比值分析仪-精
- 格式:ppt
- 大小:2.25 MB
- 文档页数:34
880 NSL H2S/SO2 尾气分析仪操作规程一,显示屏提示“MAIN TIMER STOPPED” (2)二,“CELL TEMP/PRESS ALARM” “CELL PRESSURE ALARM ” (2)三,特别在刚开车运行,仪器一进入“SAMPLE CYCLE ”就伴随“LOW LIGHT LEVEL”进入“ZERO CYCLE” (2)四,分析仪已经进入SAMPLE CYCLE 但SO2和H2S浓度%示值均为零。
(2)五,出现EXCESSIVE ZERO ERROR 和 CAL EXCESSIVE ERROR 错误信息 (3)六.出现”LOW LIGHT LEVEL” 光源氙灯不发光或发光频率不规则 (3)七,检查测量气室两个石英窗镜片干净且加热箱两个密封镜片也干净,出现LOW LIGHT LEVEL 报警后进入零气吹扫状态。
(3)八.测量气室温度达不到设定值145C或150C 加热器及温度控制器可以升温但工作不正常分析仪一直处于Zero Cycle。
(4)九.标定时出现效验错误Excessive Cal Error 检查发现四路A,B,C,D标定效验不能与镜片值相同偏差较大。
其他正常。
(4)十.880 比值分析仪光路调整步骤 (4)十一. 880比值仪显示正常但不能升温 (5)十二. 880 NSL H2S/SO2 尾气分析仪开车运行 (5)880尾气分析仪开车条件 (5)880尾气分析仪运行开车 (6)880 NSL H2S/SO2 尾气分析仪常见故障及处理一,显示屏提示“MAIN TIMER STOPPED”控制器时钟被人为终止,请在CONFIG/TEST 菜单下,2级口令进入,选择TIMER 确认ENTER,NOW TIMER IS ON。
即可消除此信息。
二,“CELL TEMP/PRESS ALARM”“CELL PRESSURE ALARM ”此信息提示往往出现在刚刚开车运行阶段,在加热过程中CELL TEMP 还没有达到设定温度范围,即150度+-10度。
硫磺装置硫比值分析仪的在线分析及维护石油化工行业是当前世界经济的主要推动力量,为人民带来生活上的各种便利。
但是长期以来,只注重其发展而忽视了对生态环境的保护,严重危害了生态环境及人们的健康。
为了改善我们的生态环境,世界各国制定了各类环境保护措施,我国也制定了相应的环境保护法律法规。
尤其把COD和SO2的排放指标作为重中之重。
青岛炼化就有国家监测的COD和SO2分析仪。
提高硫磺装置的酸性气体的回收率及提高装置的制硫能力成为环境保护,降低SO2气体排放量的主要举措。
硫磺回收装置主要由脱硫、制硫、尾气回收及污水汽提组成。
炼化企业工艺流程中产生的大量含高浓度H2S的气体经醇胺溶液吸收和富液再生实现脱硫,过程气中的H2S和SO2在催化剂作用下反应生成硫,通过冷凝器分离出液态硫,制成硫磺,即完成制硫过程。
制硫后的尾气经尾气焚烧炉焚烧后排入大气,焚烧炉上安装检测焚烧后的尾气中SO2含量的分析仪,来检测尾气是否达到排放标准。
硫磺回收工艺采用克劳斯部分燃烧法制硫,该方法是使含H2S的酸性气体在燃烧炉内与空气发生不充分燃烧,通过控制配风量使H2S反应后产生的SO2量满足H2S与SO2的体积比无限接近2:1。
即:燃烧炉的主反应:2H2S+O22H2O+S2实际反应步骤为:H2S+3/2O2 SO2+H2O2H2S+SO23/2S2+2H2O转化炉的主反应:2H2S+SO22H2O+3S由上可见H2S和SO2的比例为2:1时,硫的转化率最高。
硫比值分析仪的检测原理有色谱法中的(FPD)火焰光度检测器和紫外光度法,相比较而言,后者简单、高效、响应时间短。
其中阿美泰克公司生产的880-NSL型硫比值分析仪使用最为广泛。
青岛炼化硫磺回收装置使用的即为该型号分析仪。
紫外光度法是基于朗勃-比尔定律的基础上建立的分析方法,由朗勃-比尔定律可知吸光度与待测组分成正比,近紫外光谱区波长在200~400nm之间,常见的紫外光度分析仪有分光型及切光型两种,都是利用测量光路与参比光路的浓度差来计算浓度值。
硫磺回收装置比值分析仪常见故障原因分析与处理摘要:本文以阿美特克公司880-NSL型比值分析仪为例,重点探讨在采用克劳斯反应炉的硫磺回收装置使用中常见故障的原因分析、判断与排除,并针对这些故障进行了归纳分析。
?中国关键词:硫磺回收;比值分析仪;长周期运行?引言:在采用采用克劳斯反应炉的硫磺回收装置中,对反应炉配风比要求很高,因为如果酸性气中的硫化氢全部燃烧将转化为二氧化硫,无法在后续反应器中生成单质硫并进行回收,只有部分硫化氢燃烧时尾气中将同时存在硫化氢和二氧化硫,若燃烧后 H2S 与 SO2 的比率适当(2:1), 则催化转炉能把绝大部分酸气生成S和H2O,为保证达到以上效果需要一种仪器能够实时对尾气中硫化氢和二氧化硫浓度进行分析,为制硫炉配风提供依据。
