高中数学人教版必修圆与圆的位置关系教案(系列五)
- 格式:doc
- 大小:108.00 KB
- 文档页数:7
圆与圆的位置关系教案【教学目标】1.能根据给定圆的方程,判断圆与圆的位置关系.2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.【教学重难点】教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系.【教学过程】 ㈠复习导入、展示目标问题:如何利用代数与几何方法判别直线与圆的位置关系?前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系.㈡检查预习、交流展示1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢?㈢合作探究、精讲精练探究一:用圆的方程怎样判断圆与圆之间的位置关系?例1.已知圆C 1:013222=++++y x y x ,圆C2:023422=++++y x yx ,是判断圆C 1与圆C 2的位置关系.解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一)圆C 1的方程配方,得4923)1(22=+⎪⎭⎫ ⎝⎛++y x . 圆心的坐标是⎪⎭⎫ ⎝⎛--23,1,半径长231=r . 圆C 2的方程配方,得41723)2(22=+⎪⎭⎫ ⎝⎛++y x .圆心的坐标是⎪⎭⎫ ⎝⎛--23,2,半径长2172=r . 连心线的距离为1,217321+=+r r ,231721-=-r r . 因为217312317+<<-, 所以两圆相交. (法二) 方程013222=++++y x yx 与023422=++++y x yx 相减,得21=x 把21=x 代入013222=++++y x yx ,得011242=++y y因为根的判别式016144>-=∆,所以方程011242=++y y有两个实数根,因此两圆相交.点评:巩固用方程判断圆与圆位置关系的两种方法.变式2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距5.d == 因为 12d r r =+,所以两圆外切.㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定;(2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系.【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;(4)内切,一个交点;(5)内含,无交点.二.判断圆与圆位置关系的方法例1变式【作业布置】导学案课后练习与提高4.2.2圆与圆的位置关系课前预习学案一.预习目标回忆圆与圆的位置关系有几种及几何特征,初步了解用圆的方程判断圆的位置关系的方法.二.预习内容1.圆与圆的位置关系有哪几种呢?2.如何判断圆与圆之间的位置关系呢?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.能根据给定圆的方程,判断圆与圆的位置关系.2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.学习重点:能根据给定圆的方程,判断圆与圆的位置关系.学习难点:用坐标法判断两圆的位置关系. 二.学习过程探究:用圆的方程怎样判断圆与圆之间的位置关系?例1.已知圆C 1:013222=++++y x yx ,圆C 2:023422=++++y x yx ,是判断圆C 1与圆C 2的位置关系.变式2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系.三.反思总结判断两圆的位置关系的方法:四.当堂检测 1.圆0222=-+x yx 和0422=++y yx 位置关系是( )A .相离B .外切C .相交D .内切2.两圆012422=++-+y x y x 和014422=--++y x y x 的公切线有_____条. 3.