热加工基本知识
- 格式:ppt
- 大小:4.02 MB
- 文档页数:101
热加工工艺基础热加工工艺是指通过加热材料以改变其物理、化学或机械性质的一种加工方法。
热加工工艺广泛应用于金属、玻璃、塑料等材料的加工过程中,可以实现材料的塑性变形、膨胀、熔化等各种形式的加工目标。
热加工工艺的基础是对材料的加热过程的控制。
在热加工过程中,加热温度、加热时间和加热方式是关键的控制参数。
不同的材料对于这些参数的要求也不同,需要根据具体材料的性质和加工目标来确定最佳的加热条件。
热加工工艺主要包括热压缩、热挤压、热锻造、热拉伸、热压铸等多种方法。
其中,热压缩是将材料置于加热设备中进行加热,然后用模具对材料进行压缩变形的工艺。
热挤压是将加热的材料通过模具挤出,以实现形状的改变。
热锻造是将加热的金属材料放置在压力机上,通过受力变形来改变材料形态和结构的工艺。
热拉伸是将材料在加热的条件下拉伸,使其变形成所需形状。
热压铸是将加热的金属液体注入到模具中,通过压力和冷却来制造零件的工艺。
热加工工艺具有许多优点。
首先,热加工可以改善材料的可变形性能,使其更易于加工。
其次,热加工可以改变材料的组织结构和性能,提高材料的机械强度和耐磨性。
此外,热加工还可以实现对材料的精确控制,使其达到更高的加工精度和表面质量。
然而,热加工工艺也存在一些限制。
首先,由于在加热的过程中会发生材料的晶粒长大和相变等现象,可能会导致材料的变形不均匀性和内部缺陷的产生。
其次,热加工需要大量能源和设备投入,对于环境保护和资源消耗也会带来一定的压力。
因此,在使用热加工工艺时,需要合理设计加热过程,控制加热参数,以避免以上问题的发生。
总之,热加工工艺是一种重要的材料加工方法,可以实现材料形状、性能等多方面的改变。
掌握热加工工艺的基础知识和技术,对于实现高效、精确的材料加工具有重要意义。
热加工工艺是一种重要的材料加工方法,可以通过加热材料来改变其物理、化学或机械性质。
它广泛应用于金属、玻璃、塑料等材料的加工过程中,以实现各种形式的加工目标。
热加工和冷加工基础知识介绍热加工是指在金属加工过程中,通过加热工件使其达到高温状态,以便进行塑性变形和形状改变的方法。
热加工主要包括热轧、热挤压、热锻、热拉伸等多种方法。
热加工的主要特点是:加工温度高、材料塑性好、变形均匀、表面质量较好等。
热加工适用于许多金属材料,如钢、铝和铜等。
热轧是指通过加热和塑性变形使金属块材或板材在高温状态下通过压下辊和工作辊的夹紧作用而被塑性改变形状的一种加工方法。
热轧是常见的金属材料制造的过程,如钢材和铝材等。
它可以生产出具有较高尺寸精度和表面质量的产品。
热挤压是指在高温下将金属材料放入容器中,并通过压力将其推入模具中,从而通过变形改变工件形状的一种加工方法。
热挤压适用于制造金属棒材和管材等产品,常用于铝合金的制造。
热锻是一种将金属加热至塑性变形温度,并通过加大力量进行塑性变形以改变形状的方法。
热锻适用于各种金属材料,可以制造出复杂形状的零件和构件。
热拉伸是一种将金属加热至高温状态,并通过应力和变形改变工件长度和截面积的方法。
热拉伸适用于制造拉伸件、钢筋和线材等产品,常用于金属材料的加工和制造。
与热加工相比,冷加工是将金属材料在室温下进行塑性变形和形状改变的一种加工方法。
冷加工主要包括冷轧、冷挤压、冷锻、冷拉伸等多种方法。
冷加工的主要特点是:加工温度低、能量消耗少、加工表面质量高等。
冷加工适用于制造高精度产品,如汽车零部件、航空零件等。
冷轧是指通过固态变形将金属板材或板坯从辊间通过振动力转变成所需要的形状的过程。
冷轧产生的产品具有高精度和良好的表面质量,常用于制造线材、薄板等产品。
冷挤压是指将金属材料置于模具中,并通过施加压力将其挤压成预定形状的一种加工方法。
冷挤压适用于制造复杂形状的零件和构件,如紧固件、螺栓等。