比值分析仪能够通过测量尾气中H2S 与 SO2 含量并计算出比值,为自动控制配风量提供依据,为硫磺装置必须的重要仪器之一。
1. 阿美特克公司880-NSL型比值分析仪简介AMETEK 880NSL 型尾气分析仪使用光度计分析,持续监视克劳斯尾气中的H2S 与 SO2 含量,分析仪由电脑控制箱,加热箱,光度计组成,包括标准组件的光学系统。
这些部件集成安装公共基板上,整体直接安装在管道上,测量原理主要以贝尔-兰贝特定律,根据H2S 与 SO2对特定波长紫外线的光学吸收来进行浓度检测。
2. 比值分析仪常见故障的原因分析、判断与排除比值分析仪常见故障有分析仪无法进入采样循环、测量值不准、测量滞后、测量的H2S 与 SO2浓度%示值均为零、分析仪标定错误报警、低透光度报警等。
2.1 分析仪无法进入采样循环??2.1.1?现场检查分析仪控制器时钟是否被人为终止,如果被终止将不能进入采样循环,可在CONFIG/TEST 菜单下,2级口令进入,选择TIMER 确认ENTER,启动时钟。
2.1.2?测量池温度没有达到设定温度范围,达到145度(默认设定)+-10度后才能进入采样循环。
Galvanic盖瓦尼克H2S/SO2比值分析仪00加拿大Galvanic H-S/SO-比值分析仪加拿大Galvanic/brimstone公司是一家专业在线分析仪器公司。
公司成立于1993年,拥有多位超过20年硫磺回收装置分析检测经验的技术专家,专门从事克劳斯/超级克劳斯硫磺回收工艺紫外线分析仪的研发、生产及应用。
Brimstone公司研制生产的943TGX型H-S/SO-比值分析仪在全世界范围得到了广泛的应用,并取得广大用户的一致认可。
943TGX型比值分析仪是目前炼油、化工、天然气净化领域克劳斯及超级克劳斯工艺硫磺回收自动控制的理想选择。
加拿大Galvanic H-S/总硫分析仪产品特点:检测量程:0–50ppb to 0–100%精度可达1.5%,重复性优于1%Modbus串口通讯双路独立4–20 mA输出4报警响应时间低于20秒60–90 日纸带寿命可选CO2 检测传感器可选总硫检测选件防爆等级:Class 1, Div 1 GrouDiv 1 Grou主要特点:1、检测原理:紫外光吸收法。
2、检测器:采用先进的2048点CCD光敏检测器技术,分析仪检测精度能达到1%。
3、先进的工业微控技术:分析仪采用微型计算机系统,计算机系统可自动执行所有的运行、维护、自诊断故障处理步骤,包括启动样气流动、分析,在线校准,量程选择,出错检测,区域温度控制及出错自动反吹等功能,同时可进行诊断及设置。
4、专利设计的取样技术:943TGX型分析仪采用专利技术的取样管,将蒸汽伴热和空气冷却结合在一起,与专用的温度传感器结合使用,使硫蒸汽凝结成液态硫后滴回工艺管路。
加拿大Galvanic H-S/总硫分析仪产品特点:检测量程:0–50ppb to 0–100%精度可达1.5%,重复性优于1%Modbus串口通讯双路独立4–20 mA输出4报警响应时间低于20秒60–90 日纸带寿命可选CO2 检测传感器可选总硫检测选件防爆等级:Class 1, Div 1 GrouDiv 1 Grou加拿大Galvanic 903w H-S在线分析仪1、自动校准:频度用户选择2、零点漂移:<0.25%满量程每天(每小时自动清零一次)3、精度:±1.0%满量程4、灵敏度:±1.0%满量程5 重复度:±1.0%满量程6、响应时间:分析仪——瞬间,整个系统——取决于采管线物理指标尺寸:安装在外形尺寸为57”W×41”HX×16”D钢管架上重量:框架上整个系统——约250磅(不包括选伴)设施要求电气:110/220V-单相-50/60HZ -15A仪表风:间歇时<15SCFM 80psi(应用旋风式冷却器为最/大)氮气(零度气):瓶装气,带压力调节加拿大Galvanic公司是一家拥有50年的行业经验的分析仪器公司,总部设在加拿大卡尔加里,专注于硫化氢在线分析仪、总硫分析仪及硫磺回收装置配套比值分析仪的研发、生产和销售。
空燃比分析仪产品简介:空燃比分析仪是一种测量尾气中燃料/空气比值(AFR:air fuel ratio)的高精度测试仪器。
美国ECOTRONS推出的新一代尾气测试仪器ALM-S,可以测量汽油、柴油、压缩天然气、液化石油气、沼气、甲醇、乙醇等燃料燃烧后的尾气排放浓度,实时将空燃比信号反馈到电脑控制单元(ECU),最终达到净化尾气排放、提高燃料的燃烧效率和增强发动机输出功率的目的。
