- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (z) lim f (z z) f (z)
z0
z
[u( x x, y) iv( x x, y)] [u( x, y) iv( x, y)]
lim
x0
x
lim u( x x, y) u( x, y) i lim v( x x, y) v( x, y)
x0
x
x0
x
u i v x x
z 0
z
x x
定理2 函数f (z)=u(x, y)+iv(x, y)在D内解析充要 条件是 u(x, y) 和 v(x, y)在D内可微,且 满足Cauchy-Riemann方程
u v v u x y x y
由此可以看出可导函数的实部与虚部有密切的 联系.当一个函数可导时,仅由其实部或虚部就可以 求出导数来.
定理1 设 f (z) = u (x, y) + iv(x, y)在 D 内有定义, 则 f (z)在点 z=x+iy ∈D处可导的充要条件是 u(x, y) 和 v(x, y) 在点 (x, y ) 可微,且满足 Cauchy-Riemann方程 u v v u x y x y
上述条件满足时,有
f '(z) ux ivx ux iuy v y iuy v y ivx
证明 "" (由f (z)的可导C-R方程满足上面已证!只须证
f (z)的可导 函数 u(x, y)、v(x, y)可微)。
∵函数 w =f (z)点 z可导,即
f '(z) lim f (z z) f (z)
若沿平行于虚轴的方式z z z(x 0)
f (z) lim f (z z) f (z)
z0
z
lim [u( x, y y) iv( x, y y)] [u( x, y) iv( x, y)]
y0
iy
u( x, y y) u( x, y)
v(x, y y) v(x, y)
(
u x
i
v x
)x
(
u y
i
v y
)y
(
1
i
3
)x
(
2
i
4
)y
由C R方
程
(
u x
i
v x
)z
(
1
i
3
)x
(
2
i
4
)y
f (z z) z
f
(z)
u z
i
u x
(1
i 3 )
x z
( 2
i
4
)
y z
| x | 1, z
|
y z
|
1
x z
( 1
i 3 )
0
f (z) lim f (z z) f (z) u i v
利用该定理可以判断那些函数是不可导的.
使用时: i) 判别 u(x, y),v (x, y) 偏导数的连续性,
ii) 验证C-R条件.
iii) 求导数:
f '(z) u i v 1 u v x x i y y
前面我们常把复变函数看成是两个实函数拼成 的, 但是求复变函数的导数时要注意, 并不是两个实 函数分别关于x,y求导简单拼凑成的.
第三讲 解析函数的充要条件 初等函数
§2.2 解析函数的充要条件
1. 解析函数的充要条件 2. 举例
如果复变函数 w = f (z) = u(x, y) + iv(x, y)在定 义域 D内处处可导,则函数 w = f (z) 在 D内解析。
问题 如何判断函数的解析性呢?
本节从函数 u (x , y) 及 v (x , y) 的可导性,探求 函数w=f (z) 的可导性,从而给出判别函数解析的 一个充分必要条件,并给出解析函数的求导方法。
解(2)∵ f (z)=ex(cosy +isiny) 则 u=excosy, v= exsiny
u e x cos y x v e x sin y x
u e x sin y u v
y v
e x cos y
x y v u
y
x y
故 f (z) e x (cos y i sin y)在全平 面可导,解析。
z0
z
设 (z) f (z z) f (z) f '(z)
z
则 f (z+ Δz)-f(z)=f (z)Δz+(Δz)Δz (1), 且
lim (z) 0
z0
令:f (z+Δz) f (z)=Δu+iΔv,f (z)= a+ib, (Δz)=1+i2 故(1)式可写为
Δu+iΔv = (a+ib)(Δx+iΔy)+(1+i2)(Δx+iΔy) =(aΔx-bΔy+1Δx2Δy)
""(由函数u(x,y) ,v (x,y)在点(x,y)处可微及满足
C-R方程 f (z)在点z=x+iy处可导)
∵u(x,y),v(x,y)在(x,y)点可微,即:
u
u x
x
u y
y
1x
2y
v
v x
x
v y
y
3x
4y
其
中lim x0
ቤተ መጻሕፍቲ ባይዱ
k
0, (
k
1,2,3,4)
y0
f (z z) f (z) u iv
一. 解析函数的充要条件
设函数w f (z) u( x, y) iv( x, y)在点 z x iy可导,则
f (z z) f (z) z
[u( x x, y y) iv( x x, y y)] [u( x, y) iv( x, y)] x iy
若沿平行于实轴的方式z z z(y 0)
lim
i lim
y0
iy
y0
iy
1 u v v i u i y y y y
f '(z)存 在 u i v v i u
x x y y u v v u
x y x y
定义 方程
记忆
u u x y v v x y
u v v u x y x y
称为Cauchy-Riemann方程(简称C-R方程).
+i(bΔx+aΔy+2Δx+1Δy)
因此 Δu=aΔxbΔy+1Δx2Δy , Δv=bΔx+aΔy+2Δx1Δy
lim (z) 0 z0
lim
x 0
1
lim
x 0
2
0
y0
y0
lim 1x 2y 0 lim 2x 1y 0
x 0
z
x 0
z
y 0
y 0
所以u(x, y),v(x, y)在点(x, y)处可微.
二. 举例
例1 判定下列函数在何处可导,在何处解析:
(1)w z; (2) f (z) ex (cos y i sin y);(3)w z 2
解 (1) 设z=x+iy w=x-iy u=x, v= -y 则
u 1 x v 0 x
u 0
y v
1
u x
v y
y
故 w z在全 平面 不可导 ,不解析 。