学年人教版七年级上《一元一次方程》章末检测卷
- 格式:docx
- 大小:18.09 KB
- 文档页数:6
人教版七年级数学上册《第三章一元一次方程》单元检测卷(附有答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知关于x的方程3−(m+1)x|m|=0是一元一次方程,则m的值为()A.1 B.-1C.1或-1 D.以上结果均不正确2.一项工程甲单独做需20天完成,乙单独做需30天完成,甲先单独做5天,然后甲、乙两人合作x天完成这项工程,则下面所列方程正确的是()A.520+x20+30=1 B.520+x20×30=1C.520+x30=1 D.5+x20+x30=13.下列方程中,解为x=2的方程是()A.7x−14=0B.3x+6=0C.12x=0D.4x=2 4.已知等式a=b,则下列等式中不一定成立的是()A.a+1=b+1B.2a−2b=0C.ac =bcD.ac=bc5.若x=2是关于x的方程2x+a=0的解,则a的值为()A.-1 B.-2 C.4 D.2 6.根据等式的性质,下列变形错误的是()A.若a=b,则a-1=b-1 B.若a2=b2,则a=bC.若a=b,则-3a=-3b D.若ac=bc,则a=b7.方程3x−74=x+175−1,去分母得()A.5(3x−7)=4(x+17)−1B.15x−35=4x+68C.5(3x−7)=4x+48D.5(3x−7)=4(x+17)8.某次数学竞赛共有20道题,已知做对一道得4分,做错一道或者不做扣1分,某同学最后的得分是50分,则他做对()道题.A.14 B.15 C.16 D.17二、填空题9.一个数的5倍比它的2倍多10,若设这个数为x,可得到方程.10.当x= 时,1-x与x−42的值相等.11.如果2x+3的值与1﹣3x的值互为相反数,那么x=.12.设M=2x−2,N=3x+3,若2M−N=1,则x的值是.13.小明和小红制作小红旗,100个小红旗两人合作20分钟完成,已知小明每分钟做2个,则小红每分钟做个.三、解答题14.解方程(1)4﹣3(2﹣x)=5x(2)x−22−1=x+13−x+86.15.方程2−3(x+1)=0的解与关于x的方程k+x2−3k−2=2x的解互为倒数,求k的值.16.若a、b为定值,关于x的方程2kx+a3=2+x−bk6,无论k为何值,此方程的解总是x=1,求a、b的值.17.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?18.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底相同.参考答案1.A2.D3.A4.C5.A6.D7.C8.A9.5x-2x=10 10.211.412.813.314.(1)x=﹣1;(2)x=3.15.k=1.16.{a=132b=−4.17.打开丙管后小时可注满水池18.(1)七年级2班有男生有24人,则女生有26人(2)男生应向女生支援4人时,才能使每小时剪出的筒身与筒底相同。
人教版七年级数学上册《第三章一元一次方程》单元测试卷-含参考答案一、选择题1.下列方程中是一元一次方程的是()A.x3−3=4+x4B.2x+3x−1C.x2−3x+3=0D.x+2y=32.若x=2是关于x的方程2x+a−4=0的解,则a的值为()A.−8B.0C.2D.8 3.下列说法正确的是()A.如果ac=bc,那么a=b B.如果a=b,那么a+1=b−1 C.如果a=b,那么ac=bc D.如果a2=b2,那么a=b 4.方程2y+1=5的解是()A.y=2B.y=12C.y=1D.y=525.方程3x+4=2x﹣5移项后,正确的是()A.3x+2x=4﹣5 B.3x﹣2x=4﹣5 C.3x﹣2x=﹣5﹣4 D.3x+2x=﹣5﹣46.将方程2x−12−x+13=1去分母后,得到3(2x-1)- 2x+1=6的结果错在()A.最简公分母找错B.去分母时漏乘3项C.去分母时分子部分没有加括号D.去分母时各项所乘的数不同7.某车间有25名工人,每人每天可生产100个螺钉或150个螺母,若1个螺钉需要配两个螺母,现安排名工人生产螺钉,则下列方程正确的是()A.B.C.D.8.某商场购进一批服装,每件服装销售的标价为400元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的进价是()A.160元B.180元C.200元D.220元二、填空题9.若(a−1)x2+ax+1=0是关于x的一元一次方程,则a=.10.已知两个方程3(x+2)=5x和4x−3(a−x)=6x−7(a−x)有相同的解,那么a的值是 .11.若关于x的方程x−4−ax6=x+46−1的解是正整数,则符合条件的所有整数a的和是。
12.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.13.为迎接初一新生,47中清华分校对校园重新美化装修.现计划对教室墙体重新粉刷一遍(所有教室面积相同).现有甲,乙两个装修队承担此项工作.已知甲队3天粉刷5个教室,结果其中有30平方米墙面未来得及粉刷;乙队5天粉刷7个教室外还多粉刷20平方米.已知甲队比乙队每天多粉刷10平方米,则每间教室的面积为平方米.三、解答题14.解方程:(1)(2)15.小马虎在解关于x的方程x−13=x+2m2−1去分母时,方程右边的“−1”没有乘以6,最后他求得方程的解为3.(1)求m的值;(2)求该方程正确的解.16.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?17.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?18.某校七年级3位老师带部分学生去红色旅游,联系了甲、乙两家旅行社,甲旅行社说:“老师免费,学生打八折。
人教版七年级数学上册《第五章一元一次方程》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.下列式子是一元一次方程的是()A.6x-5B.2−x3=1C.xy=5D.2x-1x=32.下列方程中,解为x=4的方程是()A.x-1=4B.4x=1C.4x-1=3x+3D.2(x-1)=13.下列变形中,正确的是()A.若a=b,则a+1=b-1B.若a-b+1=0,则a=b+1C.若a=b,则ax =b xD.若a3=b3,则a=b4.方程x2-1=2的解是() A.x=2 B.x=3C.x=5D.x=65.对于方程-3x-7=12x+6,下列移项正确的是()A.-3x-12x=6+7B.-3x+12x=-7+6C.-3x-12x=7-6D.12x-3x=6+76.选项中的变形,正确的是()A.将5x-4=2x+6移项,得5x-2x=6-4B.将4x=2系数化为1,得x=12C.将2(x-3)=-3(-x+6)去括号,得2x-6=-3x-18D.将12-x+13=1去分母,得3-2(x +1)=17.若单项式-2x 5yz n +1和13x 2m +1yz 3是同类项,则m +n 的值为 ( )A.3B.4C.6D.58.