七年级数学人教版总复习专项测试题(一)
- 格式:doc
- 大小:236.00 KB
- 文档页数:10
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯2020年秋人教版数学七年级期末复习专题:找规律之解答题专项(一)1.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是;(3)求图4中所有圆圈中各数值之和.(写出计算过程)2.学校餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有5张桌子时,两种摆放方式各能坐多少人?(2)当有n张桌子时,两种摆放方式各能坐多少人?(3)、新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择哪种方式来摆放餐桌?为什么?3.用同样规格的黑白两种颜色的正方形,按如图所示的规律拼图,请根据图中的信息完成下列的问题.(1)在第5个图中用了块黑色正方形;(2)第n个图形要用块黑色正方形;(3)如果有足够多的白色正方形,能不能恰好用完90块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.4.某餐厅中1张餐桌可坐6人,有以下两种摆放方式:(1)对于方式一,4张桌子拼在一起可坐多少人?n张桌子呢?对于方式二呢?(2)该餐厅有40张这样的长方形桌子,按方式一每5张拼成一张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?按方式二呢?(3)在(2)中,若改成每8张拼成一张大桌子,则共可坐多少人?(4)一天中午,该餐厅来了98为顾客共同就餐,但餐厅中只有25张这样的长方形桌子可用,若你是这家餐厅的经理,你打算选择哪种方式来摆餐桌呢?5.观察下列图形:如果按这个规律一直排到第n个图形,请探究下列问题:(1)设第n个图形和第n﹣1个图形中所有三角形的个数分别为a n、a n﹣1,问:它们之间有什么数量关系?请写出这个关系式.(2)请你用含n的代数式来表示a n,并证明你的结论.6.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为.第2层第1层…第n层(1)当图(1)中小圆圈有10层的时候小圆圈的个数是:;(2)图(2)中的小圆圈一共有个(用含n的代数式表示)(3)如果图(1)中的圆圈共有13层,图(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边第三个圆圈中的数是;(4)我们自上往下,在每个圆圈中都按图(4)的方式填上一串连续的整数﹣23,﹣22,﹣21,…,一共填写13层求图(4)中所有圆圈中各数的绝对值之和.7.如图是某同学在沙滩上用石子摆成的小房子,请根据图中的信息完成下列的问题:(1)填写下表:图形编号①②③④…图中石子的总数 5 12 …(2)第20个图形需要颗石子;(3)如果继续摆放下去,那么第N个图案要用颗石子;(4)该同学准备用200颗石子来摆放第n个图案,摆放成完整的图案后,第n个图案能否刚好用完这200颗石子?如果可以,说出n的值?如果不行,说出n的最大值以及至少还剩余几颗石子?8.某数学兴趣小组在用黑色围棋进行摆放图案的游戏中,一同学摆放了如下图案,请根据图中信息完成下列的问题:(1)填写下表:图形编号①②③……图中棋子的总……数(2)第10个图形中棋子为颗围棋;(3)该同学如果继续摆放下去,那么第n个图案要用颗围棋.9.图a是一个三角形,分别连接这个三角形三边的中点得到图b;再分别连接图b中间小三角形的三边的中点,得到图c(1)图b有个三角形,图c有个三角形.(2)按上面的方法继续下去,第n个图形中有多少个三角形(用n的代数式表示结论).(3)当n=10时,第10个图形中有多少个三角形?10.如图,将一张正方形纸片剪去四个大小形状一样的小正方形,然后将其中一个小正方形再按同样的方法剪成四个小正方形,再将其中一个小正方形剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表:剪的次数 1 2 3 4 5正方形个数 4 7 10 13(2)如果剪了100次,共剪出多少个小正方形?(3)如果剪n次,共剪出多少个小正方形?(4)如果要剪出100个正方形,那么需要剪多少次?参考答案1.解:(1)当有13层时,图3中到第12层共有:1+2+3+…+11+12=78个圆圈,最底层最左边这个圆圈中的数是:78+1=79;(2)图4中所有圆圈中共有1+2+3+…+13==91个数,最底层最右边圆圈内的数是﹣23+91﹣1=67;(3)图4中共有91个数,其中23个负数,1个0,67个正数,所以图4中所有圆圈中各数的和为:﹣23﹣22﹣…﹣1+0+1+2+…+67=﹣(1+2+3+...+23)+(1+2+3+ (67)=﹣276+2278=2002.故答案为:(1)79;(2)67.2.解:(1)有5张桌子,用第一种摆设方式,可以坐5×4+2=22人;用第二种摆设方式,可以坐5×2+4=14人;(2)有n张桌子,用第一种摆设方式可以坐4n+2人;用第二种摆设方式,可以坐2n+4(用含有n的代数式表示);(3)选择第一种方式.理由如下;第一种方式:60张桌子一共可以坐60×4+2=242(人).第二种方式:60张桌子一共可以坐60×2+4=124(人).又242>200>124,所以选择第一种方式.3.解:(1)观察如图可以发现,第1个图中,需要黑色正方形的块数为3×1+1=4,第2个图中,需要黑色正方形的块数为3×2+1=7;第3个图中,需要黑色正方形的块数为3×3+1=10;…由此可以发现,第几个图形,需要黑色正方形的块数就等于3乘以几,然后加1.所以,按如图的规律继续铺下去,那么第n个图形要用3n+1块黑色正方形;所以第5个图形中,要用:3×5+1=16(块)黑色正方形;故答案是:16;(2)由(1)知,第n个图形要用3n+1块黑色正方形;故答案是:(3n+1);(3)假设第n个图形恰好能用完90块黑色正方形,则3n+1=90,解得:n=.因为n不是整数,所以不能.4.解:(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人.4张桌子可以坐18人,有n张桌子时是6+4(n﹣1)=4n+2.第二种中,有一张桌子是6人,后边多一张桌子多2人,四桌子可以坐12人,n张桌子可以坐6+2(n﹣1)=2n+4.(2)方式一:40张桌子拼成8张大桌子可以坐8×[6+16]=176人,方式二:40张桌子拼成8张大桌子可以坐8×[6+8]=112人;(3)方式二:40张桌子拼成5张大桌子可以坐5×[6+14]=100人;(4)第一种,因为,当n=25时,4×25+2=102>98,当n=25时,2×25+4=54<98.所以,选用第一种摆放方式.5.解:(1)按题中图形的排列规律可得:an=3a n﹣1+2.(2)由(1)得:an=3a n﹣1+2,a n﹣1=3a n﹣2+2,两式相减得:an﹣a n=3(a n﹣1﹣a n﹣2)①﹣1当n分别取3、4、5、n时,由①式可得下列(n﹣2)个等式:a﹣a2=3(a2﹣a1),a4﹣a3=3(a3﹣a2),a5﹣a4=3(a4﹣a3),3an﹣a n=3(a n﹣1﹣a n﹣2).﹣1显然an﹣a n﹣1≠0,以上(n﹣2)个等式的左右两边分别相乘约去相同的项后得:an﹣a n=3n﹣2(a2﹣a1)②﹣1∵a2﹣a1=17﹣5=12,由(1)又可知a n﹣1=(a n﹣2),将它们代入②式即得:a n=2×3n﹣1.6.解:(1)如图(1),当小圆圈有10层时,图中共有:1+2+3+…+10=55个圆圈;故答案为:55;(2)当有n层时,一个正三角形共有:1+2+3+…+n=个圆圈,∴图(2)中的小圆圈一共有:n(n+1)个,故答案为:n(n+1);(3)图(1)中,当有12层时,图中共有:1+2+3+…+12=78个圆圈;∴如果图(1)中的圆圈共有13层,最底层最左边第一个圆圈中的数是79,则第三个圆圈中的数是:78+3=81,故答案为:81;(4)图4中所有圆圈中共有1+2+3+…+13==91个数,其中23个负数,1个0,67个正数,所以图4中所有圆圈中各数的绝对值之和为:|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (67)=(1+2+3+…+23)+(1+2+3+…+67),=276+2278,=2554.7.解:(1)第三个是3×(3+4)=21,第四个是4×(4+4)=32,(2)第20个图形是20×(20+4)=480个;(3)第n个图形是n(n+4);故答案为:21,32;480;n(n+4);(4)当n=12时,有12×(12+4)=192,当n=13时,有13×(13+4)=221>200,故不能刚好用完这200颗石子,n最大值为12,至少还剩8颗石子.8.解:(1)由图可得,第一个图案3颗棋子,第二个图案6颗棋子,第三个图案10颗棋子.故答案为:3,6,10;(2)由图可得,第10个图案中的棋子为:1+2+3+4+5+6+7+8+9+10+11=66个,故答案为:66;(3)由图可知:第一个图案1+2颗棋子,第二个图案1+2+3颗棋子,第三个图案1+2+3+4颗棋子,故第n个图案的棋子为:1+2+3+…+(n+1)=颗,故答案为:.9.解:(1)b中有5个三角形,c中有9个三角形.(2)依题意得:n=1时,有1个三角形;n=2时,有5个三角形;n=3时,有9个三角形;…∴当n=n时有4n﹣3个三角形.(3)当n=10时,有40﹣3=37个三角形.10.解:(1)填表如下:初中数学**精品文档**剪的次数 1 2 3 4 5正方形个数 4 7 10 13 16(2)结合图形,不难发现:在4的基础上,依次多3个.如果剪了100次,共剪出3×100+1=301个小正方形;(3)如果剪了n次,共剪出3n+1个小正方形;(4)令3n+1=100,解得:n=33,答:剪出100个小正方形时,需要33次.经过大海的一番磨砺,卵石才变得更加美丽光滑。