冷锻是指在常温下将金属材料放入模具中,并通过冲击或压力使其变形和改变形状的一种加工方法。
冷锻适用于制造高强度和高精度的零件和构件,如齿轮、凸轮等。
冷拉伸是一种将金属材料置于特定的装置中,并通过施加拉力使其变形的一种加工方法。
金属工艺学热加工工艺基础引言热加工是指将金属材料在高温条件下进行加工和塑性变形的工艺。
它是金属工艺学中最常用的一种加工方法。
本文将介绍金属工艺学热加工的基础知识和常见工艺,包括热加工的定义、分类、应用领域以及热加工工艺的基本原理和过程。
热加工的定义和分类热加工是指将金属材料在高温条件下进行加工和塑性变形的工艺,通过加热金属材料,使其达到高温状态下的可塑性,从而改变其形状和性能。
热加工可以分为以下几个分类:1.锻造:将金属材料加热至塑性变形温度,在模具的作用下施加压力,使金属材料发生塑性变形,得到所需形状的工艺方法。
2.热轧:将金属坯料加热至塑性变形温度,通过连续轧制的工艺,将金属坯料压制成所需的薄板、条材等形状的工艺方法。
3.热挤压:将金属材料加热至塑性变形温度,在模具作用下施加压力,使金属材料发生塑性变形,得到所需形状的工艺方法。
4.热拉伸:将金属材料加热至塑性变形温度,在拉伸力作用下使其发生塑性变形的工艺方法。
热加工的应用领域热加工在许多领域都有广泛的应用,包括以下几个方面:1.金属制造业:热加工是制造金属制品的主要方法之一,应用于汽车、船舶、机械设备等各个领域。
2.建筑业:热加工在建筑业中主要应用于金属结构件的制造和加工,如桥梁、厂房等。
3.能源行业:热加工在能源行业中用于制造燃烧设备、锅炉等。
4.航空航天业:热加工在航天航空行业中用于制造航空发动机、航天器件等。
热加工工艺的基本原理和过程热加工工艺的基本原理是将金属材料加热至塑性变形温度,使其处于可塑性状态,通过施加力或形变方式,使金属材料发生塑性变形,从而获得所需形状和性能的工艺方法。
热加工工艺的基本过程包括以下几个步骤:1.加热:将金属材料加热至塑性变形温度,通常使用火焰加热、电阻加热等方法。
2.塑性变形:在加热状态下,施加力或形变方式使金属材料发生塑性变形,通常使用压力、拉伸等方法。
3.冷却:经过塑性变形后,将金属材料冷却至室温,使其保持所需形状和性能。
热加工复习资料热加工是指通过加热来改变材料的形状、性能和结构的加工过程。
它是金属加工中常用的一种方法,广泛应用于制造业中。
为了帮助大家更好地复习热加工相关知识,以下是一份详细的复习资料。
一、热加工的定义和基本概念热加工是指通过加热材料,使其达到一定温度,然后进行塑性变形、焊接、热处理等工艺操作的过程。
热加工可以改变材料的形状、性能和结构,提高材料的可加工性和使用性能。
二、热加工的分类1. 热塑性加工:通过加热材料使其达到塑性变形温度,然后进行挤压、拉伸、锻造等工艺操作。
2. 热成形加工:通过加热材料使其达到塑性变形温度,然后进行压力成形、挤压成形等工艺操作。
3. 热焊接:通过加热材料使其达到熔化温度,然后进行焊接操作,将两个或多个材料连接在一起。
4. 热处理:通过加热材料使其达到一定温度,然后进行冷却、退火、淬火等工艺操作,改变材料的组织结构和性能。
三、热加工的工艺过程1. 加热:将材料加热到一定温度,使其达到塑性变形温度或熔化温度。
2. 变形:对材料进行挤压、拉伸、锻造等塑性变形操作,改变材料的形状。
3. 冷却:对材料进行冷却处理,使其恢复到室温状态。
4. 热处理:通过加热和冷却处理,改变材料的组织结构和性能。
5. 检验:对加工后的材料进行检验,检查其形状、尺寸和性能是否符合要求。
四、热加工的设备和工具1. 热处理设备:包括电阻炉、电弧炉、感应炉等,用于加热材料。
2. 压力机:用于进行挤压、拉伸、锻造等塑性变形操作。
3. 焊接设备:包括电弧焊机、气体保护焊机等,用于进行焊接操作。
4. 冷却设备:包括水冷却器、风冷却器等,用于对材料进行冷却处理。
5. 检测设备:包括显微镜、硬度计等,用于对加工后的材料进行检测和检验。