若☆是规定的新运算符号,定义a ☆b =ab +a +b ,则在3☆x =-9中,x 的值是 ( )A.3B.-3C.4D.-49.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问:人数、物价各是多少?若设物价是x 钱,则根据题意列一元一次方程,正确的是 ( )A.x−38=x+47B.x+38=x−47C.x−48=x+37D.x+48=x−3710.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打( )A.五折B.六折C.七折D.八折 二、填空题(每小题3分,共30分)11.写出一个解是x =2 023的一元一次方程: . 12.若(m -1)x |m |=7是关于x 的一元一次方程,则m = . 13.当a = 时,2(2a -3)的值比3(a +1)的值大1.14.已知4m +2n -5=m +5n ,利用等式的性质比较m 与n 的大小关系:m n (填“>”“<”或“=”). 15.若方程-x+n 3=34-2x+14的解是-5的相反数,则n = .16.一个两位数,十位数字是个位数字的3倍,将两个数字对调后得到的新两位数比原来的两位数小36,则原来的两位数是 .17我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是跑得快的马每天走240里(1里=0.5千米),跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 .18.有一则故事,大致内容是某人工作一年的报酬是年终给他一件农具和11枚银币,但他干满8个月就决定不再继续干了,结账时,给了他一件农具和5枚银币,则这件农具值 枚银币.19.小马同学在解关于x 的方程2a -5x =21时,误将“-5x ”看成了“+5x ”,得方程的解为x =3,则原方程的解为 . 20.小敏两岁时父亲28岁,现在父亲的年龄是小敏年龄的2倍,现在小敏的年龄是 岁. 三、解答题(共40分) 21(6分)解下列方程: (1)x +x2+2x =180-x ; (2)x−12=1-3x+25.22.(8分)学习了一元一次方程的解法,下面是一道解方程的问题及小明同学解题过程的第一步: 解方程:2x−0.30.5-x+0.40.3=1.解:原方程可化为20x−35-10x+43=1.(1)小明解题的第一步依据是 ;(填“等式的性质”或“分数的性质”) (2)请写出完整的解题过程.23.(8分)在数轴上,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足|a +2|+(b -3)2=0.点C 在数轴上表示的数为x ,且x 满足方程23x -7=2x +1.求BC -AB 的值.24.(8分)一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)甲、乙两工程队合作修建需几个月完成?共耗资多少万元?(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算) 25.(10分)下表中有两种移动电话计费方式:月使用费(元)主叫限定 时间(min) 主叫超时费(元/min)方式一 58 200 a 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收主叫超时费. (1)如果某月的主叫时间为500 min,按方式二计费应交费 元; (2)当某月的主叫时间为350 min 时,两种方式收费相同,求a 的值; (3)在(2)的条件下,如果每月主叫时间超过400 min,选择哪种方式更省钱?答案全解全析一、选择题1.B 6x -5不含等号,不是方程.2−x 3=1,是一元一次方程.xy =5,有两个未知数,不是一元一次方程.2x -1x =3,分母中含未知数,不是一元一次方程.故选B .2.C 将x =4分别代入方程的左右两边,左右两边相等的是4x -1=3x +3. 3.D a 3=b 3,等式两边同乘3,得a =b.4.Dx 2-1=2,移项,得x2=2+1合并同类项,得x2=3系数化为1,得x =6,故选D . 5.A 移项得-3x -12x =6+7,故选A. 6.B 将5x -4=2x +6移项,得5x -2x =6+4; 将4x =2系数化为1,得x =12;将2(x -3)=-3(-x +6)去括号,得2x -6=3x -18; 将12-x+13=1去分母,得3-2(x +1)=6.故选B .7.B 由-2x 5yz n +1和13x 2m +1yz 3是同类项,得2m +1=5,n +1=3,解得m =2,n =2,所以m +n =4. 8.B 根据题中的新定义得3x +3+x =-9 移项,得3x +x =-9-3 合并同类项,得4x =-12 系数化为1,得x =-3.9.B 本题根据人数不变可列出一元一次方程.已知物价是x 钱,根据题意,得x+38=x−47.10.D 设商店打x 折,依题意,得180×0.1x -120=120×20%,解得x =8.故商店应打八折.故选D . 二、填空题11.2x =4 046(答案不唯一) 12.-1解析 因为方程(m -1)x |m |=7是关于x 的一元一次方程,所以m -1≠0且|m |=1,解得m =-1. 13.10解析 根据题意,得2(2a -3)-3(a +1)=1 去括号,得4a -6-3a -3=1 移项,得4a -3a =1+6+3 合并同类项,得a =10. 14.>解析 移项、合并同类项,得3m -3n =5 等式的两边都除以3,得m -n =53,因为53>0 所以m >n. 15.1解析 根据题意得x =-(-5)=5 把x =5代入-x+n 3=34-2x+14得-5+n 3=34-10+14,解得n =1.16.62解析 设原来两位数的个位数字是x ,则它的十位数字是3x ,根据题意得10×3x +x -(10x +3x )=36 解得x =2,所以3x =6 所以原来的两位数是62. 17.(240-150)x =150×12解析 本题等量关系为“快马比慢马每天多走的路程×快马走的天数=慢马每天走的路程×12”,故可列方程为(240-150)x =150×12. 18.7解析 设这件农具值x 枚银币,依题意,得x+1112=x+58,解得x =7,故这件农具值7枚银币.19.x =-3解析 根据题意,可得x =3是方程2a +5x =21的解.所以2a +15=21 解得a =3,即原方程为6-5x =21,解得x =-3. 20.26解析 设小敏现在的年龄为x 岁,则父亲现在的年龄是2x 岁,由题意得2x -x =28-2,解得x =26. 故小敏现在的年龄为26岁. 三、解答题21.解析 (1)移项,得x +x2+2x +x =180 合并同类项,得9x2=180系数化为1,得x =40.(2)去分母,得5(x -1)=10-2(3x +2) 去括号,得5x -5=10-6x -4 移项,得5x +6x =10-4+5 合并同类项,得11x =11 系数化为1,得x =1. 