层次分析法之判断矩阵计算
- 格式:xlsx
- 大小:43.64 KB
- 文档页数:2
fun cti on [w,CR]=mycom(A,m,RI)[x,lumda]二eig(A);r二abs(sum(lumda));n二fin d(r==max(r));max_lumda_A=lumda( n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
RI值当CRV0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一•层次分析法的含义层次分析法(The analytic hierarchy process简称AHP,在20世纪70年代中期由美国运筹学家(「L.Saaty正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济和、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
其用法是构造判断矩阵,求出其最大特征值。
AHP一、层次分析法概述。
层次分析法(Analytic Hierarchy Process简称AHP)是美国运筹学家T. L. Saaty教授于70年代初期提出的,AHP是对定性问题进行定量分析的一种简便、灵活而又实用的多准则决策方法。
它的特点是把复杂问题中的各种因素通过划分为相互联系的有序层次,使之条理化,根据对一定客观现实的主观判断结构(主要是两两比较)把专家意见和分析者的客观判断结果直接而有效地结合起来,将一层次元素两两比较的重要性进行定量描述。
而后,利用数学方法计算反映每一层次元素的相对重要性次序的权值,通过所有层次之间的总排序计算所有元素的相对权重并进行排序。
该方法自1982年被介绍到我国以来,以其定性与定量相结合地处理各种决策因素的特点,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价等,得到了广泛的重视和应用。
二、层次分析法的用途举例。
例如,某人准备选购一台电冰箱,他对市场上的6种不同类型的电冰箱进行了解后,在决定买那一款式是,往往不是直接进行比较,因为存在许多不可比的因素,而是选取一些中间指标进行考察。
例如电冰箱的容量、制冷级别、价格、型式、耗电量、外界信誉、售后服务等。
然后再考虑各种型号冰箱在上述各中间标准下的优劣排序。
借助这种排序,最终作出选购决策。
在决策时,由于6种电冰箱对于每个中间标准的优劣排序一般是不一致的,因此,决策者首先要对这7个标准的重要度作一个估计,给出一种排序,然后把6种冰箱分别对每一个标准的排序权重找出来,最后把这些信息数据综合,得到针对总目标即购买电冰箱的排序权重。
有了这个权重向量,决策就很容易了。
三、层次分析法的步骤。
(1)通过对系统的深刻认识,确定该系统的总目标,弄清规划决策所涉及的范围、所要采取的措施方案和政策、实现目标的准则、策略和各种约束条件等,广泛地收集信息。
(2)建立一个多层次的递阶结构,按目标的不同、实现功能的差异,将系统分为几个等级层次。
基于层次分析法的权重评价机制 1 建立层次结构模型一般分为三层,最上面为目标层,最下面为方案层,中间是准则层或指标层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9个。
这是因为支配的元素过多会给两两比较判断带来困难。
例如:2 构造判断矩阵设j i x x ,分别为指标Z 的影响因素,记ij a 为i x 和j x 对Z 的影响大小之比,其值为表1所示,记 n n ij a A ⨯=)(为X Z -之间的成对比较判断矩阵(简称判断矩阵)。
矩阵n n ij a A ⨯=)(中的元素ij a 与ji a 具有1ji ija a =关系。
表1 1~9标度的含义 标度含 义 1表示两个因素相比,具有相同重要性 3表示两个因素相比,前者比后者稍重要 5表示两个因素相比,前者比后者明显重要 7表示两个因素相比,前者比后者强烈重要 9表示两个因素相比,前者比后者极端重要 2,4,6,8 表示上述相邻判断的中间值计算方法:用近似计算法求各判断矩阵的最大特征值和特征向量。