求圆0422=-+y x 和0124422=-+-+y x y x 的公共弦的长.参考答案:1.C 2.4 3.解:(法一)联立方程组,消去二次项,得y=x+2将上式代入0422=-+y x 得,022=+x x .解得x 1=-2,x 2=0.于是有y 1=0,y 2=2,所以两圆交点坐标是A(-2,0),B(0,2).公共弦长22=AB .(法二)联立方程组,消去二次项,得y=x+2圆心到直线y=x+2的距离是22200=+-=d因为圆半径为2,所以公共弦长()2222222=-=AB .课后练习与提高1.若直线0=++a y x 与圆a y x =+22相切,则a 为( ) A.0或2B.2 C.2 D.无解2.两圆094622=+-++y x y x 和01912622=-+-+y x y x 的位置关系是( ) A.外切 B.内切 C.相交 D.外离3.已知圆22:()(2)4(0):30.C x a x a l x y l C -+-=>-+=及直线当直线被截得 的弦长为32时,则a =( )A .2B .22-C .12-D .12+4.两圆094622=+-++y x y x 和01912622=-+--+y x y x 的公切线有___条 5.一圆过圆0222=-+x yx 和直线032=-+y x 的交点,且圆心在y 轴上,则这个圆的方程是________________.6.已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程.参考答案:1.C 2.A 3.C 4.3 5.06422=-++y yx6.解:设圆C 的圆心为),(b a ,由题意得62 34004 231)1(33322==⎩⎨⎧-==⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧++=+-=-+r r b a b a b a b a a b 或得或解得. 所以圆C 的方程为36)34(4)4(2222=++=+-y x y x 或.。
高中数学圆的位置图像教案
目标:学生能够正确理解和描述圆在平面上的位置关系
教学过程:
一、引入(5分钟)
1. 激发学生对圆的兴趣:和学生讨论日常生活中常见的圆形物体,如轮胎、钟表等,引导学生思考圆在平面上的位置关系。
2. 导入本节课的主题:介绍本节课的学习目标和内容,让学生明确学习的重点。
二、认识圆的位置(10分钟)
1. 展示不同位置的圆的图片,让学生观察并描述圆的位置关系。
2. 通过示意图和实物展示,让学生理解圆的位置关系,如相切、相离、相交等。
三、练习与巩固(15分钟)
1. 让学生配对绘制不同位置的圆的图像,并进行讨论交流。
2. 布置练习作业,让学生巩固所学的知识。
四、拓展(10分钟)
1. 提出问题引导学生思考:如果在平面上有多个圆,它们的位置关系会是怎样的?
2. 引导学生拓展思维,思考更复杂的圆的位置关系,如同心圆、相交圆等。
五、总结与反思(5分钟)
1. 总结本节课的学习内容,让学生复述圆的位置关系。
2. 学生反馈和提出问题,教师解答学生的疑问。
教学反思:通过本节课的学习,学生能够正确理解和描述圆在平面上的位置关系,培养学生观察和思考的能力,为进一步学习几何知识打下基础。
4.2.2 圆与圆的位置关系省xx 袁雪梅一、内容和内容解析本节课选自《普通高中课程标准实验教科书数学必修2》第四章第4.2.2节《圆与圆的位置关系》第一课时,主要内容有用坐标法判断圆与圆的位置关系,两圆相交时的相交弦方程。
从教材安排顺序来看,在本小节之前学生学习了直线的方程、圆的方程,能够运用方程研究直线与直线、直线与圆的位置关系,再学习圆与圆的位置关系,旨在本章初步形成坐标法研究几何问题的根本思想和解题步骤,为后面选修系列1-1、2-1中的“圆锥曲线与方程〞等解析几何的学习打下根底。
本节课主要通过类比直线和圆的位置关系,利用数形结合思想,用坐标法来研究圆与圆的位置关系,一种方法是找到代数方程中的几何量〔圆的圆心和半径〕,利用圆心距与半径和差的大小进行比拟来得到两圆的位置关系;另一种方法是利用方程的思想,通过研究方程组的解的个数翻译为几何图形的公共点的个数,从而得出两圆的位置关系。