人教版 七年级数学上册 第1~3章 期中综合复习(一)一、选择题(本大题共10道小题)1. 计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a 2. 下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A .2个B .3个C .4个D .5个3. 计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .34. 解方程x +12-2x -36=1时,去分母正确的是( )A .3(x +1)-2x -3=6B .3(x +1)-2x -3=1C .3(x +1)-(2x -3)=12D .3(x +1)-(2x -3)=65. 下列各式的计算结果是负数的是( )A .-2×3×(-2)×5B .3÷(-3)×2.6÷(-1.5)C .|-3|×4×(-2)÷(-12) D .(-7)×52÷|-10|6. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13;③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4).A .0个B .1个C .2个D .3个7. 有理数m ,n 在数轴上的位置如图所示,则下列各式正确的是 ()A .m>n B.-n>|m|C .-m>|n|D .|m|<|n|8. 已知M =4x 2-3x -2,N =6x 2-3x +6,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .以上都有可能9. 下列说法错误的是 ( )A .若|a |=|b |,则a =b 或a =-bB .若a ≠b ,则|a |≠|b |C .若|a |+|b |=0,则|a |=0且|b |=0D .若|a |=a ,则a ≥0;若|b |=-b ,则b ≤010. 若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .120 二、填空题(本大题共10道小题)11. 计算:(14+16-12)×12=________. 12. 计算:(-14)×23-23=________. 13. 5G 信号的传播速度为300000000 m/s ,将300000000用科学记数法表示为 .14. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.15. 已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________. 16. 若m +1与-2互为相反数,则m 的值为________.17. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.18. 若定义一种运算*,其规则是:a *b =-1b ÷1a ,则(-3) * (-2)=________. 19. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.20. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为 .三、解答题(本大题共5道小题)21. 水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量的水葫芦生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用.若在适宜的条件下,1株水葫芦每5天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n 为正整数):天数5 10 15 … 50 … 5n 总株数 2 4 … …(2)假定某个流域的水葫芦维持在1280株以内对水质净化有益,若现有10株水葫芦,请你计算,按照上述生长速度,多少天后该流域内有1280株水葫芦?22. 求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.23. 解方程:0.10.020.10.10.30.0020.05x x -+-=24. 解方程:0.10.90.210.030.7x x --=25. 已知1abc =,求关于x 的方程2004111x x x a ab b bc c ca++=++++++的解.人教版 七年级数学上册 第1~3章 期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A4. 【答案】D [解析] 由此方程的分母2,6可知,其最小公倍数为6,故去分母得3(x +1)-(2x -3)=6.故选D.5. 【答案】D6. 【答案】D7. 【答案】C8. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.9. 【答案】B10. 【答案】B [解析] 两个连续偶数相差2,所以可设中间一个偶数为x ,则第一个偶数为x -2,第三个偶数为x +2,则有x -2+x +x +2=24,解得x =8,故这三个偶数为6,8,10,所以它们的积为6×8×10=480.二、填空题(本大题共10道小题)11. 【答案】-112. 【答案】-10 [解析] (-14)×23-23=-14×23-1×23=23×(-14-1)=-10. 13. 【答案】3×108[解析] 将300000000用科学记数法表示为3×108. 14. 【答案】(1)>(2)= (3)< 15. 【答案】1 [解析] 把x =2代入原方程,得2×2+a -5=0,解得a =1,故答案为1.16. 【答案】117. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.18. 【答案】-32 [解析] (-3) * (-2)=12÷(-13)=12×(-3)=-32. 19. 【答案】3 [解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x 8=1,解得x =2,x +1=3.故甲一共做了3天.20. 【答案】15-a [解析] 最后一组的人数可表示为5a +9-6(a -1)=15-a .三、解答题(本大题共5道小题)21. 【答案】解:(1)表中依次填入23,210,2n .(2)根据题意,得10×2n =1280,解得n=7,7×5=35(天).答:按照上述生长速度,35天后该流域内有1280株水葫芦.22. 【答案】2x =或者4x =-【解析】由一元一次方程的概念可知,原方程是一元一次方程,有两种情况:(1)当11k -=,即2k =时,原方程可化为:380x x +-=,解得2x =; (2)当210k -=且10k -≠时,即1k =-时,原方程可化为280x --=,解得4x =-.综上所得2x =或者4x =-.23. 【答案】 4116024. 【答案】121925. 【答案】2004 【解析】原方程可化为:111()2004111x a ab b bc c ca++=++++++, 因为1abc =,所以11111111(1)a abc a ab b bc c ca a ab a b bc abc c ca++=++++++++++++++ 1111111a ab a ab a ab a ab a ab a ab++=++==++++++++,故2004x =.人教版 七年级数学上册 第1~3章 期中综合复习(二)一、选择题(本大题共10道小题)1. 据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1042. 若海平面以上1045米,记作+1045米,则海平面以下155米,记作() A .-1200米 B .-155米C .155米D .1200米3. 下列方程中是一元一次方程的是( )A .x +2y =9B .x 2-3x =1C .2x +4=1x D.12x -1=3x4. 计算-2(x -y )-2y 的结果是( )A .-2x -4yB .-2xC .2x -4yD .-4x +2y5. 给出一个数-0.1010010001,下列说法正确的是 ( )A .这个数不是分数,但是有理数B .这个数是负数,也是分数C .这个数与π一样,不是有理数D .这个数是一个负小数,不是有理数6. 下列各组数中,互为相反数的一组是( )A .|-3|与-13B .|-3|与-(-3)C .|-3|与-|-3|D .|-3|与|-13|7. 计算(-2)2020÷(-2)2019所得的结果是 ( )A.22019B.-22019C.-2D.18. 二模若a >0,b <0,则a -b 的值( )A .大于零B .小于零C .等于零D .不能确定9. 某企业今年第一季度盈利22000元,第二季度亏损5000元,若盈利记为正,亏损记为负,则该企业今年上半年盈利(或亏损)的金额(单位:元)可用算式表示为( )A .(+22000)+(+5000)B .(-22000)+(+5000)C .(-22000)+(-5000)D .(+22000)+(-5000) 10. 计算0-(-5)-(+1.71)+(+4.71)的结果是( )A .7B .-8C .8D .-7 二、填空题(本大题共10道小题)11. 化简:-54-8=________,-6-0.3=________. 12. 对于算式(-3)÷13×(-3),下面有几种算法: ①原式=(-3)×3×(-3);②原式=(-3)×(-3)÷13;③原式=(-3)÷⎣⎢⎡⎦⎥⎤13×(-3); ④原式=(-3)÷⎣⎢⎡⎦⎥⎤13÷(-3). 其中正确的算法有________.(填序号)13. 当x =________时,式子5x -3的值为7.14. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________. 15. 合并同类项:4a 2+6a 2-a 2=________.16. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米. 17. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.18. 把a -b 看作一个整体,合并同类项:3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2= .19. 观察下列砌钢管的横截面(如图),则第n (n 是正整数)个图中的钢管数是__________.(用含n 的式子表示)20. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题(本大题共5道小题)21. 先化简,再求值:12(8x 2-3xy )-3(x 2-12xy +13y ),其中x =-2,y =1.22. 去掉下列各式中的括号:(1)8m -(3n +5); (2)n -4(3-2m ); (3)2(a -2b )-3(2m -n ).23. 