广泛应用于环保部门、汽车摩托车制造厂和汽车维修企业等。
理论上来讲,以化学计量空燃比混合的空气可以和燃料可以正好完全燃烧完毕。
但这实际上无可能发生。
因为实际的缸内燃烧过程极短,以6000转/分的发动机来说,可能只有4-5毫秒(从电火花点火到空气、燃料完全混合即曲轴转角转过约80°时)。
汽车的主要尾气净化装置催化转换器被设计工作在空燃比接近化学计量空燃比的状况下,只有在此范围内尾气才能得到最大限度的净化。
然而,如果在高负荷状态下使用化学计量空燃比,其高温导致混合气爆炸(即爆震现象),产生的高温高压将可能使发动机部件严重损毁。
以此实际上化学计量空燃比只用在低负荷状况下。
在需要大扭矩(高负荷以及起步加速阶段)的情况下,则使用浓混合气(较低的空燃比),以降低燃烧温度(虽然这样效率和排放净化效果较差),防止爆震和汽缸头过热。
我们先介绍一下什么是空燃比:混合比混合比是最常见的一个概述性的词语,用来大概描述燃料和空气混合的比例这一概念。
[编辑]空燃比(AFR)在内燃机中,空燃比是关于混合比最常见的说法。
即燃烧此时空气与燃料的质量比。
汽油的化学计量空燃比大约为14.8,柴油大约为14.3。
[编辑]燃空比(FAR)燃空比这一术语多用于燃气轮机工业。
[编辑]过量空气系数过量空气系数(λ)是指实际空燃比与化学计量空燃比的比值。
即λ=1时为化学计量空燃比,λ<1时为浓混合气,λ>1时为稀混合气。
在知道化学计量空燃比的情况下,过量空气系数和空燃比两者可以互相换算:实际上,由于燃料的组分甚至燃料的种类会改变,即化学计量空燃比会变化,所以过量空气系数这一相对数值比空燃比这一绝对数值有意义。
H2S/SO2比值分析仪的应用李百虎酸性水车间石油化工已成为当今世界经济社会发展的重要推动力量,然而石化行业的发展却对自然环境造成极大的破坏,日益威胁到人类健康和生存空间,如何保护环境和可持续发展是人类面临的共同课题,世界各国都制定了极为严格的环保法规。
我国也制定了《大气污染物综合排放标准》(GB 16297-1997)来限制SO2等大气污染物的排放,并将节能减排作为今后经济社会协调发展的一项长期中心任务,“十一五”期间我国更是将SO2和COD排放量作为减少排放的主要控制指标,而高含硫油的炼制在降低成本的同时也给炼油企业提出了新的挑战,提高硫磺回收装置的酸性气体回收率和制硫能力可有效降低排放到大气中的硫化物含量,对于环境保护和提升企业的经济社会效益至关重要。
1 硫磺回收的工艺原理酸性水装置主要由再生、硫磺回收、尾气处理和酸性水汽提等四部分组成。
来自上游装置的含H2S的干气、液态烃和瓦斯经醇胺溶液吸收和富液再生实现脱硫,分离出的富H2S酸性气与各装置酸性水经污水汽提分离出的酸性气,在脱水除杂后进入燃烧炉燃烧,产生大量硫蒸汽和气态硫化物。
高温过程气经余热炉和冷凝器脱硫后进入转化器,过程气中的H2S和SO2继续在催化剂床中反应生成硫,通过冷凝器分离出液态硫,并制成硫磺,即完成即硫磺回收过程,将剩余过程气加氢还原和冷却吸收后即可实现尾气处理过程,吸收液循环利用,净化后的尾气则经焚烧炉焚烧后排入大气。
在上述流程中,硫磺回收部分是整个装置的核心和关键,它既决定了硫的转化率和回收率,也是排放量达到环保指标的主要因素。
硫磺回收工艺采用改良的克劳斯(claus)部分燃烧法制硫。
该法是使含H2S的酸性气体在燃烧炉内与空气发生不完全燃烧,严格控制配风量,使H2S反应后生成的SO2量满足H2S与SO2的体积(分子)比等于或接近于2∶1,未反应的H2S与产生的SO2在没有催化剂的高温条件下发生反应,生成气态硫单质和水,随后冷凝分离出液体硫磺,脱硫后的过程气加热或与高温气掺和升温后进入催化反应器(即转化器),其中未反应的H2S和SO2在催化剂存在的条件下继续反应,生成气态硫单质和水,转化器生成的硫也经过冷凝后回收。
元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定徐丽;邢蓝田;王鑫;李中平;毛俊丽【摘要】沉积有机质的碳氮稳定同位素值是进行古气候、古环境及生态系统研究不可或缺的主要研究手段,目前碳氮同位素主要利用元素分析仪-同位素比值质谱(EA-IRMS)系统来测定.EA-IRMS测定过程中的反应温度及样品进样量直接影响反应物在测试中的燃烧程度,从而影响测试数据的精度.本文利用EA-IRMS技术,以标准样品为参考,在不同转化温度下测试碳氮同位素值,研究保证测试精度的最佳反应温度条件;同时,通过分析不同含氮量样品的检测限,明确了样品含氮量与最低检测限之间的关系,确定了精确测定氮同位素值的最低进样量.结果表明:反应温度对测试精度有显著影响,在碳同位素测定时,将反应温度设定为900℃或以上时测试精度均能达到±0.2‰;氮同位素测定时,反应温度须设定为950℃时测试精度才能达到±0.3‰.