在熟练运用之后,能够对两种方法的优劣作一个简单的比照,并能用圆的方程通过数形结合的思想解决一些简单的几何问题。
二、目标与目标分析1.掌握判断两个圆的位置关系的方法,能够根据给定的圆的方程判断圆与圆的位置关系;2.理解两种判断方法的数学本质与不同的适用范围;3.通过方程与曲线的关系,理解两圆相交时相交弦方程的得来。
其中教学重点是:圆与圆的位置关系的两种判定方法及其操作步骤;教学的难点是:两种判断方法的数学本质与适用范围。
三、教学问题分析学生在第三章以及第四章的前面小节已经学习和研究了直线的方程、直线与直线的位置关系、圆的方程、圆与圆的位置关系,初步了解了坐标法的思想与方法,能够数形结合利用方程解决一些简单的几何问题,具备了良好的学习根底,在本堂课的学习中可能在以下方面还存在一些问题:1.对于圆与圆的位置关系的定义以及几何判定方法可能有遗忘。
2.利用圆的方程通过方程组的思想判断两圆的位置关系有大体思路,但对具体问题把握不够准确;3.能够采用两种不同的方法判断圆与圆的位置关系,但难以抓住两个方法本质的区别与联系,难以根据具体的题目做方法的选择;4.不易理解“两圆相交弦方程〞的得来。
2.5.2圆与圆的位置关系一、内容和内容解析1.内容圆与圆的位置关系.2.内容解析图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以完全运用代数方法,通过运算求解,得到图形的性质;也可以综合使用几何方法、代数方法,得到图形的性质.本课时教学中,应引导学生根据初中学习图形与几何的经验,类比直线和圆的位置关系,研究圆与圆的位置关系.结合以上分析,确定本节课的教学重点:运用圆的方程,判断圆与圆的位置关系.二、目标和目标解析1.目标(1)会用圆的方程判定两圆的位置关系;(2)能利用坐标法解决简单的平面几何问题.2.目标解析达成上述目标的标志是:(1)会将两个圆的方程联立方程组,并通过降次和消元得到一个一元二次方程,通过判断方程判别式大于0,等于0,小于0分别得出两圆相交,相切,相离.能通过圆的方程得到圆心坐标和半径长,比较圆心距和两半径和差大小来判断两圆相交、外切、内切、外离、内含的关系.(2)知道两圆相交时,两个圆的方程消去二次项后得到的二元一次方程的几何意义,能表示出经过两圆的交点的所有圆的方程.三、教学问题诊断分析在上一节课,我们研究了如何利用直线和圆的方程,判断它们的位置关系.学生容易类比地得到判断圆与圆位置关系的方法.因此教学重点应让学生注意两个圆的方程消元后得到的一元二次方程的判别式小于0或等于0,只能判断出两圆相离或相切,无法具体判断两圆是外离(外切)还是内含(内切).这就很自然地引出用圆心距和半径和差来具体判断.同时,应理解教材例5选取对两圆相交的判断,用意在于让学生知道解二元二次方程组的一般流程,还有当两圆相交时,公共弦所在直线方程的求法,求两圆的交点坐标也是方法二所不能做到的.本节课的例6是探求满足某种几何条件的动点的轨迹问题,是对前面介绍的坐标法解决平面几何问题的“三步曲”的再应用,教师要引导学生建立坐标系,把几何条件代数化,最后再将代数方程翻译为几何轨迹.这个问题的解决是为下一章圆锥曲线方程的推导做准备.本节课的教学难点是应用代数方法解决几何问题.四、教学过程设计(一)复习引入1.已知点A (x 1,y 1),B (x 2,y 2),如何求线段AB 的长?设计意图:在计算两圆圆心距时要用到两点间的距离公式.2.已知圆的方程为()2222040x y Dx Ey F D E F ++++=+->,如何确定圆心和半径?设计意图:回顾圆的一般方程和标准方程的互化,以及利用圆的方程求出圆心坐标和半径长,对本节课的学习是有帮助的.3.已知直线和圆的方程,如何判断直线和圆的位置关系?师生活动:设计意图:为后面学生类比直线和圆的位置关系的判定得出判断圆与圆的位置关系的方法作准备.(二)探究新知问题1:按照两个圆的公共点个数来划分,两个圆之间有哪些位置关系?