张力控制的目的就是保持线
- 格式:doc
- 大小:49.50 KB
- 文档页数:22
张力控制原理
张力控制原理是一种常用于控制系统中的原理,通过对控制对象的张力进行测量和调节,实现对系统的稳定控制。
张力控制原理广泛应用于纺织、印刷、包装、造纸等行业中的连续生产线中,以确保产品在生产过程中的牵引力、张力等参数控制在合适的范围内。
张力控制原理的基本思想是通过传感器对物体的张力进行实时测量,将测量结果反馈给控制器,再根据设定的控制算法进行调节,以实现对张力的精确控制。
其中的关键是如何准确地测量物体的张力。
常见的测量方法包括压力传感器、应变测量、光电传感器等。
在控制系统中,控制器根据测量到的张力数值与设定值之间的差异,通过控制执行机构的工作状态来调节张力,使其趋近或保持在设定值范围内。
控制器通常采用PID控制算法,即按照比例、积分、微分三个因素对误差进行调节。
这样可以快速响应、稳定控制系统,保证生产线的正常运行。
除了控制算法外,张力控制原理还需要配备合适的执行机构和传动装置。
常见的执行机构有电机、气缸等,通过调节工作状态来改变物体的张力。
而传动装置则用于将执行机构的动力传递给受控对象,主要包括传动带、链条、轮轴等。
在实际应用中,张力控制原理需要根据具体的控制对象和工作环境进行参数调整和优化。
同时,还需要考虑到系统的响应速度、稳定性、负载变化、环境扰动等因素,以保证控制效果和
系统性能的优良。
综上所述,张力控制原理是一种用于控制系统中的重要原理,通过测量和调节张力,实现对系统的稳定控制,并被广泛应用于众多行业中的连续生产线。
储纱器储线原理-回复标题:储纱器储线原理详解一、引言储纱器,作为一种在纺织工业中广泛应用的设备,其主要功能是储存和供应纱线,保证生产过程的连续性和稳定性。
理解储纱器的储线原理,对于优化生产流程,提高生产效率,以及解决可能出现的问题具有重要的意义。
本文将详细解析储纱器的储线原理,从基本结构、工作流程到影响因素,逐步进行解答。
二、储纱器的基本结构储纱器通常由主体框架、储纱盘、驱动装置、张力控制装置和导纱装置等部分组成。
1. 主体框架:是储纱器的基础支撑结构,承受整个设备的重量和运行时产生的各种力。
2. 储纱盘:是储纱器的核心部分,用于储存纱线。
储纱盘的设计和材质直接影响纱线的储存效果和设备的使用寿命。
3. 驱动装置:负责提供储纱盘旋转的动力,通常包括电机、传动带或齿轮等部件。
4. 张力控制装置:用于调节纱线的张力,确保纱线在输送过程中的稳定性和一致性。
5. 导纱装置:引导纱线进入和离开储纱器,防止纱线在输送过程中发生混乱或断裂。
三、储纱器的储线原理储纱器的储线原理主要涉及到纱线的卷绕、释放和张力控制三个环节。
1. 纱线的卷绕:当纱线从上游设备(如纺纱机)输送到储纱器时,通过驱动装置带动储纱盘旋转,纱线在储纱盘上按照一定的规律进行卷绕。
卷绕的方式主要有平行卷绕和交叉卷绕两种,具体方式取决于纱线的特性、储纱器的设计和生产需求。
2. 纱线的释放:当需要使用纱线时,储纱盘在驱动装置的带动下反向旋转,使纱线按照卷绕的相反顺序逐渐释放出来。
为了保证纱线的连续性和稳定性,释放速度应与卷绕速度相匹配,并通过张力控制装置进行调节。
3. 纱线的张力控制:张力控制是储纱器储线原理中的关键环节。
过大的张力可能导致纱线断裂,过小的张力则可能使纱线松散或产生波浪状。
张力控制装置通过感应纱线的张力变化,自动调整驱动装置的速度或改变纱线的路径长度,以维持纱线的恒定张力。
四、影响储纱器储线效果的因素1. 设备设计:储纱器的结构设计、储纱盘的形状和材质、驱动装置的性能等因素都会影响纱线的卷绕和释放效果。
收放卷张力控制定义及应用收放卷张力控制定义及应用张力控制是指能够持久地控制原料在设备上输送时的张力的能力。
这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。
即使在紧急停车情况下,也应有能力保证被分切物不破损。
张力控制的稳定与否直接关系到分切产品的质量。
若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。
张力控制系统主要应用于对带材和线材生产线中的卷取机和开卷机的控制。
例如,为了提高产品质量,使所卷带材表面平整、厚度均匀和带卷紧而且齐,必须对卷取机(或开卷机)和压延机之间的张力进行控制,使之恒定。
控制张力的方法分为间接法和直接法两类。