22.解析 (1)分数的性质.(2)原方程可化为20x−35-10x+43=1去分母,得3(20x -3)-5(10x +4)=15 去括号,得60x -9-50x -20=15 移项,得60x -50x =15+9+20 合并同类项,得10x =44 系数化为1,得x =4.4. 23.解析 因为|a +2|+(b -3)2=0 所以a +2=0,b -3=0 解得a =-2,b =3所以点A ,B 表示的数分别为-2,3. 解23x -7=2x +1得x =-6 所以点C 表示的数为-6因为点A 表示的数为-2,点B 表示的数为3 所以AB =3-(-2)=5,BC =3-(-6)=9 所以BC -AB =9-5=4.24.解析 (1)设甲、乙两工程队合作修建需x 个月完成 根据题意,得(13+16)x =1解得x =2.(12+5)×2=34(万元).答:甲、乙两工程队合作修建需2个月完成,共耗资34万元.(2)设甲、乙两工程队合作修建y 个月,剩下的由乙工程队来完成,且恰好4个月完工. 根据题意,得(13+16)y +4−y 6=1,解得y =1,则4-y =3.故甲、乙两工程队合作修建1个月,剩下的再由乙工程队来修建3个月,就可以保证按时完成任务且最大限度节省资金.25.解析(1)113.(2)由题意得,58+(350-200)a=88,解得a=0.2所以a的值为0.2.(3)设每月主叫时间为x分钟.当x>400时,按方式二计费应交费88+0.25(x-400)=(0.25x-12)元.按方式一计费应交费58+0.2(x-200)=(0.2x+18)元.当0.2x+18=0.25x-12时,解得x=600所以当400<x<600时,选择计费方式二更省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一更省钱.。
【一元一次方程】期末复习检测(一)一.选择题1.若x=2是方程2x+m﹣6=0的解,则m的值是()A.﹣2B.﹣4C.2D.42.下列说法正确的是()A.在等式ab=ac两边除以a,可得b=cB.在等式2x=2a﹣b两边除以2,可得x=a﹣bC.在等式a=b两边除以(c2+1),可得=D.在等式两边除以a,可得b=c3.在下列方程的变形中,正确的是()A.由2x+1=3x,得2x+3x=1B.由x=,得x=C.由2x=,得x=D.由﹣=2,得﹣x+1=64.若代数式5﹣4x与的值互为相反数,则x的值是()A.B.C.1D.25.现定义运算“*”,对于任意有理数a,b满足a*b=.如5*3=2×5﹣3=7,*1=﹣2×1=﹣,若x*3=5,则有理数x的值为()A.4B.11C.4或11D.1或116.已知关于y的方程3y+2m﹣5=0的解比y﹣3(m﹣2)=2的解大1,则m的值为()A.B.C.D.7.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A.8x﹣3=7x+4B.8x+3=7x+4C.8x﹣3=7x﹣4D.8x+3=7x﹣48.甲、乙两店分别购进一批无线耳机,每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为()A.56元B.60元C.72元D.80元9.若关于x的方程(k﹣4)x=3有正整数解,则自然数k的值是()A.1或3B.5C.5或7D.3或710.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.6二.填空题11.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为.12.若关于x的方程9x﹣14=ax+3的解为整数,那么满足条件的所有整数a的和为.13.已知关于x的一元一次方程3x﹣m=2x+m的解为x=3,则m的值为.14.若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值.15.已知整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,关于y的方程(3n﹣3m)y=﹣my﹣5的解为.三.解答题16.解下列一元一次方程:(1)1+2(x+3)=4﹣x;(2)﹣=1.17.已知y1=6﹣x,y2=2+7x,解答下列问题:(1)当y1=2y2时,求x的值;(2)当x取何值时,y1比y2小﹣3.18.肖坝社区惠民水果店第一次用615元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为735元,求第二次乙种苹果按原价打几折销售?19.某工厂有机器100台,平均每天每台消耗的油费为80元,为了节省能源,市场推出一种新的节油装置,每台机器改装费为4000元,工厂第一次改装了部分机器后核算:已改装后的机器每天消耗的油费占剩下未改装机器每天消耗油费的,工厂第二次再改装同样多的机器后,所有改装后的机器每天消耗的油费占剩下未改装机器每天消耗的油费的.问:(1)工厂第一次改装了多少台机器?(此问必须用一元一次方程来解)(2)改装后的每台机器平均每天消耗的油费比改装前消耗的油费下降了百分之多少?(3)若工厂一次性将全部机器改装,多少天后就可以从节省的油费中收回改装费用?20.如图1,数轴上点A表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m=;(2)若点D是数轴上点A和点B的“8级精致点”,则点D表示的数=;(3)如图2,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.参考答案一.选择题1.解:将x=2代入2x+m﹣6=0,∴4+m﹣6=0,∴m=2,故选:C.2.解:A、当a=0时,该结论不成立,故A错误.B、在等式2x=2a﹣b两边除以2,可得x=,故B错误.C、由于c2+1>1,在等式a=b两边除以(c2+1),可得=,故C正确.D、在等式两边除以a,可得,故D错误.故选:C.3.解:A、由2x+1=3x得2x﹣3x=﹣1,原变形错误,故此选项不符合题意;B、由x=得x=×,原变形正确,故此选项符合题意;C、由2x=得x=,原变形错误,故此选项不符合题意;D、由﹣=2得﹣x﹣1=6,原变形错误,故此选项不符合题意;故选:B.4.解:根据题意得:5﹣4x+=0,去分母得:10﹣8x+2x﹣1=0,移项合并得:﹣6x=﹣9,解得:x=,故选:A.5.解:当x≥3,则x*3=2x﹣3=5,x=4;当x<3,则x*3=x﹣2×3=5,x=11,但11>3,这与x<3矛盾,所以此种情况舍去.即:若x*3=5,则有理数x的值为4,故选:A.6.解:解关于y的方程3y+2m﹣5=0得到:y=.解关于y的方程y﹣3(m﹣2)=2得到:y=3m﹣4.根据题意,得﹣1=3m﹣4.解得m=.故选:C.7.解:由题意可得,设有x人,可列方程为:8x﹣3=7x+4.故选:A.8.解:设乙店每副耳机的进价为x元,则甲店每副耳机的进价为0.9x元,依题意有(1+17%)x﹣(1+20%)×0.9x=5.4,解得x=60.