师生活动:两圆有两个公共点,它们相交;两圆只有一个公共点,它们相切,包括外切和内切;两圆没有公共点,它们相离,包括外离和内含.设计意图:让学生初步体会用公共点个数只能判断两圆相交、相切或相离,对于只有一个公共点(没有公共点)的情况无法具体判定外切还是内切(外离还是内含).照应方法一利用方程组解的个数判断位置关系时的局限性.问题2:类比运用直线和圆的方程,研究直线与圆的位置关系的方法,如何利用圆的方程,判断它们之间的位置关系?师生活动:方法1通过两个圆的方程组成的方程组的解的个数来判断;方法2通过比较两个圆的连心线的长与两半径的和或两半径的差的绝对值的大小来判断.例5 已知圆C 1:222880x y x y +++-=,圆C 2:224420x y x y +---=,试判断圆C 1与圆C 2的位置关系.解法1:将圆C 1与圆C 2的方程联立,得到方程组222228804420x y x y x y x y ⎧+++-=⎪⎨+---=⎪⎩ ①-②,得 210x y +-= ③ 由③,得12x y -=. 把上式代入①,并整理,得2230x x --=.④方程④的根的判别式()()224130∆=--⨯⨯->,所以方程有两个不相等的实数根x 1,x 2.把x 1,x 2分别代入方程③,得到y 1,y 2. 因此圆C 1与圆C 2有两个公共点A (x 1,y 1),B (x 2,y 2),这两个圆相交.问题3:画出圆C 1与圆C 2以及方程③表示的直线,你发现了什么?你能说明为什么吗? 师生活动:方程③表示的直线经过圆C 1与圆C 2的交点,因为圆C 1与圆C 2的交点A 、B 的坐标既满足圆C 1的方程,又满足圆C 2的方程,方程③是两圆方程作差得到的,A 、B的坐标满足方程③.今后求相交两圆的公共弦所在直线方程时,可以用两圆的一般方程作差得到.问题4:你能求出圆C 1与圆C 2的交点坐标吗?设计意图:体会使用解法一的必要性,判断方程解的个数不需要解方程,但要求出交点坐标需要解方程.问题5:如果两圆方程联立消元后得到的方程的0∆=,它说明什么?你能据此确定两圆是内切还是外切吗?如何判断两圆是内切还是外切呢?如果0∆=,则两圆相切,此时无法判定是内切还是外切,还要根据两圆的半径与连心线的长作进一步判断.下面总结一下用连心线的长d 与两半径r 1,r 2的关系判断圆与圆的位置关系.设计意图:引出例5的解法2.解法2:把圆C 1的方程化为标准方程,得()()221425x y +++=,圆心为(-1,-4),半径15r =.把圆C 1的方程化为标准方程,得()()222210x y -+-=,圆心为(2,2),半径2r =圆C 1与圆C 2的连心线的长d =因为55<<1212r r d r r -<<+,所以圆C 1与圆C 2相交.(三)巩固提升例6 已知圆O 的直径AB=4,动点M 与点A 的距离是它与点B .试探究点M 的轨迹,并判断该轨迹与圆O 的位置关系.师生活动:本题是探究满足某种几何条件的动点的轨迹问题,我们通常采用“坐标法”,前面我们介绍了坐标法解决平面几何问题的“三步曲”,先来回顾一下:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何要素,如点、直线、圆,把平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题第三步:把代数运算的结果“翻译”成几何结论.问题6:回到本例,如何建立适当的平面直角坐标系,用坐标和方程表示题中的几何要素?如何把几何问题转化为代数问题?解:如图,以线段AB 的中点O 为原点,AB 所在直线为x 轴,线段AB 的垂直平分线 为y 轴,建立平面直角坐标系.由AB =4,得A (-2,0),B (2,0).设点M 的坐标为(x ,y ),由MA MB =,=221240x y x +-+=.所以点M 的轨迹是以点P (6,0)为圆心,半径为.因为两圆的圆心距为|PO |=6,两圆的半径为12r =,2r =又2112r r PO r r -<<+,所以点M 的轨迹与圆O 相交.设计意图:熟练用坐标法解决动点轨迹问题,为后续推导椭圆标准方程时建立坐标系作准备,同时复习本节课圆与圆位置关系的判断方法.