间接法又可采用两种方式:一种是在保持驱动电动机的电枢电流恒定的条件下,通过调节使电动机的磁通量随带卷(或线卷)直径成比例地变化,维持张力的恒定;另一种方式是调节电动机电枢电压,使电枢电流随带卷直径成比例变化来保持张力恒定。
直接法是对张力的直接反馈控制。
用张力计测量实际的张力值,作为反馈信号,以控制张力恒定。
直接法的优点是控制系统简单,可避免卷径变化、速度变化和空载转矩等对张力的影响,精度较高。
缺点是张力计的响应速度较慢。
在实际工业生产中,间接法远比直接法应用为广。
所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。
反应到电机轴即能控制电机的输出转距。
真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。
而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。
肯定会影响生产出产品的质量。
闭环式全自动张力控制是由张力传感器直接测定料带的实际张力值,然后把张力数据转换成张力信号反馈回张力控制器,通过此信号与控制器预先设定的张力值对比,计算出控制信号,自动控制执行单元则使实际张力值与预设张力值相等,以达到张力稳定目的。
张力控制原理教程张力控制是一种常见的控制原理,广泛应用于工业生产中的张力控制设备。
本文将介绍张力控制原理的基本概念、应用领域以及实现方法等内容。
一、张力控制的基本概念张力控制是指通过对拉伸或收缩的材料施加力,使材料保持一定的张力水平。
张力控制的目的是确保材料在生产过程中的稳定运行,避免材料过松或过紧引起的问题。
二、张力控制的应用领域1.包装行业:在印刷、涂覆、贴合等过程中,需要对卷材进行张力控制,以确保产品质量和生产效率。
2.纺织行业:在纺纱、织造、印染等过程中,需要对纱线、织物进行张力控制,以避免出现断纱、断经等问题。
3.金属加工行业:在连续拉拔、连续铸轧、连续热轧等过程中,需要对金属带材进行张力控制,以保证产品的尺寸精度和表面质量。
4.纸张行业:在造纸、印刷等过程中,需要对纸张进行张力控制,以避免出现张力差、翘曲等问题。
5.电子行业:在印刷电路板、光纤制造等过程中,需要对薄膜、线材进行张力控制,以确保产品的可靠性和稳定性。
三、张力控制的实现方法1.传统方法:传统的张力控制方法主要通过机械装置来实现,如张力滚轮、张力锥轮等。
这些装置通过控制滚轮之间的接触压力来调节张力,但存在精度低、响应慢等缺点。
2.电气控制方法:电气控制方法通过检测材料的张力信号,并通过电动机或气缸等执行器来调节张力。
这种方法的优点是精度高、响应快,可实现自动化控制。
常见的电气控制方法包括PID控制、动态张力控制等。
3.光电控制方法:光电控制方法通过光电传感器检测材料的张力变化,并通过控制光源的亮度来调节张力。
这种方法可以较好地适应各种材料的张力控制,但对环境光线干扰比较敏感。
四、张力控制的关键技术1.传感器技术:张力传感器能够测量材料的张力,并将其转化为电信号。
关键是选用合适的传感器,如压电传感器、应变传感器等。
2.控制算法:张力控制的核心是控制算法,常见的控制算法有PID控制、神经网络控制等。
根据实际需求选择合适的控制算法,以实现稳定的张力控制。
绪论随着科学技术的不断进展,工业生产的自动化程度不断地提高,微处置器、运算机和数字通信技术的应用愈来愈普遍。
工业自动化的主要支柱之一——PLC 在工业生产上具有普遍的应用,如造纸业、纺织业、橡皮业、薄膜加工业等等。
而PLC张力控制在上述工业中具有关键的作用。
在一般的造纸厂、印刷厂、纺织漂染厂、食物厂等,当处置一些如纸张、薄片、丝、布等长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,因此,放料作业的张力控制,便成为通用的基础技术。
张力控制的作用就是在料膜动态处置进程中,维持恒定的张力,抑制外来干扰引发的张力抖动。
以料膜为例,在放卷,收卷和供料进程中,料膜上要维持必然的张力(或称之为拉伸力),过大的张力会致使料膜变形乃至短裂,而过小的张力又会使料膜松弛,致使褶皱,或处置尺寸不准等弊病。
如此就要求在料膜的处置进程,要维持恒定的张力。
张力控制的作用就是在料膜动态处置进程中,维持恒定的张力,抑制外来干扰引发的张力抖动。
本设计利用了伺服电机,三菱变频器、普通电机、西门子可编程控制器(PLC)、角度传感器。
项目中对两部份张力控制所选用的电机不同,是因为考虑到了生产本钱的因素。
在卷膜传送部份,需要的控制要求高,因此选用在性能好但价钱高的伺服电机,而在卷纸回收部份,需要的控制要求比较低,因此选用了廉价但能知足生产要求的普通电机。