故乙店每副耳机的进价为60元.故选:B.9.解:(k﹣4)x=3,解得x=,又∵(k﹣4)x=3有正整数解,k为自然数,∴自然数k的值是5或7.故选:C.10.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.二.填空题11.解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.12.解:9x﹣14=ax+3移项得:9x﹣ax=3+14,合并同类项,得(9﹣a)x=17,系数化为1,得x=,∵解为整数,∴9﹣a=±17或9﹣a=±1,解得a=﹣8或26或a=8或10,﹣8+26+8+10=36.故答案为:36.13.解:把x=3代入方程3x﹣m=2x+m得:9﹣m=6+m,﹣m﹣m=6﹣9,﹣m=﹣3,m=2,故答案为:2.14.解:方程整理得:(a﹣1)x=6,解得:x=,由方程的解为正整数,即为正整数,得到整数a=2,3,4,7,故答案为:2,3,4,715.解:∵整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,∴,解得:,关于y的方程(3n﹣3m)y=﹣my﹣5可以整理为:(﹣12+9)y=3y﹣5,则﹣6y=﹣5,解得:y=.故答案为:y=.三.解答题16.解:(1)去括号得:1+2x+6=4﹣x,移项得:2x+x=4﹣6﹣1,合并得:3x=﹣3,(2)去分母得:2(x+1)﹣3(2x﹣3)=6,去括号得:2x+2﹣6x+9=6,移项合并得:﹣4x=﹣5,解得:x=1.25.17.解:(1)由题意得:6﹣x=2(2+7x).∴x=.(2)由题意得:2+7x﹣(6﹣x)=﹣3,∴x=.18.解:(1)设惠民水果店第一次购进乙种苹果x千克,则购进甲种苹果(2x+15)千克,依题意,得:5(2x+15)+8x=615,解得:x=30,∴2x+15=75.答:惠民水果店第一次购进甲种苹果75千克,乙种苹果30千克.(2)设第二次乙种苹果按原价打y折销售,依题意,得:(10﹣5)×75+(15×﹣8)×30×3=735,解得:y=8.答:第二次乙种苹果按原价打8折销售.19.解:(1)设工厂第一次改装了x台机器.则:2(100﹣x)×80×=,所以,第一次改装20台机器;(2)改装后燃料费下降了:;(3)设y天后就可以从节省的油费中收回改装费用.则根据题意得:(80﹣48)y=4000,解得:y=125.答:125天后就可以从节省的油费中收回改装费用.20.解:(1)∵A表示的数为﹣3,B表示的数为3,点C在数轴上表示的数为﹣5,∴AC=﹣3﹣(﹣5)=2,BC=3﹣(﹣5)=8,∴m=AC+BC=2+8=10.故答案为:10;(2)如图所示:∵点D是数轴上点A和点B的“8级精致点”,∴AD+BD=8,∵AB=3﹣(﹣3)=6,∴D在点A的左侧或在点B的右侧,设点D表示的数为x,则AD+BD=8,∴﹣3﹣x+3﹣x=8或x﹣3+x﹣(﹣3)=8,解得x=﹣4或4.∴点D表示的数为﹣4或4.故答案为:﹣4或4;(3)分三种情况:①当点G在FE延长线上时,∵不能满足GE=3GF,∴该情况不符合题意,舍去;②当点G在线段EF上时,可以满足GE=3GF,如下图,m=EG+FG=EF=4﹣(﹣2)=6;③当点G在EF延长线上时,∵GE=3GF,∴FG=EF=3,∴点G表示的数为4+3=7,∴m=EG+FG=9+3=12.综上所述:m的值为6或12.。
人教版七年级数学上册《第三章一元一次方程》单元测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各式是一元一次方程的是( )A .30x y --=B .20x =C .123x+= D .238x x +=2.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 3.如果5x 2-2n -1=0是关于x 的一元一次方程,那么n 的值为( )A .0B .1C .12D .324.下列方程是一元一次方程的是( )A .1132x x -=B .231x x -=C .11x= D .29x y += 5.已知关于 x 的方程 286x +=- 与 235x a -=- 的解相同,则 a 的值为( )A .13B .3C .3-D .86.已知()130kk x-+=∣∣是关于x 的一元一次方程.则此方程的解是( )A .-1B .2-C .32D .±17.解方程11136x x +--=需下列四步,其中开始发生错误的一步是( ) A .去分母,得2(x+1)-(x-1)= 6 B .去括号,得2x+2-x+1=6 C .移项,得2x-x=6-2+1D .合并同类项,得x= 58.方程2-2x 4x 7312--=- 去分母得( ). A .2-2(2x -4)=-(x -7) B .12-2(2x -4)=-x -7 C .24-4(2x -4)=-(x -7)D .12-4x +4=-x +79.下面说法中正确的是( )A .若104x +=,则x+1=4 B .若ax =ay ,则x =y C .若x =y ,则x 2=y 2D .若﹣2x =5,则x =5+210.一元一次方程7x =﹣3(x+5)的解是( )A .12B .32C .﹣23D .﹣32二、填空题11.将方程x+3y=8变形为用含y 的式子表示x ,那么x= 12.如果x=-1是方程3kx -2k=8的解,则k= . 13.若x=2是方程2a ﹣3x=6的解,则a 的值是 .14.《诗经》是我国第一部诗歌总集,共分为《风》《雅》《颂》三部分.其中《颂》有40篇,比《风》.的篇数少34,则《风》有 篇. 三、解答题15.据北京市交通委介绍,兴延高速公路将服务于2019年延庆世园会及2022年冬奥会.兴延高速南起西北六环双横立交,北至延庆京藏高速营城子立交收费站以北,昌平境内约31千米,延庆境内约11千米,全程的总造价约为159亿元;由于延庆段道路多穿过山区,造价比昌平段每千米的平均造价多3亿元,求延庆段和昌平段的高速公路每千米的平均造价各是多少亿元?16.(盈利问题)某商场新进一批同型号的电脑,按进价提高40%标价,此商场为了促销,又对该电脑打8折销售,每台电脑仍可盈利420元,那么该型号电脑每台进价为多少元.17.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a☆b=ab 2+2ab+a .如:1☆3=1×32+2×1×3+1=16. (1)求(﹣2)☆3的值;(2)若(12a +☆3)☆(﹣12)=8,求a 的值; (3)若2☆x=m ,(14x )☆3=n (其中x 为有理数),试比较m ,n 的大小.18.已知4a ﹣1与﹣(a+14)互为相反数,求a 的值.四、计算题19.解方程(1)312732x x -+=+ (2)122(21)3(1)x x -+=+ (3)2(3)7636x x x --+=- 五、综合题20.某超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.