概略相轨迹如图7-3所示。
图7-3 系统的概略相轨迹(4)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。
①当α=0时,x=M,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。
②当α→∞时,,表明相轨迹垂直穿过x轴。
③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。
最后根据等倾线作图法可得其概略相轨迹,如图7-4所示。
图7-4 系统的概略相轨迹(5)求得运用积分法可解得相轨迹方程为为一抛物线,其概略相轨迹如图7-5所示。
图7-5 系统的概略相轨迹(6)运用积分法可解得相轨迹方程为其中c为一常数,其相轨迹如图7-6所示。
图7-6 系统的相轨迹2.非线性控制系统结构图如图7-7所示,M =1。
要使系统产生振幅A=4,频率ω=1的自振运动,试确定参数K ,τ的值。
图7-7 系统结构图解:画出和G (jω)曲线如图8.7所示,当K 改变时,只影响自振振幅A ,不改变自振频率ω;而当τ≠0时,会使自振频率降低,幅值增加。
因此可以调节K ,τ大小实现要求的自振运动。
由自振条件N (A )G (jω)=-1即将ω=1代入上式可解得K =9.93,τ=0.322图7-8 和G (jω)曲线3.设继电型控制系统结构如图7-9所示,输入r (t )=R·1(t ),c (0)=0。