设计中的张力控制系统,在利用传感器上选择了角度传感器。
通过对传送卷膜、卷纸的可动辊与水平面的夹角的测量,来判断张力大小是不是发生转变。
把检测出转角的模拟量送入控制器——PLC中进行控制。
第一章:张力控制系统的初步熟悉张力控制系统概述1.1.1 张力控制在一般的造纸厂、印刷厂、纺织漂染厂、食物厂等当处置一些如塑料膜卷、纸张、薄片、丝、布长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,因此,放料作业的张力控制,便成为通用的基础技术。
以料膜为例,在放卷,收卷和供料进程中,料膜上要维持必然的张力(或称之为拉伸力),过大的张力会致使料膜变形乃至短裂,而过小的张力又会使料膜松弛,致使褶皱,或处置尺寸不准等弊病。
电力架设张力机的作用嘿,朋友!您知道电力架设张力机是啥不?这玩意儿在电力建设中那可是相当重要啊!咱先来说说,电力线路得架设吧,那长长的电线要从这头拉到那头,要是没有张力机帮忙,那可真是乱套啦!您想想,要是靠人力去拉那些又粗又重的电线,能拉得动吗?张力机就像是一位大力士,稳稳地控制着电线的张力。
它能让电线在空中保持合适的松紧度,既不会松松垮垮掉下来,也不会绷得太紧断掉。
这就好比咱们拉橡皮筋,拉得太松没弹性,拉得太紧又容易断,得有个恰到好处的力度,而张力机就是那个把握力度的高手!它在电力架设中起到的作用,那可真是数都数不完。
比如说,遇到跨越山川河流、高速公路这样的复杂地形,张力机就能大显身手啦。
它能保证电线顺利跨越这些障碍,不会被卡住或者碰到其他东西。
要是没有它,电线说不定就缠成一团乱麻,那场面,简直不敢想!再比如说,在架设长距离的电力线路时,张力机能够确保电线的张力均匀分布。
这就好比咱们跑步,步伐均匀才能跑得稳、跑得远。
电线也是一样,张力均匀了,才能保证电力传输的稳定和安全。
而且啊,张力机还能提高施工效率呢!以前没有它的时候,工人们得费好大的劲儿才能把电线架好,现在有了它,工作变得轻松多啦,进度也快了不少。
这就像有了一辆好车,能让咱们更快地到达目的地,是不是?您可能会问啦,那张力机是怎么做到这些的呢?其实啊,它内部有一系列复杂但精妙的装置和控制系统。
这些装置就像是一群聪明的小精灵,密切配合,共同完成控制张力的任务。
总之,电力架设张力机就是电力建设中的大功臣,没有它,咱们的电力线路可就没法顺利架设,咱们的生活也会受到很大的影响。
您说,它是不是特别重要?所以啊,咱们得好好感谢这个默默无闻但功劳巨大的“大力士”!。
张力控制系统原理
张力控制系统原理指的是通过对物体施加合适的张力,实现对物体运动过程中张力的准确控制的一种系统机制。
该机制经常应用于各种需要保持物体线形平稳、防止松弛或过紧的应用场景,比如纺织品生产、电线电缆生产、印刷机械、包装机械等。
张力控制系统的基本原理是通过对张力的测量和反馈控制来实现。
通常,该系统由传感器、控制器和执行器组成。
传感器用于测量物体上的张力,将其转换为电信号后传送给控制器。
控制器根据测量得到的张力信号与设定的目标张力进行比较,计算出误差,并通过调节执行器实时调整张力,使其趋近于目标张力。
为了实现有效的张力控制,系统需要考虑到多种因素。
首先,它需要精确测量张力,并将其转换为电信号。
传感器选择要考虑到测量范围、精度和稳定性等因素,以保证准确性。
其次,控制器需要具备高精度和高速度的运算能力,能够根据测量值和目标值计算出误差,并迅速调整执行器以实现即时控制。
最后,执行器应具备良好的响应能力和可调整性,能够快速且准确地调整物体的张力。
在实际应用中,张力控制系统需要根据具体的应用场景进行调整和优化。
例如,在纺织品生产中,张力控制系统需要考虑到织物的材质、宽度、速度等因素,并通过调整辊筒的张力和速度来实现对织物的准确控制。
在印刷机械中,系统需要根据印刷材料的特性和印刷速度等因素,合理控制张力,以确保印刷品的质量和稳定性。
总之,张力控制系统原理是通过测量和反馈控制,准确调整物体的张力,实现对物体线形平稳、防止松弛或过紧的控制机制。
它在各种行业中有着广泛的应用,并需要根据具体场景进行定制和优化,以满足不同的需求。
张力控制器原理张力控制器是一种用于控制张力的装置,广泛应用于纺织、印刷、包装等行业中的生产线。
它的主要原理是通过感应张力信号,并通过控制系统对张力进行实时调节,以确保生产线上的物料保持稳定的张力状态。
我们来了解一下张力的概念。
张力是指物体受到的拉力或拉伸力,是一个物体内部各点相互作用的结果。