价格\类型 A 型 B 型 进价(元/只) 30 70 标价(元/只)50100(1)这两种计算器各购进多少只?(2)若A 型计算器按标价的9折出售,B 型计算器按标价的8折出售,那么这批计算器全部售出后,超市共获利多少元?21.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物. (1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?(2)小张要买一台标价为3500元的冰箱,如何购买合算?为什么?小张能节省多少元钱? (3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?22.对a ,b ,c ,d 规定运算a b ad bc c d=-.(1)请计算a a ba 2b a 2b++-.(2)若x 1x 210x 2x 1++=-+,求x 的值.23.下表是三种电话计费方式:月使用费(元)主叫限定时间 (分钟)主叫超时收费(元/分钟)被叫方式一 18 60 0.2 免费 方式二 28 120 0.2 免费 方式三482400.2免费说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费. 设一个月内主叫通话 t 分钟( t 为正整数).(1)当 90t = 时,按方式一计费为 元;按方式二计费为 元.(2)当 120240t ≤≤ 时,是否存在某一时间 t ,使方式二与方式三的计费结果相等?若存在,请求出对应的值,若不存在,请说明理由.(3)当 90180t ≤≤ 时,哪一种收费方式最省钱?请说明理由.答案解析部分1.【答案】B【解析】【解答】A 、是二元一次方程,故错误;B 、是一元一次方程,故正确;C 、是分式方程,故错误;D 、是一元二次方程,故错误; 故答案为:B.【分析】根据一元一次方程的定义“含有一个未知数且未知数的最高次数是1的整式方程叫作一元一次方程”即可判断求解.2.【答案】D【解析】【解答】解:A 、由567x x +=-得675x x -=--,故选项错误,不符合题意;B 、由2(1)3x --=得223x -+=,故选项错误,不符合题意;C 、由310.7x -=得103017x -=,故选项错误,不符合题意; D 、由139322x x +=--得212x =-,故选项正确,符合题意.故答案为:D.【分析】根据等式的性质,在方程的两边同时加上“-6x-5”等式依然成立,据此判断A ;根据去括号法则“括号前是负号,去掉括号和负号,括号里的每一项都要变号;括号前面是正号,去掉括号和正号,括号里的每一项都不变号,括号前的数要与括号里的每一项都要相乘”可判断B ;根据分数的性质,在分数的分子、分母中分别乘以10,分数的大小不变可判断C ;根据等式的性质,在方程的两边同时加上“32x-9”等式依然成立,据此判断D.3.【答案】C【解析】【分析】根据一元一次方程的定义即可得到关于a 的方程,解出即可。
人教版七年级数学上册《第五章一元一次方程》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各式中,是方程的是( )A .30x -=B .5y -C .3(2)1+-=D .75x >2.下列运用等式变形错误的是( )A .由a b =,得66a b +=+B .由a b =,得99a b = C .由a bc c=,得a b = D .由22a b -=-,得a b =-3.山西省所有公立医疗机构于2024年3月25日起全面执行第九批国家组织药品集中带量采购中选结果,某药品降价后每盒180元,比原价降低了60%,求该药品原价是多少元?解:设该药品原价为x 元,则由题意可得方程( ) A .60180x =% B .60180x -=% C .(160)180x +=%D .(160)180x -=%4.方程 42x -= 的解是( )A .2x =-B .2x -=C .2x =D .12x =-5.如果关于x 的方程 213x += 和方程 213a x--= 的解相同,那么a 的值为( ) A .6 B .4C .3D .26.若3x 3y n -1与-x m+1y 2是同类项,则m -n 的值为( )A .—1B .0C .2D .37.下列变形中,正确的是( )A .由-x+2=0 变形得x=-2B .由-2(x+2)=3 变形得-2x -4=3C .由132x = 变形得 32x = D .由 21106x --+= 变形得 (21)10x --+= 8.我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,称为“铺地锦”.例如,如图1所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12的12写在3下面的方格里,十位1写在斜线的上面,个位2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线末端,最后把得数依次写下来是1457,即31×47=1457.如图2,用“铺地锦”的方法表示两个两位数相乘,则a 的值是( ) A .5B .4C .3D .29.解方程的过程中正确的是( ).A .将2-371745x x -+=去分母,得2-5(5x -7)=-4(x+17) B .由0.150.710.30.02x x --=,得10157010032x x --= C .40-5(3x -7)=2(8x+2)去括号,得40-15x -7=16x+4 D .255x -=,得x=-25210.下列判断:①若0a b c ++=,则()22a c b +=.②若0a b c ++=,且0abc ≠,则122a cb +=-.③若0a bc ++=,则1x =一定是方程0ax b c ++=的解.④若0a b c ++=,且0abc ≠,则0abc >.其中正确的是( ) A .①②③B .①③④C .②③④D .①②③④二、填空题11. 若方程()1260k k x+++=是关于x 的一元一次方程,则2023k += .12.如果一个两位数上的十位数字是个位数字的一半,两个数位上的数字之和为12,则这个两位数是 .13.关于x 的方程3x+a=0的解与方程2x ﹣4=0的解相同,则a= . 14.无论x 取何值等式2ax+b=4x -3恒成立,则a+b= 。