据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每3年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知2000年底,人类知识总量为a,假如从2000年底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;从2020年是每73天翻一番.(1)2009年底人类知识总量是多少?(2)2019年底人类知识总量是多少?(3)2020年按365天计算,2020年底人类知识总量是多少?24. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.25. 解方程:4213 2[()] 3324x x x--=人教版七年级数学上册第1~3章期中综合复习(二)-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】把一个大数用科学记数法表示为a×10n的形式,其中1≤a <10,故a=4.47,n等于原数的整数位数减1,即n=7-1=6,∴4470000=4.47×106.2. 【答案】B3. 【答案】D4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】27 42012. 【答案】①②④13. 【答案】2[解析] 由题意,得5x-3=7.两边同时加上3,得5x=10.两边同时除以5,得x=2.14. 【答案】(1)-3(2)3(3)3(4)-3(5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.15. 【答案】9a216. 【答案】417. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.18. 【答案】a -b[解析] 3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2=(3-2)·(a -b )+(4-3-1)·(a -b )2=a -b .19. 【答案】32n (n +1) [解析] 第1个图中钢管数为1+2=3,第2个图中钢管数为2+3+4=12×(2+4)×3=9,第3个图中钢管数为3+4+5+6=12×(3+6)×4=18,第4个图中钢管数为4+5+6+7+8=12×(4+8)×5=30,…依此类推,第n 个图中钢管数为n +(n +1)+(n +2)+(n +3)+(n +4)+2n =12(n +2n )(n +1)=32n (n +1).20. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t ,根据题意,得(100-60)t =100,解得t =2.5.所以100t =100×2.5=250,即速度快的人要走250步才能追上速度慢的人.三、解答题(本大题共5道小题)21. 【答案】解:原式=4x 2-32xy -3x 2+32xy -y =x 2-y . 当x =-2,y =1时,原式=(-2)2-1=3.22. 【答案】解:(1)8m -(3n +5)=8m -3n -5.(2)n -4(3-2m )=n -(12-8m )=n -12+8m .(3)2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m +3n .23. 【答案】解:(1)23×a .(2)213×a .(3)218×a .24. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.25. 【答案】127人教版七年级数学上册第1~3章期中综合复习(三)一、选择题(本大题共10道小题)1. 下列各组数中,不相等的是()A.-(+8)和+(-8) B.-5和-(+5)C.+(-7)和-7 D.+(-23)和+232. 计算-2×3×(-4)的结果是()A.24 B.12 C.-12 D.-24 3. 下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度4. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了()A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断5. 如果x=y,那么根据等式的性质,下列变形不正确的是()A.x+2=y+2 B.3x=3yC.5-x=y-5 D.-x3=-y36. 下列交换加数位置的变形中,正确的是()A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1-4-3C.5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D.13+2.3-5-4.3=13+5-2.3-4.37. 下列各式中,不相等的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.|-2|3和|-23|8. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.09. 如图所示,下列判断正确的是()A.ab<0B.ab=0C.ab>0D.-ab<010. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=30二、填空题(本大题共10道小题)11. 若|x|=2,则x的倒数是________.12. 计算:(-12)÷(-4)÷(-115)=________.13. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).14. 原价为a元的书包,现按8折出售,则售价为________元.15. a的相反数是-9,则a=________.16. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.17. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.18. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.19. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.20. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.三、解答题(本大题共5道小题)21. 解方程:4x-3=2(x-1).22. 一张铁皮可生产10个盒底或6个盒身,两个盒底与一个盒身配套.现有110张铁皮,怎样安排生产盒身和盒底的铁皮张数,才能使生产出来的盒底和盒身恰好配套?(注:一张铁皮只能生产一种产品)23. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.24. 小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25. 若1abc =,解关于x 的方程:2221111ax bx cxab a bc b ca c ++=++++++人教版 七年级数学上册 第1~3章 期中综合复习(三)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】A 8. 【答案】A 9. 【答案】A 10. 【答案】B二、填空题(本大题共10道小题) 11. 【答案】±12 12. 【答案】-5213. 【答案】< 14. 【答案】45a15. 【答案】916. 【答案】1[解析] 因为关于x ,y 的多项式4xy 3-2ax 2-3xy +2x 2-1不含x 2项,所以2-2a =0,解得a=1.17. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-418. 【答案】180[解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x千米/时,则甲车的速度为1.2x千米/时.根据题意,得2·1.2x +2x=660,解方程,得x=150.150×1.2=180(千米/时).19. 【答案】4[解析] 设该商品每件的销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故该商品每件的销售利润为4元.故答案为4.20. 【答案】6[解析] 设蜘蛛有x只,则蜻蜓有2x只,由题意,得8x+2x·6=120,解得x=6.三、解答题(本大题共5道小题)21. 【答案】[解析] 去括号、移项、合并同类项、系数化为1,即可得到方程的解.解:4x-3=2(x-1),4x-3=2x-2,4x-2x=-2+3,2x=1,x=1 2.22. 【答案】解:设用x张铁皮生产盒底,则用(110-x)张铁皮生产盒身,依题意可列方程10x=6(110-x)×2.解得x=60.于是110-x=50.答:用60张铁皮生产盒底,用50张铁皮生产盒身,才能使生产出来的盒底和盒身恰好配套.23. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.24. 【答案】[解析] 根据相等关系“这两天共读了整本书的38”列一元一次方程求解.解:设这本名著共有x页.根据题意,得36+14(x -36)=38x .解得x =216. 答:这本名著共有216页.25. 【答案】12【解析】由2221111ax bx cxab a bc b ca c ++=++++++得2111a b c x ab a abc bc b ca c ⎛⎫⨯++= ⎪++++++⎝⎭,1211b c x bc b abc ca c +⎛⎫⨯+= ⎪++++⎝⎭,()()12111b bcx b ca c b ca c ⎛⎫+⨯+= ⎪ ⎪++++⎝⎭,()211abc b bcx b ca c ++⨯=++故12x =.。