在生产线上,物料在传送过程中会受到张力的作用,如果张力不稳定,会导致物料的变形、断裂或产生皱纹,从而影响生产线的正常运行和产品的质量。
张力控制器的原理是基于张力传感器和控制系统的配合工作。
张力传感器通常安装在生产线上的张力滚筒或张力辊上,通过测量滚筒上物料的张力信号来实时监测张力的变化情况。
张力传感器将测量到的张力信号转化为电信号,并传送给控制系统。
控制系统是张力控制器的核心部分,它接收来自张力传感器的信号,并根据预设的张力设定值进行比较和计算。
控制系统通过调节驱动装置(如电机或气缸)的输出信号来改变滚筒的转动速度,从而调节物料的张力。
当测量到的张力信号与设定值有偏差时,控制系统会根据一定的算法进行计算和调整,使滚筒上物料的张力保持在预设范围内。
在实际应用中,张力控制器还可以根据不同的物料特性和生产需求进行参数设置。
例如,对于薄膜类物料,由于其本身的柔软性,需要较小的张力控制范围;而对于纸张类物料,由于其较大的刚性,需要较大的张力控制范围。
因此,根据不同的物料特性,可以通过调整张力设定值和控制算法来实现最佳的张力控制效果。
张力控制器的应用可以提高生产线的稳定性和效率,减少物料的浪费和损坏。
例如,在印刷行业中,张力控制器可以保证印刷机上的印刷纸张在传送过程中保持稳定的张力,从而避免纸张的变形和印刷质量的下降。
在包装行业中,张力控制器可以确保包装材料在封装过程中的张力恒定,避免包装袋的破裂和产品的损坏。
张力控制器是一种通过感应张力信号并实时调节的装置,可以保持生产线上物料的稳定张力状态。
它的原理是基于张力传感器和控制系统的配合工作,通过调节驱动装置的输出信号来改变滚筒的转动速度,从而实现对张力的调控。
张力控制方案恒张力控制实现的几种方案在日常工作中,我们经常遇到张力控制问题,张力控制得好坏直接影响着产品的质量,由于张力控制的多样性及复杂性,选用一套合理经济实用的张力控制系统是企业采购设备前所要考虑的首要条件。
下面我列举几中常见的张力方式供大家参考。
一、力矩电机及驱动控制器1、性能:张力控制不稳定,线性不好。
2、经济性:设备简单,价格便宜,可正反转。
3、适用于张力精度要求不高的场合。
如:电线、电缆。
二、磁粉制动器/磁粉离合器张力控制1、经济性:电气省不了钱,机械也费钱,同样需要调速单元(如变频器、直流调速器)及张力控制仪。
2、精度差:线性不够好,控制的卷径变化范围不大。
(特别是在大负荷或高速时张力精度不够);3、故障率高,维护费用高(经常要更换磁粉),磁粉制动器/磁粉离合器的可靠性差,发热严重功率大的还需水冷等。
4、性能:张力稳定性比力矩电机稍强,张力及速度可调。
适用范围比力矩电机广。
三、舞蹈棍控制器1、性能:张力控制平稳,有张力贮能功能、张力调节麻烦。
2、电气调速单元要求响应快,机械设备较复杂、局限于线材不适合于片材。
如:光纤,光缆。
四、直接张力闭环控制1、性能:张力控制平稳,电气调速单元要求响应快,张力可视,系统容易振荡。
2、电气设备复杂,需要调速单元、张力控制仪及张力传感器,设备初投资大,价格贵。
3、性能价格比不高,不适用于大张力控制场合。
2.1 控制电机的不同选择由上面的系统图可以看出,当收线控制电机旋转速度不变时,光纤缠绕到收线管上的线速度基本保持不变,而且光纤上允许的张力在80g~300g之间,此时,只要控制张力控电机的转速,使放线时的线速度与收线时的线速度达到平衡,就可以保证两轴之间光纤上的张力在一个很小的范围之内。
为了达到这样的目的,选择适合的张力控制电机是首要解决的问题。
2.2 张力检测的不同选择同时,为了方便于对光纤上张力的检测,合理的选择和放置三个滑轮也是张力控制中重要的部分。
张力纠偏控制
张力纠偏控制是一种用于调节连续生产线上张力的控制方法。
在连续生产过程中,例如纺织、印刷、涂覆等行业中,张力的稳定性对于生产线的正常运行至关重要。
张力纠偏控制的目的是使生产线上的张力始终保持在设定的目标值范围内,以确保产品的质量和生产效率。
以下是张力纠偏控制的基本原理和方法:
1. 张力检测:在生产线上设置张力检测装置,通过传感器或称重传感器等设备实时监测张力的变化,将检测到的张力信号传输给控制系统。
2. 控制系统:控制系统接收张力检测装置传来的张力信号,与设定的目标值进行比较,并根据差异调节生产线上的张力。
3. 调节装置:根据控制系统的指令,通过调节装置(如张力辊、张力调节器等)调节生产线上的张力,使其逐渐趋向目标值。
4. 反馈控制:控制系统实时监测生产线上张力的变化,并根据实际情况不断调节调节装置,以实现张力的稳定控制。