人教版七年级上册第3章《一元一次方程》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式是一元一次方程的是()A.2x=5+3y B.y2=y+4C.3x+2=1﹣x D.2.下列方程中,解为x=1的是()A.x+1=0B.3x=﹣3C.x﹣1=2D.2x+2=43.下列等式变形正确的是()A.如果a+1=b+1,那么a=b B.如果a=b,那么a﹣5=5﹣bC.如果a=b,那么2a=3b D.如果ax=ay,那么x=y4.方程x+5=7的解是()A.x=﹣12B.x=﹣2C.x=2D.x=125.解方程3=1﹣2(4+x),以下去括号正确的是()A.3=1﹣8﹣2x B.3=1﹣8+2x C.3=1﹣8+x D.3=1﹣8﹣x6.解方程,去分母,得()A.1﹣x﹣3x=3B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x7.下列是解一元一次方程2(x+3)=5x的步骤:2(x+3)=5x2x+6=5x2x﹣5x=﹣63x=﹣6x=﹣2其中说法错误的是()A.①步的依据是乘法分配律B.①步的依据是等式的性质1C.①步的依据是加法结合律D.①步的依据是等式的性质28.《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五;人出八,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出6元,则差45元;每人出8元,则差3元.求人数和羊价各是多少?设买羊人数为x人,则根据题意可列方程为()A.6x+45=8x+3B.6x+45=8x﹣3C.6x﹣45=8x+3D.6x﹣45=8x﹣39.某商场有一种电视机,每台的原价为5000元,现在以8折销售.如果想使降价前后的销售额都为20万元,那么销售量应增加的台数为()A.8B.9C.10D.1510.已知a,b为任意有理数.①关于x的方程ax=ab的解为x=b;①关于x的方程ax+b=0可能是一元一次方程;①当a≠0时,关于x的方程ax+b=0的解是x=﹣;①当b=0时,关于x的方程ax+b=0的解是x=0;以上说法正确的是()A.①①B.①①C.①①D.①①二.填空题(共6小题,满分18分,每小题3分)11.已知方程5x m﹣2+1=0是关于x的一元一次方程,则m的值是.12.已知关于x的方程2x+a﹣3=0的解是x=﹣1,则a的值为.13.若式子2(x﹣2)与式子3(4x﹣1)+9的值相等,则x的值为.14.如果规定“*”的意义为:a*b=(其中a,b为有理数),那么方程3*x=的解是x=.15.任何一个无限循环小数都可以写成分数的形式.我们以无限循环小数0.为例说明如下:设0.,由0.可知,10x=5.555…,所以10x﹣x=5,解方程得x=,于是,0..请你把0.写成分数的形式是.16.关于x的方程的解为整数,则符合条件的正整数m的值之和为.三.解答题(共7小题,满分52分)17.(6分)解方程:2(x﹣1)=3x+118.(6分)解方程:.19.(7分)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“奇异方程”.例如:2x=4 的解为x=2=4﹣2,则该方程2x=4是“奇异方程”.请根据上述规定解答下列问题:(1)判断方程5x=﹣8 (回答“是”或“不是”)“奇异方程”;(2)若a=3,有符合要求的“奇异方程”吗?若有,求b的值;若没有,请说明理由.20.(6分)如图,大长方形是由5个完全相同的小长方形和一个边长为2.4cm的正方形拼成的,请求出大长方形的面积(列一元一次方程解)21.(8分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了2055元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校还需购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2859元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.22.(9分)《义务教育体育与健康课程标准(2022年版)》发布后引起热议,新课标明确了体育依旧为第三主科.学校可根据实际情况设计课程内容.某中学依据本地特色开设滑冰课程,需要购买12套队服和x套护具(x>12),现从甲、乙两商场了解到同一品牌的队服报价每套均为200元,护具报价每套均为50元.甲、乙两商场的优惠方案如下表:商场甲乙优惠方案购买一套队服赠送一套护具队服和护具均按报价打八五折(1)用含x的式子表示分别在甲、乙两商场购买队服和护具所需要的费用;(2)当购买多少套护具时,分别在甲、乙两商场购买队服和护具所需的费用相同?(3)如要购买30套护具,请设计出最省钱的购买方案.23.(10分)数轴是数学学习的一个很重要的工具,利用数轴可以将数与形完美结合.研究数轴我们可发现许多重要的规律:①绝对值的几何意义:一般地,若点A、点B在数轴上表示的数分别为a,b,那么A、B两点之间的距离表示为|a﹣b|,记作AB=|a﹣b|,|3﹣1|则表示数3和1在数轴上对应的两点之间的距离;又如|3+1|=|3﹣(﹣1)|,所以|3+1|表示数3和﹣1在数轴上对应的两点之间的距离;①若数轴上点A、点B表示的数分别为a、b,那么线段AB的中点M表示的数为.请借用数轴和以上规律解决下列问题:如图,已知数轴上有A、B两点,分别表示的数为﹣10,6,点P以每秒2个单位长度的速度从点A出发沿数轴向右匀速运动,点Q以每秒1个单位长度从点B出发沿数轴向左匀速运动,当一个点到达终点,另一个点也随之停止运动,设运动时间为t秒(t>0).(1)A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点P运动t秒后所在位置的点表示的数为;点Q运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)P、Q两点经过多少秒会相距5个单位长度?(4)在点P、Q运动过程中,O、P、Q三点有一点恰好是以另两点为端点的线段的中点时,直接写出此时t的值.。
七年级数学上册《第三章 一元一次方程》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程为一元一次方程的是( )A .30y +=B .23x y +=C .22x x =D .11x= 2.已知2a =b +5,则下列等式中不一定...成立的是( ) A .2a -5=b B .2a +1=b +6 C .a =522b + D .6a =3b +53.方程3x+4=2x ﹣5移项后,正确的是( )A .3x+2x =4﹣5B .3x ﹣2x =4﹣5C .3x ﹣2x =﹣5﹣4D .3x+2x =﹣5﹣44.解方程2x 13x 4134---=时,去分母正确的是( ) A .4(2x-1)-9x-12=1 B .8x-4-3(3x-4)=12 C .4(2x-1)-9x+12=1D .8x-4+3(3x-4)=125.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天.如果由这两个工程队从两端同时施工,铺好这条管线需要的天数是( ) A .8天B .7天C .6天D .5天6.已知2x =-是方程240x m +-=的解,则m 的值是( )A .8B .-8C .6D .07.若a b =,则下列变形正确的是( )A .34a b =B .a c b c -=+C .a bc c= D .2211a bc c =++ 8.下列式子的变形中,正确的是( )A .由6+x=10得x=10+6B .由3x+5=4x 得3x-4x=-5C .