五、热加工的应用领域热加工广泛应用于制造业的各个领域,包括机械制造、汽车制造、航空航天、电子电器、建筑等。
例如,汽车制造中的车身焊接、发动机零部件的热处理,航空航天中的航空发动机制造,电子电器中的电子元器件制造等都离不开热加工技术。
热加工工艺基础缩孔:形成原因:液态收缩和凝固收缩总和大于固态收缩。
形成条件:以逐层凝固方式凝固。
防止措施:采用定向凝固,在厚大部位安放冒口,增设冷铁缩松:形成原因:液态收缩和凝固收缩总和大于固态收缩量形成条件:以糊状凝固方式凝固。
防止措施:尽量使缩松转变为缩孔再定向凝固。
为什么铸件和重要加工面和主要工作面在铸型中应朝下?因为铸件上部凝固速度慢,晶粒较粗大,易形成缩孔,缩松,而且气体,非金属夹杂物密度小,易在铸件上部形成砂眼,气孔等缺陷。
铸件下部晶粒细小,组织致密缺陷少,质量优于上部。
如何选择铸件的浇注位置和铸型的分型面?浇注位置的选择:①铸件的重要加工面和主要工作面应朝下或位于侧面②铸件的大平面应朝下③铸件上面积较大的薄壁部分应处于铸型的下部或处于垂直,倾斜位置④易形成缩孔的铸件,应使截面较厚的部分放在分型面附近的上部或侧面⑤应尽量减少芯子的数量。
分型面的选择①应保证顺利起膜②应使铸型的分型面最少③应尽量使铸件全部或大部分在同一个砂箱内。
机械加工余量:为进行机械加工,铸件比零件增大的一层金属称为机械加工余量。
收缩余量:为补偿铸件收缩,模样比铸件图纸低尺寸增大的数值称为收缩余量。
何为球墨铸铁?有哪些优越性?适用于哪些铸件?①球墨铸铁:将铁液经球化处理,使石墨全部或大部分呈球状而制成的铸铁②优越性:具有较高的综合性能,处理工艺简单,成本低③适用于承受冲击震动的零件,强度与塑性中等的零件,载荷大耐磨受力复杂的零件,高强度耐磨耐疲劳的零件。
灰铸铁,球墨铸铁进行孕育处理的目的是什么?灰铸铁:增加铸铁的结晶晶核数目和细化共晶团或石墨。
球墨铸铁:清楚白口组织,细化石墨使石墨更加均匀。
试比较灰铁件与铸钢件的铸造工艺特点及性能。
①铸钢熔点高,流动性差易产生浇不足②收缩大,易产生变形热裂缩孔缩松等缺陷③氧化吸气严重,易产生气孔夹渣因而铸钢的铸造性能差。
工艺特点①铸件结构设计要合理②合理设置冒口冷铁③保证型砂性能,采用性能好的造型材料。
淬火cuì huǒ淬读"翠"音.钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。
淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织(或贝氏体组织)。
钢淬火工艺最早的应用见于河北易县燕下都遗址出土的战国时代的钢制兵器。
淬火工艺最早的史料记载见于《汉书.王褒传》中的“清水焠其峰”。
“淬火”在专业文献上,人们写的是“淬火”,而读起来又称“蘸火”。
“蘸火”已成为专业口头交流的习用词,但文献中又看不到它的存在。
也就是说,淬火是标准词,人们不读它,“蘸火”是常用词,人们却不写它,这是我国文字中不多见的现象。
淬火是“蘸火”的正词,淬火的古词为蔯火,本义是灭火,引申义是“将高温的物体急速冷却的工艺”。
“蘸火”是冷僻词,属于现代词,是文字改革后出现的产物,“蘸”字本义与淬火无关。
“蘸火”本词为“湛火”,“湛”字读音同“蘸”,而其字形又与水、火有关,符合“水与火合为蔯”之意,字义与“淬火”相通。
“湛火”为本词,“蘸火”则为假借词。
淬火quenching将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。
常用的淬冷介质有盐水、水、矿物油、空气等。
淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。
热加工工艺基础知识引言热加工工艺是一种通过加热和塑造材料以改变其形状和性质的方法。