人教版七年级数学上册第四章几何图形复习试题一(含答案) 如图,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?【答案】圆锥,圆柱,正方体,三棱柱;【解析】【分析】根据常见的几何体的平面展开图,进行分析判断,即可得到答案.【详解】解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,圆柱,正方体,三棱柱;故答案为:圆锥,圆柱,正方体,三棱柱;【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.92.图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开条棱,需剪开棱的棱长的和的最大值为cm.【答案】(1)9,5;(2)见解析;(3)5,31.【解析】【分析】(1)n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;(2)利用三棱柱及其表面展开图的特点解题;(3)三棱柱有9条棱,观察三棱柱的展开图可知没有剪开的棱的条数是4条,相减即可求出需要剪开的棱的条数.【详解】(1)这个三棱柱有条9棱,有个5面,故答案为:9,5;(2)如图(答案不唯一);(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条),故至少需要剪开的棱的条数是5条,需剪开棱的棱长的和的最大值为:7×3+5×2=31(cm),故答案为:5,31.【点睛】本题主要考查的是认识立体图形,明确n棱柱有n个侧面,2个底面,3n 条棱,2n个顶点;能够数出三棱柱没有剪开的棱的条数是解答此题的关键.93.如图,请在横线上写出哪种立体图形的表面能展开成下面的图形.【答案】圆柱,圆锥,三棱柱,六棱柱,四棱柱(长方体),三棱柱.【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,按照从左往右的顺序,分别为圆柱,圆锥,三棱柱,六棱柱,四棱柱(长方体),三棱柱.故答案为:圆柱,圆锥,三棱柱,六棱柱,四棱柱(长方体),三棱柱.【点睛】本题考查了展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解题的关键.94.如图所示的三个图形经过折叠都能围成棱柱吗?先想一想,再折一折.并说出能围成的棱柱的名称.【答案】都能围成棱柱,依次为四棱柱(长方体),五棱柱,三棱柱.【解析】【分析】本题是操作问题,可以尝试操作,或想象操作.根据棱柱的特征,特别是侧面和上下两个底面的位置特征作答.【详解】第一个图形可以围成直四棱柱;第二个图折叠后可以围成五棱柱;第三个图形,将两个长方形往中间的那个面折叠,即可得一三棱柱.可以折成三棱柱.【点睛】本题考查了展开图折叠成几何体,熟练掌握常见立体图形的平面展开图的特征,是解题的关键.95.圆锥的侧面展开图是扇形,这个扇形可以是直角扇形也可以是半圆,请问这个扇形可以是整个圆吗?【答案】不可以是整个圆.【分析】根据圆锥的定义解答即可.【详解】解:圆锥的侧面展开图是扇形,这个扇形可以是直角扇形也可以是半圆,但这个扇形不可以是整个圆.【点睛】本题考查了圆锥的特征,明确圆锥立体图形的特征是解题的关键.96.将如图所示的平面图形折叠后形成的图形的名称依次是________、________、________.【答案】圆柱,六棱柱,圆锥.【解析】【分析】根据平面展开图的特征作答即可.【详解】一个长方形和两个圆折叠后,能围成的几何体是圆柱,所以第一个图形为圆柱;第二个图形折叠后能折成六棱柱;第三个图形,由一个扇形和一个圆形能围成圆锥.故答案为圆柱;六棱柱;圆锥.本题考查了展开图折叠成几何体,熟记常见立体图形的平面展开图的特征是解题的关键.97.指出如图所示的图形分别是什么图形的表面展开图.①②【答案】①是圆锥的表面展开图,②是圆柱的4表面展开图.【解析】【分析】根据几何体的平面展开图的特征分别进行判定即可.【详解】解:①是圆锥的展开图;②是圆柱的展开图.【点睛】本题考查了几何体展开图的知识点,熟记常见几何体的平面展开图的特征,是解决问题的关键.98.如图,在第一行中找出与第二行对应的几何体的表面展开图,并用线把它们连起来.?【答案】见解析.【解析】【分析】观察图形根据几何体和展开图的形状判定即可.【详解】解:如图所示.【点睛】本题考查了几何体的展开图,熟记常见几何体的展开图是解题的关键.99.如图,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.【答案】见解析.【解析】【分析】根据正方体有六个面,所以展开后两对面是横隔一行或竖隔一列继而得到C 的位置,【详解】解:如图.【点睛】本题考查了运用正方体的相对面解答问题,掌握:正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形是解题的关键.100.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接起来;(2)已知小正方体的边长为a,求这个几何体(*)的体积和表面积.【答案】(1)详见解析;(2)体积是:34a,表面积是:218a.【解析】【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:3⨯⨯⨯=,44a a a a表面积是:21818⨯⨯=.a a a【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.。
2020年秋人教版数学七上期末复习专题:
找规律之解答题专项(一)
1.古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数(三边形数);类似的,称图2中的1,4,9,16,这样的数为正方形数(四边形数).
(1)请你写出既是三角形数又是正方形数,且大于1的最小正整数为;
(2)记第n个k边形数为N(n,k).例如N(1,3)=1,N(2,3)=3,N(2,4)=4.
①N(3,3)=,N(n,3)=,N(n,4)=.
②通过进一步研究发现N(n,5)=n2﹣n,N(n,6)=2n2﹣n,请你推测N(n,k)(k≥3)的表达式,并由此计算N(10,24)的值.
2.学校餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有5张桌子时,两种摆放方式各能坐多少人?
(2)当有n张桌子时,两种摆放方式各能坐多少人?
(3)、新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打
算选择哪种方式来摆放餐桌?为什么?
3.如图1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图2;第2次画线分割成7个互不重叠的正方形,得到图3……以后每次只在上次得到图形的左上角的正方形中画线.
尝试:第3次画线后,分割成个互不重叠的正方形;
第4次画线后,分割成个互不重叠的正方形.
发现:第n次画线后,分割成个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.
探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.。
人教版七年级数学上册第一章有理数单元训练试题含解析一.选择题(共6小题)1.下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数()A.1个B.2个C.3个D.5个2.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1C.a+1和b﹣1D.2a和2b3.a﹣|a|的值是()A.0B.2a C.2a或0D.不能确定4.某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣95.下列说法正确的是()A.准确数18精确到个位B.5.649精确到0.1是5.7C.近似数18.0的有效数字的个数与近似数18相同D.由四舍五入将3.995精确到百分位是4.006.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或4二.填空题(共5小题)7.若|m|=3,|n|=2且m>n,则2m﹣n=.8.如果|x|=﹣x,那么x=.9.若|a|=3,|b|=5,且a、b异号,则a•b=.10.大于1的正整数m的三次方可“分裂”成若干个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则m的值是.11.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是.三.解答题(共10小题)12.将下列各数分别填入相应的大括号里:3.14,﹣(+2),+43,﹣0.,﹣10%,,0,|﹣23|,﹣(﹣1)2整数集合:{…}负分数集合:{…}非负整数集合:{…}.13.(﹣)++|﹣0.75|+(﹣)+.14.简便计算:(﹣5)×(﹣3)+(﹣7)×+(﹣12)×.15.已知a与﹣3互为相反数,b与﹣互为倒数,求a﹣b的值.16.若x2=4,|y|=2,且x<y,求x+y和(x﹣y)2的值.17.定义新运算.a⊗b=a2﹣|b|,如3⊗(﹣2)=32﹣|﹣2|=9﹣2=7,计算下列各式.(1)(﹣2)⊗3;(2)5⊗(﹣4);(3)(﹣3)⊗(0⊗(﹣1))18.小聪学习了有理数后,对知识进行归纳总结.【知识呈现】根据所学知识,完成下列填空:(1)|﹣2|=2,|2|=2;(2)(﹣3)2=9,32=9;(3)若|x|=5,则x=;(4)若x2=4,则x=.【知识归纳】根据上述知识,你能发现的结论是:【知识运用】运用上述结论解答:已知|x+1|=4,(y+2)2=4,求x+y的值.19.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?20.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为|x+2|;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=.21.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.参考答案一.选择题(共6小题)1.解:①在有理数中,0的意义不仅表示没有,在进行运算时,0还表示正整数与负整数的分界等,故①错误;②整数包括正整数、负整数和0,故②错误;③整数和分数统称为有理数,故③错误;④整数包括正整数和负整数、0,因此0不是最小的整数,故错误;⑤所有的分数都是有理数,因此正确;综上,⑤正确,故选:A.2.解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选:B.3.解:当a≥0时,a﹣|a|=a﹣a=0;当a<0时,a﹣|a|=a+a=2a;故a﹣|a|的值是2a或0.