如果张力偏离目标值,控制系统会及时采取措施进行纠偏。
5. 闭环控制:张力纠偏控制通常采用闭环控制系统,即根据实际张力信号与设定目标值之间的差异进行调节,实现张力的精确控制。
张力纠偏控制的优点是能够实现生产线上张力的快速、精确调节,提高生产效率和产品质量。
通过实时监测和调节,可以避免生产过程中的张力不稳定现象,减少生产线上的浪费和损失。
1 / 1。
输电线路架线施工中的张力放线技术随着现代工程技术的不断发展,越来越多的输电线路在我国得到建设,电力线路的安全稳定运行至关重要,而张力放线技术作为电力线路施工中不可或缺的一环,对于保证电力线路在使用过程中的稳定运行具有非常重要的意义。
张力放线技术就是在整个电力线路的施工过程中,对导线的张力进行调整和控制的技术,它的主要目的是保持线路稳定,抵御外力干扰,保证输电线路的正常运行。
具体包括钢索调节、张力控制、截面降温和挂弧的等环节。
首先,钢索调节。
钢绞线作为连接塔架和悬垂塔架的关键部件,其受力情况直接影响线路的整体结构,所以它们的张力一定要调整得准确合理。
具体操作由钢绞线张力调整器来完成,其可以通过加装或释放挂钩来实现张力的调节,使各组钢绞线张力平衡、合理。
这样,不仅能够保证单位长度内的钢绞线拉力均匀,还能够避免塔架因整体偏斜而产生的倾覆危险。
其次是张力控制。
在施工过程中,由于气温、湿度、钢丝绳弹性等因素的影响,导线张力难以精确掌控,因此,在放线过程中要通过逆张拉控制器来调节张力,保证每户导线的张力均匀且精确。
同时在高温季节还要注意截面降温的问题。
在夏季高温时,电线的温度会急剧上升,随之而来电流也将随之趋大,而电流越大,电力系统的稳定性越差,甚至可能导致断路的危险。
为了避免这种情况的发生,在工程实践中,往往会采用水上降温等传统方法来实现导线截面的降温,保证线路的稳定运行。
最后就是挂弧的安装。
所谓“挂弧”,就是在导线上方预留一定的空间,使其能够兼顾线路的自然形变和外力干扰,保证线路的稳定性。
具体操作是在导线中间以一定距离的间隔安装“挂弧”支架,这样一方面可以承受外力的作用,避免导线出现过度缠绕,另一方面能够形成一定的弧度,使导线能够自然形变,从而维护电力线路的稳定运行。
总之,张力放线技术是电力线路建设中不可或缺的一环,只有通过科学合理的操作,才能够保证电力线路在稳定运行的前提下,更好地服务于社会和人民群众的生产生活,实现电力事业可持续发展的目标。
张力的控制原理
张力的控制原理是一种常用于机械系统中的控制方法。
该原理的基本思想是通过对张力的测量和调整,控制系统中的张力保持在预设的范围内。
在机械系统中,张力的控制非常重要,因为不同的物体和材料都有其特定的张力要求。
例如,在纺织工业中,纱线、绳索等材料的张力需要保持在一定的范围内,以确保产品质量和生产效率。
张力的控制原理可以通过以下步骤来实现:
1. 张力的测量:在系统中安装张力传感器或张力计,用于实时测量张力的大小。
张力传感器可以根据不同的应用需求选择,例如压力传感器、应变传感器等。
2. 控制信号的生成:根据测量到的张力数值和设定的目标值,控制系统生成相应的控制信号。
控制信号可以是电气信号、气压信号等,用于驱动执行元件。
3. 执行元件的控制:根据控制信号,控制系统调整执行元件(例如电机、气缸等)的工作状态,以实现张力的调整。
根据系统的具体要求,可以采用不同的控制策略,如PID控制、模糊控制等。
4. 反馈控制:在实际应用中,通常需要采用反馈控制来实现张力的稳定控制。
通过不断地比较实际测量的张力值与设定的目
标值,控制系统可以对控制信号进行调整,使张力保持在合适的范围内。
通过以上步骤,张力的控制原理可以实现对机械系统中张力的精确控制。
这种控制方法在许多工业领域中都得到广泛应用,如纺织、印刷、包装等。
张力控制方法一.控制原理下图是PV800H 所用的钢丝线走线原理图,从右侧放线电机4——> 右侧排线电机6——>通过导论到张力调节电机8——>主辊电机1主辊电机2——>通过导论到张力调节电机7——> 左侧收线侧排线电机5——>左侧收线电机1张力控制基本方案, 电机1,电机2,电机3,电机4伺服工作在速度模式。
电机7,电机8工作在扭矩模式。
电机2,电机5,电机6,工作在位置模式 保持电机1,电机2所带的主辊和电机4,电机3收放线电机的线速度一致。
当线速度绝对一致的情况下张力控制电机7电机8保持抱匝不动,则钢线上的张力T 为0。
假设线速度一致:通过张力调节电机施加一个扭矩M 通过力臂L 转换到导轮上的力就是线的张力T 。
(忽略摩擦力、导轮的大小、摆杆的重量和电机自身的惯量),设作用在滚轮3上的力F 。