由8x=4-3x 得8x-3x =4D .由2(x-1)= 3得2x-1=39.解方程2134134x x ---=时,去分母正确的是( ) A .4(2)9121x x ---= B .843(34)12x x -+-= C .4(21)9121x x --+=D .843(34)12x x ---=10.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜的场数为( )A .7场B .8场C .9场D .10场二、填空题11.已知关于x 的方程(1)180m m x ++=是一元一次方程,则m = .12.若关于x 的方程50x m +=与241x x -=-的解互为相反数,则m 的值为 . 13.已知方程3(2)5x x +=与4()2a x x -=有相同的解,则a 的值是 .14.某地区秋季中学生足球联赛,第一阶段分组循环,每队均赛15场,胜一场得3分,平一场得1分,负一场得0分,前进中学足球队的胜场数是负场数的2倍,结果得了21分,则该足球队平的场数为 .三、计算题15.解关于x 的方程:631524x x -=+ 16.解方程:121123x x --+=. 四、解答题17.已知方程9462x x += 的解与关于的方程 63(1)2ax x -=- 的解互为相反数,求a 的值. 18.足球的球面由若干个五边形和正六边形拼接而成,已知有12块正五边形,则正六边形的块数是?五、综合题19.解答下列问题:(1)先化简,再求值: ()()22183512a a a a --++ ,其中 230a a -+= ;(2)已知关于x 的方程 2(1)31x m -=- 与 324x +=- 的解是互为相反数,求m 的值.20.(1)已知x 的相反数是﹣2,且2x+3a=5,求a 的值. (2)已知﹣[﹣(﹣a )]=8,求a 的相反数.21.本学期学习了一元一次方程的解法,下面是小明同学的第一步解题过程:解方程:20.30.410.50.3x x -+-= 解:原方程可化为:203104153x x -+-=…………① (1)小明解题的第①步依据是 ;(等式性质或者分数性质)(2)请写出完整的解题过程.22.一件商品先按成本价提高50%标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少(用一元一次方程解答)?(2)求此件商品的利润率.答案解析部分1.【答案】A【解析】【解答】解:A 、方程30y +=是一元一次方程,符合题意;B 、方程23x y +=含有两个未知数,故不是一元一次方程,不符合题意;C 、方程22x x =中未知数的最高次数是2次,故不是一元一次方程,不符合题意;D 、方程11x =不是整式方程,故不是一元一次方程,不符合题意故答案为:A.【分析】只含有一个未知数并未知数的次数是1的整式方程,叫做一元一次方程,据此判断即可.2.【答案】D【解析】【解答】解:A 、等式两边同时减去5即可得到,故A 选项正确,不符合题意;B 、等式两边同时加上1即可得到,故B 选项正确,不符合题意;C 、等式两边同时除以2即可得到,故C 选项正确,不符合题意;D 、等式两边同时乘以3即得到 6a =3b +15 ,故D 选项错误,符合题意. 故答案为:D .【分析】等式的两边同时乘以或除以(除数不能为0)同一个数,等式依然成立,等式两边同时加上或减去同一个数或式子,等式依然成立,据此一一判断得出答案.3.【答案】C【解析】【解答】解:方程3x+4=2x ﹣5移项后正确的是:3x ﹣2x =﹣5﹣4. 故答案为:C .【分析】移项要变号,据此判断即可.4.【答案】B【解析】【解答】解:方程两边同乘以12得4(2x-1)-3(3x-4)=12 即8x-4-3(3x-4)=12.A.等号右边没有乘以12,并且去括号未变号; C. 等号右边没有乘以12;D.将第二项前面的“-”号抄成了“+”. 故答案为:B.【分析】利用解含分数系数的方程的计算方法求解即可。
第三章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1D.x -3y =02.方程2x +3=7的解是( )A.x =5B.x =4C.x =3.5D.x =23.下列等式变形正确的是( ) A.若a =b ,则a -3=3-b B.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d4.把方程3x +2x -13=3-x +12去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1) B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)5.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( )A.-5B.-3C.-1D.56.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( ) A.2314 B.3638C.42D.44二、填空题(每小题3分,共24分)11.方程3x-3=0的解是.12.若-x n+1与2x2n-1是同类项,则n=.13.已知多项式9a+20与4a-10的差等于5,则a的值为.14.若方程x+2m=8与方程2x-13=x+16的解相同,则m=.15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=-2a+3b,如:1⊕5=-2×1+3×5=13,则方程x⊕4=0的解为.16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是元.18.图①是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.三、解答题(共66分)19.(15分)解下列方程:(1)4x-3(12-x)=6x-2(8-x);(2)2x-13-2x-34=1;(3)12x+2⎝⎛⎭⎪⎫54x+1=8+x.20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.D 3.C 4.A 5.A 6.C 7.B 8.B 9.A10.C 解析:设图②中白色区域的面积为8x ,灰色区域的面积为3x ,由题意,得8x +3x =33,解得x =3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x =1 12.2 13.-5 14.72 15.x =616.30 17.1500 18.100019.解:(1)x =-20.(5分)(2)x =72.(10分)(3)x =3.(15分)20.解:由题意,得3+a 2+⎣⎢⎡⎦⎥⎤-13(2a -1)-1=0,(4分)解得a =5.(8分)21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分)23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分) 24.解:(1)x +8 x +7 x +1(3分)(2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分) (3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分)专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