故选:C.4.解:0.000000005=5×10﹣9.故选:D.5.解:A、准确数不存在精确问题,故本选项错误;B、5.649精确到0.1是5.6,故本选项错误;C、近似数18.0精确到十分位,18精确到个位,故本选项错误;D、由四舍五入将3.995精确到百分位是4.00,故本选项正确;故选:D.6.解:∵AB=|3﹣(﹣1)|=4,点P到A、B两点的距离之和为6,设点P表示的数为x,∴点P在点A的左边时,﹣1﹣x+3﹣x=6,解得:x=﹣2,点P在点B的右边时,x﹣3+x﹣(﹣1)=6,解得:x=4,综上所述,点P表示的数是﹣2或4.故选:D.二.填空题(共5小题)7.解:∵|m|=3,|n|=2且m>n,∴m=3,n=±2,(1)m=3,n=2时,2m﹣n=2×3﹣2=4(2)m=3,n=﹣2时,2m﹣n=2×3﹣(﹣2)=8故答案为:4或8.8.解:∵|x|=﹣x,∴x=非正数.故答案为:非正数.9.解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a、b异号,∴a=3,b=﹣5或a=﹣3,b=5.∴ab=﹣15.故答案为:﹣15.10.解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=1007,n=503,∴奇数1007是从3开始的第503个奇数,∵=495,=527,∴第503个奇数是底数为32的数的立方分裂的奇数的其中一个,即m=32.故答案为:32.11.解:由题意可知,当n=9时,历次运算的结果是:3×9+5=32,=1(使得为奇数的最小正整数为16),1×3+5=8,=1,…故32→1→8→1→8→…,即从第四次开始1和8出现循环,偶数次为1,奇数次为8,∴当n=9时,第2019次“F运算”的结果是8.故答案为:8.三.解答题(共10小题)12.解:整数集合:{﹣(+2),+43,0,|﹣23|,﹣(﹣1)2}负分数集合:{﹣0.,﹣10%}非负整数集合:{+43,0,|﹣23|}.故答案为:﹣(+2),+43,0,|﹣23|,﹣(﹣1)2;﹣0.,﹣10%;+43,0,|﹣23|.13.解:原式=﹣0.75+3+0.75﹣5.5+2=6﹣5.5=0.5.14.解:(﹣5)×(﹣3)+(﹣7)×(﹣3)+(﹣12)×3,=5×3+7×3﹣12×3=3×(5+7﹣12)=3×0=0.15.解:∵a与﹣3互为相反数,b与﹣互为倒数,∴a=3,b=﹣2.∴a﹣b=3﹣(﹣2)=3+2=5.16.解:∵x2=4,|y|=2,且x<y,∴x=﹣2,y=2.∴x+y=﹣2+2=0,(x﹣y)2=(﹣2﹣2)2=(﹣4)2=16.17.解:(1)(﹣2)⊗3=(﹣2)2﹣|3|=4﹣3=1;(2)5⊗(﹣4))=52﹣|﹣4|=25﹣4=21;(3)根据题中的新定义得:0⊗(﹣1)=0﹣1=﹣1,则(﹣3)⊗(0⊗(﹣1))=(﹣3)⊗(﹣1)=9﹣1=8.18.解:【知识呈现】(3)若|x|=5,则x=±5;(4)若x2=4,则x=±2.【知识归纳】根据上述知识,你能发现的结论是:绝对值等于一个正数的数有两个,平方等于一个正数的数有两个;【知识运用】根据题意得:x+1=4或﹣4,y+2=2或﹣2,解得:x=3或﹣5,y=0或﹣4,当x=3,y=0时,x+y=3;当x=3,y=﹣4时,x+y=﹣1;当x=﹣5,y=0时,x+y=﹣5;当x=﹣5,y=﹣4时,x+y=﹣9.综上所述,x+y的值是3,﹣1,﹣5,﹣9..故答案为:±5;±2;绝对值等于一个正数的数有两个,平方等于一个正数的数有两个.19.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)20.解:(1)数轴上表示﹣2和﹣5的两点之间的距离=|﹣2﹣(﹣5)|=3; 数轴上表示数x 和3的两点之间的距离=|x ﹣3|; 数轴上表示数x 和﹣2的两点之间的距离表示为|x +2|; (2)①当﹣2≤x ≤3时,|x +2|+|x ﹣3|=x +2+3﹣x =5; ②当x >3时,x ﹣3+x +2=7, 解得:x =4,当x <﹣2时,3﹣x ﹣x ﹣2=7. 解得x =﹣3. ∴x =﹣3或x =4.故答案为:(1)3;|x ﹣3|;x ;﹣2;(2)5;﹣3或4.21.解:(1)点P 运动至点C 时,所需时间t =10÷2+10÷1+8÷2=19(秒), (2)由题可知,P 、Q 两点相遇在线段OB 上于M 处,设OM =x . 则10÷2+x ÷1=8÷1+(10﹣x )÷2, 解得x =.故相遇点M 所对应的数是.(3)P 、O 两点在数轴上相距的长度与Q 、B 两点在数轴上相距的长度相等有4种可能: ①动点Q 在CB 上,动点P 在AO 上,则:8﹣t =10﹣2t ,解得:t =2. ②动点Q 在CB 上,动点P 在OB 上,则:8﹣t =(t ﹣5)×1,解得:t =6.5. ③动点Q 在BO 上,动点P 在OB 上,则:2(t ﹣8)=(t ﹣5)×1,解得:t =11. ④动点Q 在OA 上,动点P 在BC 上,则:10+2(t ﹣15)=t ﹣13+10,解得:t =17. 综上所述:t 的值为2、6.5、11或17.人教版七年级数学单元测试(含答案)——第1章有理数单元培优试题一、选择题1.下列各数中,不是负数的是( ) A .-2 B .3 C .-85D .-0.102.在数轴上距离原点8个单位长度的点所表示的数是( ) A. 8 B. -8 C. 8或-8 D. 4或-43.大于-0.5而小于4的整数共有 ( )A.6个B.5个C.4个D.3个 4.计算1-(-1)的结果是( )A .2B .1C .0D .-2 5.-2.5、0、2、-3这四个数中最小的是 A. 2 B. 0 C. -2 D. -3 6.下列各式计算正确的是( ) A .(-14)-5=-9 B .0-(-3)=3C .(-3)-(-3)=-6D .|5-3|=-(5-3)7.图1所示的数轴的单位长度为1,若点A ,B 表示的两个数的绝对值相等,则点A 表示的数是( ) A .4 B .0 C .-2 D .-48.下列各式结果为负数的是() A. -(-1) B. (-1)2C. -|-1|D. [-(-1)3]29.数学家斐波那契的《计算书》中有这样一个问题:在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘,则刀鞘数为( )A .42只B .49只C .76只D .77只10.有理数a ,b 在数轴上对应的位置如图2所示,则下列结论中正确的是( ) A .a+b >0 B .a-b=0 C .a-b >0 D .ab <0二、填空题11.下列各数中:-6,+2.5,5,0,-1,,100,10%.正数有:________;负数有:14.-的相反数是_____,-的倒数是_____,-的绝对值是_____. 15.已知n 为正整数,计算:()[]20171-11-++⨯n = . 16.已知2+32=22×32,3+83=32×83,4+154=42×154,…若14+b a =142×ba (a ,b 均为正整数),则a+b= .20.计算(1)-20+(-14)-(-18)-13;(2)(4) (-81)÷+÷(-16);(5)21. 我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22. 在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地的什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?答案1. B2. C3. C4. A5. D6. B7. C 8. C9. C10. D11. +2.5,5,100,10%;-6,-1,12.点D13. 1.8114. ; -3; 15. 2016或201716. 20917. -718. 解:在数轴上表示如图1所示.219. 解:方方的计算过程不正确.正确的计算过程:原式=6÷(-63+62)=6÷(-61)=6×(-6)=-36. 20. 解:(1)原式=-20-14+18-13=-20-14-13+18=-47+18=-29;(2)原式=-32+21-4= -15;(3)原式==;(4)原式===;(5)原式= = = ==;人教版七年级数学上第一章有理数单元测试(含答案)一、单选题1.下列四个数中,在 到 之间的数是( ).A. B. C. D.2.下列各组量中,不是互为相反意义的量的是( )A.向南走5千米和向北走3千米B.增产10%和减产4%C.收人3000元和借款5000元D.比海平面高500米和比海平面低100米 3.某班数学平均分为88分,小丽的成绩是91分,小军的成绩是84分,如果小丽的成绩记为+3分,那么小军的成绩记为( )A.+84分B.+4分C.-4分D.-7分4.已知:点A 和点B 都在同一数轴上,点A 表示-2,点B 和点A 相距5个单位长度,则点B 表示的数是( )A .3B .-7C .-7或3D .7或-3 5.-3的相反数是( )A .13- B .3- C .3 D .136.在0,5-,()2--,23-各数中,负数的个数是( )A .0个B .1个C .2个D .3个7.在下列各数当中最小的数是( )A .2B .2-C .4-D .08.若a 与b 互为相反数,则 2a b +- 等于( )A .2B .2-C .1D .1-9.计算 的结果等于( )A.-9B.9C.-3D.3 10.–18的倒数是 A .–8 B .8C .–18D .18 11.计算的结果等于( ) A.B.2C.-2D. 12.下列各组数中,值相等的是( )A .32与23B .﹣22与(﹣2)2C .(﹣3)2与﹣(﹣32)D .2×32与(2×3)213.今年十一黄金周约有110万游客饱览凤凰美景,游客在游玩期间人均消费840元,凤凰黄金周的旅游收入用科学记数法表示为( )(保留三个有效数字)A .9.24×107元B .9.24×108元C .0.924×109元D .9.24×109元14.近似数304.25精确到( ).A.十分位B.百分位C.十位D.百位二、填空题15.若规定一种运算:a b ab a b *=+-,则1(2)*-=___________.16.龙港,地处浙江省南部,位于浙江八大水系之一鳌江入海口南岸,东濒东海,西接104国道、沈海高速公路和温福铁路,南依江南平原,北为鳌江,版图面积约172000000平方米,172 000 000平方米用科学记数法表示为_____平方米.17.若47a -与3a 互为相反数,则221a a -+的值为____________18.若a,b 互为相反数,则a+2a+…+100a+100b+99b+…+b=________;三、解答题19.请计算:(1)131123-2 1.25848⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭; (2)()32018112122⎛⎫-+-⨯---- ⎪⎝⎭; (3)11112-342⎛⎫-⨯+ ⎪⎝⎭. 20.某粮库 3 天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库): +26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这 3 天,仓库里的粮食是增加了还是减少了?(2)经过这 3 天,仓库管理员结算时发现库里还存 280 吨粮,那么 3 天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨 5 元,那么这 3 天要付多少装卸费?21.在数轴上有三个点A 、B 、C ,如图所示.(1)将点B 向左平移4个单位,此时该点表示的数是________;(2)将点C 向左平移3个单位得到数m。