L=0.3m (测量得) M=0~30nm (电机输出扭矩)则F=M/L=0~100(n )(力矩:力臂(L)和力(F )的叉乘(M)。
物理学上指使物体转动的力乘以到转轴的距离) 作用在线上的张力T=F/2=0~50(n )计算所得数据和PV800H 所查询的钢线扭矩可设定的范围0~50n 吻合。
FANUC 系统参数查看电机7电机8也工作在扭矩控制模式下。
可以肯定PV800H 是用这个控制方式。
以上是假设线速度一致,张力控制的精度就取决于伺服电机输出的扭矩精度(需要咨询张力检测4张力检测2张力检测1 张力检测3伺服厂家)。
但实际上线速度不可能控制到完全的一致,由于左右收放线桶通过绕线其外径会随时变化。
也就是说收放电机需要跟随外径的变化而变化。
此时如何控制其线速度的统一。
1.通过张力伺服电机的绝对值编码器反馈张力摆杆的实时位置,调整收放线电机的速度。
右侧放线侧:当摆杆往左摆动时,张力过大,电机4线速度太慢。
当摆杆往右摆动时,张力过小,电机4线速度过快。
左侧收线侧:当摆杆往左摆动时,张力过大,电机3线速度太快。
在这种模式下,无需张力检测反馈装置,就可以获得更为稳定的张力控制效果,结构简洁,效果较好。
但变频器需工作在闭环矢量控制方式,必须安装测速电机或编码器,以便对电机的转速做精确测量反馈。
转矩的计算公式如下:T=(F×D)/(2×i)其中:T变频器输出转矩指令F张力设定指令i机械传动比D卷筒的卷径电机的转矩被计算出来后,用来控制变频器的电流环,这样就可以控制电机的输出转矩。
控制电机的输出转矩。
控制电机的输出转矩所以转矩计算非常重要。
这种控制多用在对张力精度要求不高的场合,在我鑫科公司就有广泛的应用。
如精带公司的脱脂机、气垫炉的收卷控制中都采用了这中控制模式。
二、转矩模式下转矩模式下的张力开环控制张力闭环控制是在张力开环控制的基础上增加了张力反馈闭环调节。
通过张力检测装置反馈张力信号与张力设定值构成PID闭环调节,调整变频器输出转矩指令,这样可以获得更高的张力控制精度。
其张力计算与开环控制相同。
不论采用张力开环模式还是闭环模式,在系统加、减速的过程中,需要提供额外的转矩用于克服整个系统的转动惯量。
如果不加补偿,将出现收卷过程加速时张力偏小,减速时张力偏大,放卷过程加速时张力偏大,减速时张力偏小的现象。
这种控制模式多用在造纸、纺织等卷取微张力控制的场合下。
在我公司尚无需这种控制。
卷径计算在所有的模式中都需要用到卷筒的卷径,大家知道,在生产过程中开卷机的卷径是在不断变小,卷取机的卷径在不断变大,也就是说转矩必须随着卷径的变化而变化,才能获得稳定的张力控制。
可见卷筒的卷径计算是多么地重要。
卷径的计算有两中途径:一种是通过外部将计算好的卷径直接传送给变频器,一般是在PLC中运算获得。
另一种是变频器自己运算获得,矢量控制型变频器都具有卷径计算功能,在大多数的应用中都是通过变频器自己运算获得。
这样可以减少PLC程序的复杂性和调试难度、降低成本。
变频器自己计算卷径的方法有三种:变频器自己计算卷径的方法有三种:1、速度计算法:、速度计算法:通过系统当前线速度和变频器输出频率计算卷径。
其公式如下:D=(i×V)/(π×n)D所求卷径I机械传动比n电机转速V线速度当系统运行速度较低时,材料线速度和变频器输出频率都较低,较小的检测误差就会使卷径计算产生较大的误差,所以要设定一个最低线速度,当材料线速度低于此值时卷径计算停止,卷径当前值保持不变。
此值应设为正常工作线速度以下。
多数应用场合下的变频器都使用这种方法进行卷径计算。
2、度积分法:、度积分法:根据材料厚度按卷筒旋转圈数进行卷径累加或递减,对于线材还需设定每层的圈数。
这种方法计算要求输入材料厚度,若厚度是固定不变的,可以在变频器中设定。
此方法在单一产品的生产场合被广泛应用。
若厚度是需要经常变化的,需要通过人机界面HMI或智能仪表将厚度信号传送到PLC,由PLC或仪表进行运算后再传送给变频器。
这种计算方法可以获得比较精确的卷径。
在一般的国产设备上应用较少,我公司的进口设备,气垫炉的收、放卷控制上就采用这种计算方式。
3、模拟量输入、当选用外部卷径传感器时,卷径信号通过模拟输入口输入给变频器。
由于卷径传感器的性能、价格、使用环境等原因,在国内鲜有使用。
结束语:结束语:矢量变频技术在卷取应用中的方法多种多样,在当前技术条件下,上述模式是最具有代表性的。
无论是设计还是维修,了解你所使用设备的工作模式和控制特点是非常重要的。
变频技术还在高速发展,新的理论和控制技术将不断涌现,控制模式还将继续推陈出新。