这种工艺广泛应用于各个行业,如金属加工、塑料加工、陶瓷制造等。
在热加工工艺中,热能被用来增加材料的可塑性,使其容易被塑造成所需的形状。
本文将介绍热加工工艺的基础知识,包括加热方式、热加工过程、热加工设备等。
加热方式热加工过程中最常用的加热方式有以下几种:1.火焰加热:通过燃烧燃料如天然气、煤气等产生的火焰,将热能传递给材料。
火焰加热具有温度范围广、适用于不同材料的优点,常用于金属加热和焊接过程中。
2.电阻加热:通过在材料中通电产生电流,材料的电阻会使电能转化为热能,从而加热材料。
电阻加热适用于各种材料,如金属、塑料等。
3.感应加热:通过将材料置于交变电磁场中,使材料内部的感应电流产生热能。
感应加热具有加热速度快、效率高等优点,常用于金属的加热和熔化。
除了以上几种常见的加热方式,还有其他一些特殊的加热方式,如激光加热、电子束加热等。
热加工过程热加工过程包括以下几个步骤:1.加热:将工件加热到所需温度。
在加热过程中,需要控制加热温度、加热时间以及加热方式等参数,以确保工件达到所需的热处理效果。
2.塑性变形:在工件加热到足够温度后,可以进行塑性变形。
塑性变形包括拉伸、压缩、弯曲、挤压等方式,可用于改变材料的形状和尺寸。
3.冷却:塑性变形后,工件需要进行冷却。
冷却过程中,工件的温度会逐渐降低,使材料恢复原来的硬度和强度。
热加工设备热加工工艺涉及到许多不同的设备和工具,下面介绍几种常用的热加工设备:1.火焰喷灯:用于火焰加热的工具,通常使用燃气和氧气混合产生火焰,可用于焊接、切割和加热金属工件。
2.电炉:用于电阻加热的设备,通过通电使材料加热,可以控制加热温度和时间,适用于各种加热需求。
3.感应加热设备:通过产生交变电磁场使材料加热的设备,常用于金属加热和熔化过程中。
除了以上设备,还有一些辅助设备如温度控制器、加热面具等,用于控制加热过程和保护操作人员的安全。
热加工工艺基础知识热加工工艺是一种通过加热材料来改变其形状、性能或组织结构的方法。
它主要用于金属和热塑性塑料的加工,包括锻造、热轧、热挤压、热拉伸等多种方法。
以下是热加工工艺的一些基础知识:1. 温度控制:热加工工艺需要通过加热材料使其达到特定的温度区间。
不同的材料和加工方法有不同的工作温度范围,因此温度的控制非常重要。
过高或过低的温度都可能会影响加工品质。
2. 热造型:热造型是一种通过加热材料使其变得可塑性,然后通过压力或其他形式的力来改变其形状的方法。
这种方法使用在锻造、热挤压和热拉伸等多种加工过程中。
加热能够使材料的晶格结构变得松弛,从而使其更容易改变形状。
3. 材料的性能改变:热加工工艺可以改变材料的机械性能、物理性质和化学性质。
通过加热和冷却的过程,材料的内部结构和组织会发生变化,从而影响其性能。
例如,通过热处理可以改变金属的硬度、强度和耐腐蚀性。
4. 热循环:热加工过程中,材料经历了多次的加热和冷却循环。
这些循环可以使材料的结构发生变化,从而影响其性能。
一般来说,经过多次热循环的材料更容易加工,因为其晶粒尺寸会变大,从而使材料更容易塑性变形。
5. 材料选择:不同的材料适用于不同的热加工工艺。
某些材料在加热过程中容易氧化或熔化,因此不宜用于高温环境。
此外,材料的成分、结构和硬度也会影响其加工性能和加工后的性能。
综上所述,热加工工艺是一种通过加热材料来改变其形状、性能或组织结构的方法。
它需要控制温度、利用热造型、改变材料的性能,经历多次热循环,并选择适合的材料。
这些基础知识对于理解和应用热加工工艺非常重要。
当涉及到热加工工艺时,有几种常见的方法被广泛应用于金属和热塑性塑料的加工。
首先是锻造。
锻造是一种通过加热金属并施加巨大的压力,以改变其形状的方法。
在锻造过程中,金属材料被加热至其可塑性状态,然后通过冷却和引力来给予材料所需的形状。
锻造可用于制造各种各样的金属制品,包括零件、工具和大型结构等。