人教版七年级数学上册总复习练习题及答案人教版七年级数学上册精品练题第一章有理数一、填空题(每空2分,共38分)1、-的倒数是____;1的相反数是____。
答案:-1,-12、比-3小9的数是____;最小的正整数是____。
答案:-12,13、在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是4、答案:-15、某旅游景点11月5日的最低气温为-2℃,最高气温为8℃,那么该景点这天的温差是____。
答案:10℃6、计算:(-1)100+(-1)101=______。
答案:-27、平方得2的数是____;立方得-64的数是____。
答案:-√2,-48、+2与-2是一对相反数,请赋予它实际的意义:___________________。
答案:温度上升2℃和温度下降2℃9、绝对值大于1而小于4的整数有____,其和为_______。
答案:-3,-2,-1,0,1,2,3;010、若a、b互为相反数,c、d互为倒数,则3(a + b)-3cd=__________。
答案:011、若(a-1)2+|b+2|=,则a+b=_________。
答案:-412、数轴上表示数-5和表示-14的两点之间的距离是______。
答案:913、在数-5、1、-3、5、-2中任取三个数相乘,其中最大的积是_______,最小的积是_______。
答案:75,-7514、若m,n互为相反数,则|m-1+n|=_________。
答案:|m+n-1|二、选择题(每小题3分,共21分)15、有理数a、b在数轴上的对应的位置如图所示:则()A.a + b<0.B.a + b>0.C.a-b = 0.D.a-b>0答案:B16、下列各式中正确的是()A.a2=(−a)2B.a3=(−a)3.C.−a2=|−a2|D.a3=|a3|答案:A17、如果a+b>0,且ab<0,那么()A.a>0,b<0;B.a<0,b<0;C.a、b异号;D.a、b异号且负数和绝对值较小答案:C18、下列代数式中,值一定是正数的是(。
七年级上册第1章单元复习题(一)一.选择题1.一个数在数轴上对应的点与它的相反数在数轴上对应的点的距离是6个单位长度,则这个数是()A.6或﹣6B.﹣3或3C.6或3D.﹣6或﹣32.若|x|=|y|,则x与y的关系是()A.相等或互为相反数B.都是零C.互为相反数D.相等3.若a的相反数是2,|b|=3,且a,b异号,求a﹣b的值()A.﹣1B.5C.1D.﹣54.下列计算正确的是()A.1÷=B .÷2=C .÷=2D .÷=15.下列说法正确的个数是()①0仅表示没有;②一个有理数不是整数就是分数;③正整数和负整数统称为整数;④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等.A.1B.2C.3D.4第1页(共1页)6.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.47.如果a>0,b<0,|a|<|b|,则a,b,﹣a,﹣b的大小关系是()A.﹣b>a>﹣a>b B.a>b>﹣a>﹣b C.﹣b>a>b>﹣a D.b>a>﹣b>﹣a 8.如果比例的两个外项互为倒数,那么比例的两个内项成()A.正比例B.反比例C.不成比例D.无法确定9.有两个正数a,b,且a<b,把大于等于a且小于等于b所有数记作[a,b],例如大于等于1且小于等于4的所有数记作[1,4].如果m在[5,15]内,n在[20,30]内,那么的一切值中属于整数的有()A.1,2,3,4,5B.2,3,4,5,6C.2,3,4D.4,5,610.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种键盘密码,每个字母与所在按键的效字序号对应(如图),如字母Q与效字序号0对应,当明文中的字母对应的序号为a时,将a+7除以26后所得的余数作为密文中的字母对应的序号,例如明文“X”对应密文“W”.按上述规定,将密文“TKGDFY”解密成明文后是()第1页(共1页)A.DAISHU B.TUXING C.BAIYUN D.SHUXUE二.填空题11.若a=1,b是2的相反数,则|a﹣b|的值为.12.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是﹣1℃,乙此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低0.6℃,那么这个山峰的高度大约是米.13.在数轴上A、B两点分别表示的数是2和8,在数轴上,点A右侧有另外一点P到A、B的距离和是10,则点P表示的数是.14.如果abc>0且ab<0,那么+﹣=.15.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.三.解答题16.计算:(1)20﹣11+(﹣10)﹣(﹣11)(2)(﹣1)6×4+8÷(﹣)第1页(共1页)17.对于四个数“﹣8,﹣2,1,3”及四种运算“+,﹣,×,÷”,列算式解答:(1)求这四个数的和;(2)在这四个数中选出两个数,按要求进行下列计算,使得:①两数差的结果最小:②两数积的结果最大:(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.18.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?第1页(共1页)19.某出租车一天下午某时间段以广场为出发点,在东西方向的大道上营运,规定向东为正,向西为负,单次行车里程依先后顺序记录如下:+9,﹣3,﹣5,+4,﹣8,+7,﹣2,﹣5,+8,﹣4(单位:km)(1)该出租车司机将最后一名乘客送到目的地后,出租车在广场的什么方向?距广场多远?(2)若每千米耗油0.08升,该出租车这个时间段共耗油多少升?20.规定一种新的运算△:a△b=a(a+b)+a﹣b.例如,1△2=1×(1+2)+1﹣2=2.(1)10△12=.(2)若x△3=﹣7,求x的值.(3)求代数式﹣2x△4的最小值.第1页(共1页)参考答案一.选择题1.解:因为互为相反数的两数的绝对值相等,设这个数为a,则|a|+|﹣a|=6,所以a=±3.故选:B.2.解:∵|x|=|y|,∴x=y或x=﹣y,∴x与y的关系是相等或互为相反数.故选:A.3.解:∵a的相反数是2,∴a=﹣2,∵|b|=3,且a,b异号,∴b=3,∴a﹣b=﹣2﹣3=﹣5.故选:D.4.解:A、1÷=1×=,故A错误;B 、÷2=×=,故B错误;第1页(共1页)C 、÷=×3=2,故C正确;D 、÷=×4=,故D错误.故选:C.5.解:0不仅表示没有,还是正数、负数的分界线,因此①不正确;整数和分数统称有理数,因此②正确;正整数,0,负整数都是整数,因此③不正确;0的绝对值是0,而0不是正数也不是负数,因此④不正确;根据绝对值和相反数的意义,可得互为相反数的两个数在数轴上对应的两个点到原点的距离相等,因此⑤正确;综上所述,正确的有②⑤,故选:B.6.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.7.解:∵a>0,b<0,|a|<|b|,∴﹣a<0,﹣b>a,第1页(共1页)∴﹣b>a>﹣a>b.故选:A.8.解:如果比例的两个外项互为倒数,那么比例的两个内项成反比例.故选:B.9.解一:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴的一切值中属于整数的有=2,=3,=4,=5,=6.故选:B.解二:∵m在[5,15]内,n在[20,30]内,∴5≤m≤15,20≤n≤30,∴≤≤,即≤≤6,∴的一切值中属于整数的有2,3,4,5,6.故选:B.10.解:由“明文”与“密文”的转换规则可得:故选:C.第1页(共1页)11.解:根据题意得:a=1,b=﹣2,则原式=|1﹣(﹣2)|=|1+2|=3.故答案为:3.12.解:[5﹣(﹣1)]÷0.6×100=(5+1)÷0.6×100=6÷0.6×100=10×100=1000(米),即这个山峰的高度大约是1000米,故答案为:1000.13.解:∵数轴上A、B两点分别表示的数是2和8,∴AB=|8﹣2|=6,又∵点A右侧有另外一点P到A、B的距离和是10,∴点P在点B的右侧,设点P所表示的数为x,则(x﹣2)+(x﹣8)=10,解得x=10,故答案为:10.14.解:∵abc>0且ab<0,第1页(共1页)对a的值分类讨论如下:①设a>0,∵ab<0,∴b<0,bc>0,∴+﹣=++=1﹣2﹣=﹣;②设a<0,∵ab<0,∴b>0,bc<0,∴+﹣=++=﹣1+2+=;故答案为:﹣或.15.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.三.解答题16.解:(1)20﹣11+(﹣10)﹣(﹣11)=20+(﹣11)+(﹣10)+11=10;(2)(﹣1)6×4+8÷(﹣)=1×4+8×(﹣)第1页(共1页)=4+(﹣14)=﹣10.17.解:(1)(﹣8)+(﹣2)+1+3=﹣10+4=﹣6;(2)①根据题意得:(﹣8)﹣3=﹣8﹣3=﹣11;②根据题意得:(﹣8)×(﹣2)=16;(3)根据题意得:(﹣8)÷(﹣2)﹣3=1或(﹣8)÷(﹣2)﹣1=3.18.