层次分析法判断矩阵
- 格式:xls
- 大小:25.00 KB
- 文档页数:1
层次分析法判断矩阵求权值以及一致性检验程序层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策的数学模型和方法。
它是由美国管理学家托马斯·L·赛蒙在20世纪70年代提出的。
AHP方法能够帮助决策者在多个准则和多个选择之间进行有效的决策,通过定量和定性的方式来对选择进行评估和比较。
在AHP方法中,决策问题被分解成一个层次结构,其中包含目标层、准则层和选择层。
每个层次都有不同的准则和可能的选择。
决策者需要对每个层次中的准则和选择进行配对比较,从而确定它们之间的重要性和权重。
通过对一系列两两比较的判断矩阵求权值,最终得到每个准则和选择的权重,进而做出最终决策。
下面是一种求解AHP中矩阵权值和进行一致性检验的程序:1. 建立判断矩阵:根据决策问题的结构,建立一个判断矩阵。
判断矩阵的大小是n×n,其中n是比较对象的数量。
矩阵的每个元素(a_ij)表示第i个对象相对于第j个对象的重要性或影响程度。
2. 进行两两比较:对矩阵的每个元素(a_ij),决策者需要进行两两比较,确定它们之间的相对重要性。
比较的结果可以使用系数1-9进行量化,其中1表示相等重要性,9表示绝对重要性的差异。
3.归一化判断矩阵:将比较得到的判断矩阵归一化,使得每一列的元素之和等于1、这可以通过将每个元素除以其所在列的元素之和来实现。
4.求解权值:通过归一化后的判断矩阵,可以计算每个对象的权重。
权重可以通过计算每一行的元素之和来得到。
5.计算一致性指标:在AHP方法中,一致性是指判断矩阵中的数值是否在合理范围内。
为了检验一致性,需要计算一致性指标。
一致性指标的计算方法是通过求解最大特征值和一致性比率来得到。
6.进行一致性检验:计算一致性指标后,需要将其与预先给定的随机一致性指标进行比较。
如果计算得到的一致性指标小于预先给定的一致性指标,则认为判断矩阵中的数值具有一致性。
function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂()正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
层次分析法的计算步骤层次分析法(Analytic Hierarchy Process, AHP)是一种用于多准则决策的定量分析方法,由美国学者Thomas L. Saaty于1970年代提出。
它通过将一个复杂的多准则问题分解为一系列的层次结构,然后利用专家判断来确定每个层次的权重以及相对优先级,最终得出最佳决策。
下面将详细介绍层次分析法的计算步骤。
1.确定决策的目标和准则:首先明确决策的目标,以及实现这一目标所需的准则。
例如,如果我们要决定购买一台新的汽车,目标可能是选择性价比最高的汽车,准则可能包括价格、燃油经济性、安全性、舒适性等。
3.构建判断矩阵:为了确定每个层次之间的重要性比较,需要构建判断矩阵。
判断矩阵是一种由专家根据经验、知识或直觉所得到的关于准则之间相对重要性的矩阵。
对于每个层次,需要构建一个判断矩阵。
例如,在准则层次,专家需要判断每个准则与其他准则之间的相对重要性。
4.对判断矩阵进行标准化:将判断矩阵进行标准化是为了消除专家主观性的影响。
标准化的方法可以有多种,最常用的方法是将每列元素除以该列元素之和,使每列元素之和等于15.计算权重向量:通过对标准化的判断矩阵进行特征值分解,可以得到特征值和对应的特征向量。
特征向量的元素表示各个准则相对于目标的权重。
为了保证权重之和等于1,需要将特征向量进行归一化。
归一化的方法是将每个元素除以所有元素之和。
6.一致性检验:进行一致性检验是为了评估专家的判断是否一致和合理。
一致性指标(Consistency Index, CI)是用来度量判断矩阵的一致性程度的指标,其计算方法为CI=(λmax-n)/(n-1),其中λmax为最大特征值,n为准则数目。
为了验证判断矩阵的一致性,还需要计算一个随机一致性指标(Random Index, RI)作为对照。
如果CI<0.1,则认为判断矩阵是一致的。
7.一致性修正:如果判断矩阵不一致,可以通过进行一致性修正来提高一致性。