材料热加工(材料成型技术)要点总结.doc材料热加工(材料成型技术)要点总结引言材料热加工是材料科学领域中的一个重要分支,它涉及到材料在高温条件下的加工过程,以改善材料的性能和形状。
本文将对材料热加工的基本原理、常见方法、工艺要点以及质量控制等方面进行详细的总结。
材料热加工的基本原理1. 材料的热力学性质在高温条件下,材料的热力学性质会发生变化,如熔点、热膨胀系数、热传导率等。
这些性质的变化直接影响材料的加工过程和最终产品的性能。
2. 材料的力学性能高温下,材料的力学性能也会发生变化,如屈服强度、硬度等。
这些性能的变化需要在热加工过程中予以考虑,以确保加工的顺利进行。
3. 材料的相变在热加工过程中,材料可能会经历相变,如固态到液态的转变。
相变不仅影响材料的形状,还可能影响材料的微观结构和性能。
常见材料热加工方法1. 铸造铸造是一种将熔融金属倒入模具中,冷却凝固后形成所需形状的加工方法。
铸造可以生产出形状复杂、尺寸精确的零件。
2. 锻造锻造是通过锤击或压力机对金属施加外力,使其发生塑性变形的加工方法。
锻造可以提高材料的密实度和力学性能。
3. 轧制轧制是将金属加热至一定温度后,通过轧辊施加压力,使其发生塑性变形的加工方法。
轧制常用于生产板材、管材等。
4. 焊接焊接是通过高温或压力将两种或多种金属材料连接在一起的加工方法。
焊接广泛应用于建筑、制造等行业。
5. 热处理热处理是通过将材料加热至一定温度并保持一定时间,然后以不同速率冷却,以改变材料的微观结构和性能的加工方法。
工艺要点1. 温度控制在热加工过程中,温度的控制至关重要。
过高或过低的温度都会影响材料的加工质量和性能。
2. 加热速率加热速率会影响材料的热应力和微观结构。
适当的加热速率可以减少热应力和热裂纹的产生。
3. 冷却速率冷却速率同样重要,它会影响材料的相变和微观结构。
快速冷却可以产生细小的晶粒,提高材料的强度和韧性。
4. 压力控制在锻造、轧制等加工方法中,压力的控制直接影响材料的变形程度和加工质量。
热加工材料知识点热加工是指通过加热材料并施加力或压力的方式对材料进行塑性变形或切割加工的过程。
热加工材料是指能够在一定温度范围内通过加热而发生塑性变形的材料,包括金属材料和非金属材料。
下面将介绍热加工材料的一些常见知识点。
1.热塑性材料和热固性材料:热塑性材料指在一定温度范围内加热后具有塑性变形能力的材料,例如钢、铝等金属材料。
热固性材料指在一定温度范围内加热后具有固定形状的材料,例如玻璃纤维。
2.热变形机制:热变形指在一定温度范围内加热后材料的塑性变形行为。
热变形机制包括热扩散、显微组织变化和滑移等过程。
热扩散是指材料内部原子或分子在加热下的扩散运动,导致材料的体积膨胀。
显微组织变化是指材料在加热下晶粒尺寸的变化和相变的发生。
滑移是指材料的晶格在加热下发生位错滑移,导致材料的塑性变形。
3.热加工温度范围:不同材料的热加工温度范围不同,一般情况下,金属材料的热加工温度范围介于材料的熔点和固定点之间。
热加工温度的选择需要考虑材料的熔点、塑性变形需求和加工性能等因素。
4.热加工常用工艺:常用的热加工工艺包括热轧、热拉、热挤压、热锻等。
热轧是通过在高温下将金属坯料经过多次轧制来获得所需形状和尺寸的板材。
热拉是指通过在高温下拉伸金属材料来改变其截面积和长度的加工过程。
热挤压是指将金属坯料加热至一定温度后,在压力作用下通过模具来压制成所需形状的加工过程。
热锻是指通过将金属坯料加热至一定温度下,在锻模的作用下施加压力对材料进行塑性变形的加工过程。
5.热加工的应用领域:热加工广泛应用于制造业各个领域,例如汽车制造、航空航天、能源等。
热加工可以改变材料的形状、尺寸和性能,满足不同领域对材料性能的要求。
总之,热加工材料的知识点包括热塑性材料和热固性材料、热变形机制、热加工温度范围、热加工常用工艺和热加工的应用领域。
了解这些知识点可以帮助人们更好地理解和应用热加工技术。