解:(1)线段AB=﹣2﹣(﹣11)=9.(2)∵M是线段AB的中点,∴点M在数轴上对应的数为(﹣2﹣11)÷2=﹣6.5.(3)设AB′=x,因为AB ′=B′C,则B′C=5x.所以由题意BC=B′C=5x,所以AC=B′C﹣AB′=4x,所以AB=AC+BC=AC+B′C=9x,即9x=9,所以x=1,所以由题意AC=4,又因为点A表示的数为﹣2,﹣2﹣4=﹣6,第1页(共1页)所以点C在数轴上对应的数为﹣6.故答案为:9;﹣6.5.19.解:(1)(+9)+(﹣3)+(﹣5)+(+4)+(﹣8)+(+7)+(﹣2)+(﹣5)+(+8)+(﹣4)=9﹣3﹣5+4﹣8+7﹣2﹣5+8﹣4=(9+4+7+8)﹣(3+5+8+2+5+4)=28﹣27=1(km).所以出租车司机将最后一名乘客送到目的地后,出租车在广场的东面,距广场1km;(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+7|+|﹣2|+|﹣5|+|+8|+|﹣4|=9+3+5+4+8+7+2+5+8+4=55千米.55×0.08=4.4升.所以该出租车这个时间段共耗油4.4升.20.解:(1)∵a△b=a(a+b)+a﹣b,∴10△12=10×(10+12)+10﹣12=218.(2)∵x△3=﹣7,∴x(x+3)+x﹣3=﹣7,第1页(共1页)∴x2+4x+4=0,解得x=﹣2.(3)∵a△b=a(a+b)+a﹣b,∴﹣2x△4=﹣2x(﹣2x+4)﹣2x﹣4=4x2﹣10x﹣4=(2x﹣2.5)2﹣10.25∴2x﹣2.5=0,即x=1.25时,﹣2x△4的最小值是﹣10.25.故答案为:218.第1页(共1页)。
2020年秋人教版数学七上期末复习专题:找规律之选择题专项(一)1.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,…,则第⑧个图形中棋子的颗数为()A.84 B.108 C.135 D.1522.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2 D.4n+23.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n4.将一根绳子对折1次后从中间剪一刀,绳子变成3段;将一根绳子对折2次后从中间剪一刀,绳子变成5段;…将一根绳子对折n次后从中间剪一刀,绳子变成的段数是()A.n+2 B.2n+1 C.n2+1 D.2n+15.下列图形都是由同样大小的矩形按一定的规律组成,其中第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑧个图形中矩形的个数为()A.38 B.41 C.44 D.486.下列图形都是由同样大小的圆按一定的规律组成,其中,第(1)个图形中一共有2个圆;第(2)个图形中一共有7个圆;第(3)个图形中一共有16个圆;第(4)个图形中一共有29个圆,…,则第(8)个图形中圆的个数为()A.121 B.113 C.92 D.1917.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18 B.19 C.20 D.218.下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A.160 B.161 C.162 D.1639.用三个单位正方形,仅能拼出和两种不同图形(拼图时要求两个相接的单位正方形有一条边完全重合,并且各正方形不重叠).如果全等的图形算一种,那么用四个单位正方形能拼出的不同图形的种数是()A.4 B.5 C.6 D.多于610.观察下列一组图形中点的个数,其中第①个图形中共有3个点,第②个图形中共有9个点,第③个图形中共有18个点,按此规律,第⑥个图形中共有点的个数是()A.63 B.84 C.108 D.15211.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律第6个图中共有点的个数是()A.46 B.63 C.64 D.7312.如图,是由相同大小的圆点按照一定规律摆放而成,按此规律,则第n个图形中圆点的个数为()A.n+1 B.n2+n C.4n+1 D.2n﹣113.下列图形都是由同样大小〇的按一定的规律组成的,其中第1个图形一共有4个〇,第2个图形一共有9个〇,第3个图形一共有15个〇,…则第70个图形中〇的个数为()A.280 B.349 C.2485 D.269514.如图,下列图形都是由相同的花按照一定的规律摆成的,按照此规律摆下去,第n个的图形中有160朵花,则n的值是()A.40 B.41 C.42 D.4315.下列图案是用长度相同的小木棒按一定规律拼搭而成,图案①需8根小木棒,图案②需15根小木棒,…,按此规律,图案⑦需小木棒的根数是()A.49 B.50 C.55 D.5616.观察下列图形,它们是按一定规律排列的,依照此规律,第n个图形有()个太阳.A.2n B.n+2n﹣1C.n+2n D.2n17.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子()A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚18.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.19.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n次后,共得到49个小正三角形,则n的值为()A.n=13 B.n=14 C.n=15 D.n=1620.如图,用黑白两种颜色的平行四边形纸片,按黑色纸片数逐渐增加1的规律拼成下列图形,若第n个图案中有2020个白色纸片,则n的值为()A.674 B.673 C.672 D.671参考答案1.解:第①个图形有3颗棋子,第②个图形一共有3+6=9颗棋子,第③个图形一共有3+6+9=18颗棋子,第④个图形有3+6+9+12=30颗棋子,…,第⑧个图形一共有3+6+9+…+24=3×(1+2+3+4+…+7+8)=108颗棋子.故选:B.2.解:∵第一个图案中,有白色的是6个,后边是依次多4个.∴第n个图案中,是6+4(n﹣1)=4n+2.故选:D.3.解:由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n.故选:A.4.解:∵对折1次从中间剪断,有21+1=3;对折2次,从中间剪断,有22+1=5.∴对折n次,从中间剪一刀全部剪断后,绳子变成2n+1段.故选:D.5.解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,∴第n个图形矩形的个数是5n+1当n=8时,5×8+1=41个.故选:B.6.解:第(1)个图形中最下面有1个圆,上面有1个圆共有2个;第(2)个图形中最下面有2个圆,上面有1+3+1个圆共有7个;第(3)个图形中最下面有3个圆,上面有1+3+5+3+1个圆共有16个;…第(n)个图形中共有(2n2﹣n+1)个圆;第(8)个图形中共有2×82﹣8+1=121,故选:A.7.解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.8.方法一:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故选B.方法二:,,,,…,∴,⇒(a2﹣a1)+(a3﹣a2)+(a4﹣a3)+…+(a n﹣a n﹣1)=a n﹣a1,∴a n﹣a1=4×(3+32+…+3n﹣1)=4×(3+32+…+3n﹣1)=(用错位相减法可求出)∴,∵a1=5,∴.9.解:如图所示:共有如图5种不同图形.故选:B.10.解:第1个图中共有1×3=3个点,第2个图中共有1×3+2×3=9个点,第3个图中共有1×3+2×3+3×3=18个点,…第n个图有1×3+2×3+3×3+…+3n个点.所以第6个图中共有点的个数是1×3+2×3+3×3+…+6×3=63.故选:A.11.解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第6个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3+6×3=64.故选:C.12.解:观察图形的变化可知:第1个图形中圆点的个数为4+1=5;第2个图形中圆点的个数为4×2+1=9;第3个图形中圆点的个数为4×3+1=13;…发现规律,则第n个图形中圆点的个数为(4n+1).故选:C.13.解:∵第①个图形中基本图形的个数4=3×1+,第②个图形中基本图形的个数8=3×2+,第③个图形中基本图形的个数11=3×3+,…∴第n个图形中基本图形的个数为3n+当n=70时,3×70+=2695,故选:D.14.解:观察图形的变化,可知第1个图形中有花朵数:4=1×4第2个图形中有花朵数:8=2×4第3个图形中有花朵数:12=3×4…第n个图形中有花朵数:4n.所以4n=160n=40故选:A.15.解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故选:B.16.解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳,所以第n个图形共有(n+2n﹣1)个太阳.故选:B.17.解:n=1时,棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;…;n=n时,棋子个数为n×4=4n.故选:B.18.解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.19.解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,∴第n次操作后,正三角形的个数为3n+1.则:49=3n+1,解得:n=16,故若要得到49个小正三角形,则需要操作的次数为16次.故选:D.20.解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2020,解得:n=673,故选:B.。
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
七年级数学人教版总复习专项测试题(一)
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、由不等式可以推出,那么的取值范围是().