其计算步骤为:Step1 计算判断矩阵每行所有元素的几何平均值:1,2,3,i w i n ==得到121(,,,)T n n w w w w w -=⋅⋅⋅,。
Step2 将i w 归一化,即计算:11,2,3,i i n i i w w i n w===∑ 得到121(,,,)T n n w w w w w -=⋅⋅⋅,,即为所求特征向量的近似值,这也是第三类各批次的相对权重。
3 一致性检验Step1 计算判断矩阵的最大特征值max λmax 1()n i i iAw nw λ==∑ 其中i w A )(为向量Aw 的第i 个元素。
Step2 计算判断矩阵一致性指标CI :max 1nCI n λ-=-Step3 计算一致性率CR :CI CR RI=在这里RI是自由度指标,下面我们引入修正值RI表2 RI的一致性检验维数(n) 1 2 3 4 5 6 7 8 9 RI 0.00 0.00 0.58 0.96 1.12 1.24 1.32 1.41 1.45 一致性规定当CR≤0.1时,认为两两比较矩阵的一致性可以接受,否则就认为两两比较矩阵一致性太差,必须重新进行两两比较判断。
层次分析法的计算步骤
一、定义层次分析法
层次分析法(Analytic Hierarchy Process,AHP)是由梅尔·拉斯
菲尔德(M.L. Saaty)于1977年提出的一种多层结构和多维度的层次分
析方法。
它是一种评估决策者面临复杂决策的基于层次结构逻辑的决策分
析方法,可以很轻松地将复杂的主观问题转换为客观的量化问题,从而求
解复杂的决策问题。
二、层次分析法计算流程
(1)决策问题的分类和层次结构的确定
首先,根据决策者的要求,将决策问题确定为一个有层次结构(AHP)和深度(hierarchy)的问题,将决策问题的内容分为n个层次。
(2)建立层次分析矩阵
将决策问题中的n个层次按从上至下的顺序,建立起一个n×n的层
次分析矩阵,称之为层次分析矩阵。
(3)确定层次分析矩阵的元素
在层次分析矩阵中,每一对元素的值都由决策者给出,即根据决策者
的判断,确定每个元素在n个层次层次中的比较的优劣。
(4)计算层次分析矩阵的均值尺度指数
均值尺度指数是由每行元素进行加权求和结果和n相除而得到的。
它
表示每个元素在此行的平均相对权重。
(5)分析层次分析矩阵
一旦层次分析矩阵计算完毕。
(完整版)层次分析法的计算步骤8.3.2 层次分析法的计算步骤⼀、建⽴层次结构模型运⽤AHP进⾏系统分析,⾸先要将所包含的因素分组,每⼀组作为⼀个层次,把问题条理化、层次化,构造层次分析的结构模型。
这些层次⼤体上可分为3类1、最⾼层:在这⼀层次中只有⼀个元素,⼀般是分析问题的预定⽬标或理想结果,因此⼜称⽬标层;2、中间层:这⼀层次包括了为实现⽬标所涉及的中间环节,它可由若⼲个层次组成,包括所需要考虑的准则,⼦准则,因此⼜称为准则层;3、最底层:表⽰为实现⽬标可供选择的各种措施、决策、⽅案等,因此⼜称为措施层或⽅案层。
层次分析结构中各项称为此结构模型中的元素,这⾥要注意,层次之间的⽀配关系不⼀定是完全的,即可以有元素(⾮底层元素)并不⽀配下⼀层次的所有元素⽽只⽀配其中部分元素。
这种⾃上⽽下的⽀配关系所形成的层次结构,我们称之为递阶层次结构。
递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,⼀般可不受限制。
为了避免由于⽀配的元素过多⽽给两两⽐较判断带来困难,每层次中各元素所⽀配的元素⼀般地不要超过9个,若多于9个时,可将该层次再划分为若⼲⼦层。
例如,⼤学毕业的选择问题,毕业⽣需要从收⼊、社会地位及发展机会⽅⾯考虑是否留校⼯作、读研究⽣、到某公司或当公务员,这些关系可以将其划分为如图8.1所⽰的层次结构模型。
图8.1再如,国家综合实⼒⽐较的层次结构模型如图6 .2:图6 .2图中,最⾼层表⽰解决问题的⽬的,即应⽤AHP所要达到的⽬标;中间层表⽰采⽤某种措施和政策来实现预定⽬标所涉及的中间环节,⼀般⼜分为策略层、约束层、准则层等;最低层表⽰解决问题的措施或政策(即⽅案)。
然后,⽤连线表明上⼀层因素与下⼀层的联系。
如果某个因素与下⼀层所有因素均有联系,那么称这个因素与下⼀层存在完全层次关系。