我们期待着更先进、更实用的技术不断出现,以此来改变我们的生活。
要了解这四种模式,需要先分别了解开环和闭环、速度和转矩模式的区别2、开环和闭环在变频器中是指是否有速度编码器反馈给变频器,如果没有,则为开环,此时变频器需选择无速度传感器矢量控制(简称:开环矢量),如果有则称为有速度传感器矢量控制(简称:闭环矢量)。
3、速度模式是指变频器以控制电机的转速为目的,此时电机的力矩必须为保持该速度而调整。
所以控制系统中外环为速度环,内环为电流环。
速度环的输出为电流环的给定(力矩给定),该电流环也称为转矩环。
采用开环速度,则电机的转子速度是通过电压、电流及电机模型计算出来的,所以其速度精度、速度响应肯定比闭环要差和慢,所以开环速度控制只用在对低频速度和转矩响应不高的场合。
闭环速度控制由于使用了编码器,速度、转子位置可以通过编码器直接测量,所以速度精度和响应远远超过开环,但增加了编码器带来了故障点和成本增加,所以有些对精度要求不高的场合不使用闭环速度控制,反之则必须使用闭环速度控制4、转矩模式是指变频器是以控制电机的输出力矩为目的,速度大小和外部负载有关,与转矩无关。
此时变频器一般无速度环,只有电流环,外部给定直接给电流环作为力矩设定。
为防止超速,许多高档变频器都带速度外环限制超速,这是一种增强型的转矩模式,此时速度环只起一个限制最大速度的作用,电流环依然起主导作用。
开环转矩在响应和精度方面比闭环要差,原因和速度模式是一样的。
4、开环速度、闭环速度应用最为广泛,闭环转矩模式一般用在张力控制居多,而开环转矩应用的比较少,目前也就是在个别传动如:双电机同轴、皮袋传输等有一些应用。
1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。
反应到电机轴即能控制电机的输出转距。
2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。
而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。
肯定会影响生产出产品的质量。
用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。
对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。
同时在不同的操作过程,要进行相应的转距补偿。
即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。
二.张力控制变频收卷在纺织行业的应用及工艺要求1.传统收卷装置的弊端纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。
传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。
而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。
尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。
在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。
2.张力控制变频收卷的工艺要求*在收卷的整个过程中都保持恒定的张力。
张力的单位为:牛顿或公斤力。
*在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。
*在加速、减速、停止的状态下也不能有上述情况出现。
*要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。
3.张力控制变频收卷的优点*张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. *使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等. *卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。
并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。
*因为收卷装置的转动惯量是很大的,卷径由小变大时。
如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。