A.
B.
C.
D.
【答案】B
【解析】解:∵两边同时除以,
得到,
∴不等号的方向改变了,
∴根据不等式的基本性质可得:.
故答案应选:.
2、下列各数中,既不是正数也不是负数的是().
A.
B.
C.
D.
【答案】A
【解析】解:既不是正数也不是负数;是负数;和是正数.
故答案为:.
3、在绘制频数直方图时,若一组数据的最大值与最小值的差是,取组距为,则分成的组数是()。
A.
B.
C.
D.
【答案】B
【解析】解:最大值与最小值的差是,组距为,
,
需要分成组。
4、如果,两个整式进行加法运算的结果为,则,这两个整式不可能是()
A. 和
B. 和
C. 和
D. 和
【答案】C
【解析】解:;
;
;
.
5、下列关于平角和周角的说法正确的是()
A. 平角是一条线段
B. 周角是一条射线
C. 两个锐角的和不一定小于平角
D. 反向延长射线,就形成一个平角
【答案】D
【解析】解:
平角是角,是有公共端点的两条射线组成的图形,不是直线,错误;
周角是角,是有公共端点的两条射线组成的图形,是两条射线,错误;
锐角大于而小于,所以两个锐角的和小于,错误;
反向延长射线,成为角的顶点,正确.
6、某数的倍大于,它的倍不大于,设某数为,则可列不等式组()
A.
B.
C.
D.
【答案】A
【解析】解:
根据题意得:.
7、如果单项式是六次单项式,那么()
A.
B.
C.
D.
【答案】D
【解析】解:
单项式是六次单项式,
,
解得.
故正确答案是:.
8、下面是反映世界人口情况的数据:年、年、年、年的世界人口数依次为亿、亿、亿、亿,预计年世界人口将达亿,
年世界人口将达亿.上面的数据不能制成()
A. 统计表
B. 条形统计表
C. 折线统计表
D. 扇形统计表
【答案】D
【解析】解:
扇形统计图表示各部分数同总数之间的关系与比例,因此题目中表示人口的变化,不能用扇形统计图.
9、如图所示,是家禽孵化期统计表:孵化期最短是()天,是()动物.
A. ,鸭
B. ,鹅
C. ,鸡
D. ,鸽子
【答案】D
【解析】解:
由表中信息可得:孵化期最短是鸽子,需要天.
10、若关于的方程是一元一次方程,则这个方程的解是()
A.
B.
C.
D.
【答案】A
【解析】由一元一次方程的特点得,即,
则这个方程是,
解得:.
11、在“世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道个成年人,结果有个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是()
A. 调查的方式是普查
B. 该街道约有的成年人吸烟
C. 该街道只有个成年人不吸烟
D. 样本是个吸烟的成年人
【答案】B
【解析】解:
根据题意,随机调查个成年人,是属于抽样调查,这个人中人吸烟不代表本地区只有个成年人吸烟,样本是个成年人,所以本地区约有的成年人吸烟.
12、不等式的正整数解有()
A. 个
B. 个
C. 个
D. 个
【答案】B
【解析】解:
不等式的解集是,
故不等式的正整数解为,共个.
13、下列不等式中,一元一次不等式有()
①
;②;③;④;⑤
.
A. 个
B. 个
C. 个
D. 个
【答案】C
【解析】解:
①存在二次项,错误;
②未知数在分母上,错误;
③有两个未知数,所以不是一元一次不等式,错误;
④⑤是一元一次不等式.
故一元一次不等式有个.
14、汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()
A. 以上答案都不对
B. 面动成体
C. 线动成面
D. 点动成线
【答案】C
【解析】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.
15、下列说法中:
①棱柱的上、下底面的形状相同;
②若,则点为线段的中点;
③相等的两个角一定是对顶角;
④不相交的两条直线叫做平行线;
⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.
正确的有()
A. 个
B. 个
C. 个
D. 个
【答案】B
【解析】解:
①棱柱的上、下底面的形状相同,此选项正确;
②若,则点为线段的中点,不一定在一条直线上,故此选项错误;
③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;
④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;
⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.
故正确的为①⑤,共个.
二、填空题(本大题共有5小题,每小题5分,共25分)
16、若与的和是,则。
【答案】-2
【解析】解:由题可知,所以。
17、棱柱的所有侧棱长都_________,棱柱的上、下底面的形状_________,侧面的形状都是平行四边形.
【答案】相等,相同
【解析】解:棱柱的所有侧棱长都相等,棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.
18、若为实数,且,则的值是______.
【答案】
【解析】解:
,
,,
,
.
19、某市今年月份日最低气温随日期变化的折线统计图如图所示,那么该市这天最低气温在以上(不含)的天数有天.
【答案】5
【解析】解:
由图知,该市这天最低气温在以上(不含)的天数有天.
20、如图,点是线段上一点,点、分别是线段、的中点,如果
,其中,那么______.
【答案】
【解析】解:
由题意得:,
可得:.
三、解答题(本大题共有3小题,每小题10分,共30分)
21、当时,化简.
【解析】解:原式
,
正确答案是:.
22、抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修需个月完成,每月耗资万元;若由乙工程队单独修建需个月完成,每月耗资
万元.
(1) 请问甲、乙两工程队合作修建需几个月完成?共耗资多少万元?
【解析】设甲、乙两工程队合作需个月完成,
,
解得.
万元.
答:甲、乙两工程队合作修建需要个月完成,共耗资万元;
(2) 若要求最迟个月完成修建任务,请你设计一种方案,既保证按时完成任务,又
最大限度节省资金.(时间按整月计算)
【解析】设甲乙合做个月,剩下的由乙来完成.
,
解得.
故甲乙合作个月,剩下的由乙来做个月就可以.
23、如果单项式与是关于、的单项式,且它们是同类项.求
(1) 的值.
【解析】由单项式与是关于、的单项式,且它们是同类项,得,解得,
.
(2) 若,且,求的值.
【解析】由,且,
得,
解得,
.。