有时存在不完全层次关系,即某个因素只与下⼀层次的部分因素有联系。
层次之间可以建⽴⼦层次。
⼦层次从属于主层次的某个因素。
层次分析法判断矩阵层次分析法判断矩阵程序先确定判断矩阵;然后用以下程序就好了:%层次分析法的matlab程序%%%%diertimoxingyiclc,cleardisp(输入判断矩阵);% 在屏幕显示这句话A=input(A=);% 从屏幕接收判断矩阵[n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好x=ones(n,100);% x为n行100列全1的矩阵y=ones(n,100);% y同xm=zeros(1,100);% m为1行100列全0的向量m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量y(:,1)=x(:,1);% x的第一列赋予y 的第一列x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1)m(2)=max(x(:,2));% x 第二列中最大的值赋给m的第二个分量y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值while k>p% 当k>p是执行循环体i=i+1;% i 自加1x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值enda=sum(y(:,i));% y的第i列的和赋予aw=y(:,i)/a;% y的第i 列除以at=m(i);% m的第i个分量赋给tdisp(权向量:);disp(w);% 显示权向量wdisp(最大特征值:);disp(t);% 显示最大特征值t %以下是一致性检验CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CIRI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准CR=CI/RI(n);% 计算一致性if CR摘要在定性问题的决策中,AHP是一种优秀的方法,其基础是对评价对象的两两比较,并用比较结果构造判断矩阵,而这些都依赖于决策者选用的偏好关系。
层次分析法判断矩阵求权值以及一致性检验程序以下是一种基于层次分析法的判断矩阵求权值以及一致性检验的程序:第一步:确定目标和准则层首先,明确分析的目标以及需要进行比较和排序的准则。
例如,在选择旅游目的地的决策中,目标可以是选择最适合个人喜好的目的地,而准则可以包括交通便利性、旅游景点的丰富程度、美食水平等。
第二步:构建判断矩阵根据目标和准则,构建判断矩阵,矩阵的大小为n*n,其中n是准则的个数。
判断矩阵中的元素对应于两两准则之间的比较结果。
例如,对于两个准则i和j,可以使用1-9的尺度来表示它们之间的重要程度,其中1表示相同重要,9表示极端重要。
如果准则i相对于准则j更重要,则在判断矩阵的(i,j)位置上填写9、判断矩阵的对角线元素全为1,因为每个准则相对于自身的重要性是相同的。
第三步:求判断矩阵的权值利用判断矩阵求解初始权值的过程主要分为两个步骤:特征根法和一致性检验。
1.特征根法求解判断矩阵的特征值和对应的特征向量,通过特征向量的归一化,得到各个准则的权重。
2.一致性检验判断矩阵是否具有一致性,即各个准则的权重是否合理。
这里使用一致性指标CI(Consistency Index)和一致性比例CR(Consistency Ratio)来进行检验。
CR的计算公式为CR = CI/RI,其中RI是一个随着准则个数n而变化的随机一致性指数,可以在AHP的标准表格中查找。
第四步:一致性检验与调整如果CR小于一些事先设定的阈值(通常为0.1),则认为判断矩阵通过一致性检验,各个准则的权重是合理的;否则,需要对判断矩阵进行调整。
判断矩阵的调整可以通过以下步骤进行:1.计算判断矩阵的平均列向量2.计算平均列向量的加权平均向量3.计算调整后的判断矩阵4.重复进行一致性检验和调整,直至通过一致性检验为止第五步:权值的应用经过一致性检验和调整后,各个准则的权重即为最终结果。
可以将权重应用于具体的决策问题中,进行多个准则的比较和排序。