而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。
而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。
*在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。
改造周期小,基本上两三天就能安装调试完成。
*克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。
方便维护设备。
三.变频收卷的控制原理及调试过程*卷径的计算原理:根据V1=V2来计算收卷的卷径。
因为V1=ω1*R1,V2=ω2*Rx.因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。
即L1/∆t=L2/∆t ,∆n1*C1=∆n2*C2/i(∆n1单位时间内牵引电机运行的圈数、∆n2单位时间内收卷电机运行的圈数、C1测长辊的周长、C2收卷盘头的周长、i减速比) ∆n1*π*D1=∆n2*π*D2/i D2=∆n1*D1*i/∆n2,因为∆n2=∆P2/P2(∆P2收卷编码器产生的脉冲数、P2收卷编码器的线数). ∆n1=∆P1/P1取∆n1=1,即测长辊转一圈,由霍尔开关产生一个信号接到PLC.那么D2=D1*i*P2/∆P2,这样收卷盘头的卷径就得到了. *收卷的动态过程分析:要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、激活、停车都能保证张力的恒定.需要进行转矩的补偿.整个系统要激活起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在激活的瞬间起作用;正常运行时要克服滑动摩擦力产生地滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。
需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系.在不同车速的时候,补偿的系数是不同的。
即加速转矩、减速转矩、停车转矩、激活转矩;克服了这些因素,还要克服负载转矩,通过计算出的实时卷径除以2再乘以设定的张力大小,经过减速比折算到电机轴.这样就分析出了收卷整个过程的转矩补偿的过程。
总结:电机的输出转矩=静摩擦转矩(激活瞬间)+滑动摩擦转矩+负载转矩.<1>在加速时还要加上加速转矩;<2>在减速时要减去减速转矩.<3>停车时,因为是通过程控减速至设定的最低速,所以停车转矩的补偿同减速转矩的处理. *转矩的补偿标准(1).静摩擦转矩的补偿:因为静摩擦转矩只在激活的瞬间存在,在系统激活后就消失了.因此静摩擦转矩的补偿是以计算后电机输出转矩乘以一定的百分比进行补偿. (2).滑动摩擦转矩的补偿:滑动摩擦转矩的补偿在系统运行的整个过程中都是起作用的.补偿的大小以收卷电机的额定转矩为标准.补偿量的大小与运行的速度有关系。
所以在程序中处理时,要分段进行补偿。
(3).加减速、停车转矩的补偿:补偿硬一收卷电机的额定转矩为标准,相应的补偿系数应该比较稳定,变化不大。
*计算当中的公式计算(1).已知空芯卷径Dmin=200mm,Dmax=1200mm;线速度的最大值Vmax=90m/min,张力设定最大值Fmax=50kg(约等于500牛顿);减速比i=9;速度的限制如下:因为:V=π*D*n/i(对于收卷电机)=>收卷电机在空芯卷径时的转速是最快的.所以:90=**n/9=>n=1290r/min; (2).因为我们知道变频器工作在低频时,交流异步电机的特性不好,激活转矩低而且非线性.因此在收卷的整个过程中要尽量避免收卷电机工作在2HZ以下.因此:收卷电机有个最低速度的限制.计算如下:对于四极电机而言其同步转速为:n1=60f1/p=>n1=1500r/min. =>2HZ/5HZ=N/1500=>n=60r/min 当达到最大卷径时,可以求出收卷整个过程中运行的最低速.V=π*D*n/i=>Vmin=**60/9=min.张力控制时,要对速度进行限制,否则会出现飞车.因此要限速. (3).张力及转矩的计算如下:如果F*D/2=T/i,=>F=2*T*i/D对于22KW的交流电机,其额定转矩的计算如下:T=9550*P/n=>T=.所以Fmax=2*140*9/=4200N.(其中P为额定功率,n为额定转速). *调试过程:1.先对电机进行自整定,将电机的定子电感、定子电阻等参数读入变频器。