实验得出样品含氮量与检测限之间的线性相关性为R2=0.873,开展氮同位素测定时可根据此关系来判断和控制进样量.%Carbon and nitrogen isotopes are essential tools to study paleoclimate, palaeoenvironment, and ecosystem. At present,carbon and nitrogen isotopes are commonly determined by Elemental Analyzer-Isotope Ratio Mass Spectrometer (EA-IRMS).Reaction temperature and sampling weight directly affect the burning of samples,and thus affect analytical ing EA-IRMS technology and taking standard samples as references,the carbon and nitrogen isotope values were determined at different conversion temperatures to study the optimum reaction temperature,in order to ensure the accuracy of the analysis presented in this paper.At the sametime,by analyzing the detection limits of samples with different nitrogen contents,the relationship between the nitrogen content of the sample and the lowest detection limit was determined and thus the lowest quantity of samples for accurate determination of nitrogen isotopes were also defined.The results show that reaction temperature has a significant effect on analytical precision.Analytical precision of carbon isotope is less than ±0.2‰ when the reaction temperature is either 900℃ or higher than 900℃,but the precision of nitrogen isotope can reach ±0.3‰ only when the reaction temperature is no lower than 950℃.The linear relationship between nitrogen content and detection limit was expressed as R2=0.873 according to the data. According to this relationship,the sample introduction quantity can be determined and controlled when analyzing nitrogen isotope.【期刊名称】《岩矿测试》【年(卷),期】2018(037)001【总页数】6页(P15-20)【关键词】元素分析仪-同位素比值质谱;碳氮同位素比值;反应温度;检测限【作者】徐丽;邢蓝田;王鑫;李中平;毛俊丽【作者单位】中国石油勘探开发研究院西北分院,甘肃兰州730020;甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃兰州730000;中国石油勘探开发研究院西北分院,甘肃兰州730020;甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃兰州730000;甘肃省地质矿产勘查开发局第二地勘院,甘肃兰州730020【正文语种】中文【中图分类】O657.63;O613.71;O613.2近年来元素分析仪-同位素比值质谱(EA-IRMS)系统的快速发展,大大提高了碳、氮、氧、氢等同位素的测定速度。