第三章检测卷
一、选择题(每小题3分,共30分)
1.下列方程是一元一次方程的是()
A.x-2=3
B.1+5=6
C.x2+x=1
D.x-3y=0
2.方程2x+3=7的解是()
A.x=5
B.x=4
C.x=3.5
D.x=2
3.下列等式变形正确的是()
A.若a=b,则a-3=3-b
B.若x=y,则x
a
=
y
a
C.若a=b,则ac=bc
D.若b
a
=
d
c
,则b=d
4.把方程3x+2x-1
3
=3-
x+1
2
去分母正确的是()
A.18x+2(2x-1)=18-3(x+1)
B.3x+(2x-1)=3-(x+1)
C.18x+(2x-1)=18-(x+1)
D.3x+2(2x-1)=3-3(x+1)
5.若关于x的方程x m-1+2m+1=0是一元一次方程,则这个方程的解是()
A.-5
B.-3
C.-1
D.5
6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()
A.518=2(106+x)
B.518-x=2×106
C.518-x=2(106+x)
D.518+x=2(106-x)
7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方
程是2(x-3)-■=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,请问这个被污染的常数是()
A.1
B.2
C.3
D.4
8.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()
A.562.5元
B.875元
C.550元
D.750元
9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是()
A.70千米/时
B.75千米/时
C.80千米/时
D.85千米/时
10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为()
A.231
4
B.
363
8
C.42
D.44
二、填空题(每小题3分,共24分)
11.方程3x-3=0的解是.
12.若-x n+1与2x2n-1是同类项,则n=.
13.已知多项式9a+20与4a-10的差等于5,则a的值为.
14.若方程x+2m=8与方程2x-1
3
=
x+1
6
的解相同,则m=.
15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=-
2a+3b,如:1⊕5=-2×1+3×5=13,则方程x⊕4=0的解为.
16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有名学生.
17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是元.
18.图①是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.
三、解答题(共66分)
19.(15分)解下列方程:
(1)4x-3(12-x)=6x-2(8-x);(2)2x-1
3
-
2x-3
4
=1;
(3)1
2
x+2
⎝
⎛
⎭
⎪
⎫
5
4
x+1=8+x.
20.(8分)已知3+a
2
与-
1
3
(2a-1)-1互为相反数,求a的值.
21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?
22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.
23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:
如果两班单独给每位同学购买一套服装,那么一共应付5020元.
(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?
(2)甲、乙两班各有多少名同学?
24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.
(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;
(2)当被框住的4个数之和等于416时,x的值是多少?
(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.
参考答案与解析
1.A 2.D 3.C 4.A 5.A 6.C 7.B 8.B 9.A
10.C 解析:设图②中白色区域的面积为8x,灰色区域的面积为3x,由题意,得8x+3x=33,解得x=3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.
11.x=1 12.2 13.-5 14.7
2
15.x=6
16.30 17.1500 18.1000
19.解:(1)x=-20.(5分)(2)x=7
2
.(10分)
(3)x=3.(15分)
20.解:由题意,得3+a
2
+
⎣
⎢
⎡
⎦
⎥
⎤
-
1
3
(2a-1)-1=0,(4分)解得a=5.(8
分)
21.解:设甲种票买了x张,则乙种票买了(35-x)张,(2分)依题意有24x+18(35-x)=750,(6分)解得x=20.则35-x=15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)
22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)
(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x=311,解得x=1.(9分)
答:每相邻两节套管间重叠的长度为1cm.(10分)
23.解:(1)由题意,得5020-92×40=1340(元).(4分)
答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)
(2)设甲班有x名同学准备参加演出(依题意46<x<90),则乙班有(92-x)名.依题意得50x+60(92-x)=5020,解得x=50,92-x=42(名).(11分)
答:甲班有50名同学,乙班有42名同学.(12分)
24.解:(1)x+8 x+7 x+1(3分)
(2)由题意,得x+x+1+x+7+x+8=416,解得x=100.(7分)
(3)不能,(8分)因为当4x+16=622,解得x=1511
2
,不为整数.(12分)。