问题7:如果把例6中的改为“k (k >0)倍”,你能分析并解决这个问题吗? 师生活动:设点M 的坐标为(x ,y ),由MA k MB =,得= ()()()()2222221411410k x k x k y k -+++-+-=.当k =1时,方程为x =0,可知点M 的轨迹是线段AB 的垂直平分线;当k >0且k ≠1时,方程可化为()()2222222211611k k x y k k ⎡⎤+⎢⎥-+=-⎢⎥-⎣⎦,点M 的轨迹是以2222,01k k ⎛⎫+ ⎪-⎝⎭为圆心,半径为241k k -的圆. 设计意图:进一步拓展学生思维,体会从特殊到一般的研究方法.(三)归纳总结、布置作业与判断直线与圆的位置关系一样,判断圆与圆的位置关系也有两种思路:一种是根据两个圆的公共点个数判断两圆相交、相切、相离,即利用两个圆的方程组成的方程组解的情况来判断的方法;另一种是利用圆的方程求出圆心和半径,比较连心线的长和两圆半径和差的大小关系来判断的方法.本节课还探究了满足某种几何条件的动点的轨迹问题,用的是坐标法.这种方法建立了几何与代数之间的联系,体现了数形结合思想.设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书98页 练习 第1题,第2题.习题2.5 第7题,第9题.五、目标检测设计1.求圆心在直线40x y --=上,并且经过圆22640x y x ++-=与圆226280x y y ++-=的交点的圆的方程.设计意图:会求圆与圆的交点坐标,公共弦的垂直平分线的直线方程,能类比直线系方程利用圆系方程解题.2.已知点P (-2,-3)和以点Q 为圆心的圆()()22429x y -+-=.(1)画出以PQ为直径的圆,设这个圆的圆心为C,求圆C的方程;(2)圆C与圆Q相交于A、B两点,直线P A、PB是圆Q的切线吗?为什么?(3)求直线AB的方程.设计意图:巩固圆的方程的知识,能利用初中平面几何知识解决问题,会求相交两圆公共弦所在直线方程.。
数学教案圆和圆的位置关系位置对应数学教案教学目标:1.学生能够正确理解和运用圆和圆的位置关系的相关术语和概念。
2.学生能够通过观察和推理,准确描述和判断圆和圆的位置关系。
3.学生能够应用所学的知识,在解决实际问题中分析和解释圆和圆的位置关系。
教学重点:1.圆和圆的位置关系的基本概念和术语。
2.圆与圆之间的相交关系和包含关系。
教学难点:学生能够准确判断和描述圆与圆的相交关系和包含关系。
教学准备:1.教师准备多个不同大小的纸圆或圆形物体。
2.教师准备相关课件或黑板。
教学过程:引入新知识:1.教师出示几个不同大小的纸圆或圆形物体,引导学生观察并描述它们之间的位置关系。
2.教师提问学生:你们观察到了什么?这些圆之间有什么样的位置关系?请描述出来。
讲解重点概念:1.教师引导学生观察和描绘不同的圆与圆之间的位置关系,如相切、相交、内切、外切等。
2.教师讲解并板书相关概念和术语,如相切、相交、内切、外切、内含、外离等。
并解释每个术语的意义和特点。
判断与应用:1.教师给学生出示多个不同的圆,让学生分组讨论并判断圆与圆的位置关系。
2.学生通过观察和推理,准确描述和判断圆与圆的位置关系,并在小组中发表自己的观点和理由。
3.学生将自己的判断和理由呈现给全班,并与其他小组进行讨论和交流。
解决实际问题:1.教师出示一些关于圆与圆的位置关系的问题,让学生运用所学的知识,分析和解决问题。
2.学生在小组中合作,共同讨论和解决问题,并将他们的解决方法和答案呈现给全班。
拓展练习:1.学生在课后完成一些相关练习题,巩固所学的知识和技能。
2.学生可以在生活中继续观察和记录圆与圆的位置关系,并尝试解释和应用它们。
课堂总结:1.教师对本节课所学的知识进行总结,并提醒学生在实践中继续应用所学的技能和方法。
2.学生可以就本节课的学习效果和困难之处进行反馈,并提出问题和建议。
教学延伸:。
数学教案-圆和圆的位置关系篇一:圆和圆的位置关系说明圆和圆的位置关系教案说明一、课题名称本课属新人教版九年级上册第24章第二节《与原有关的位置关系》第二课之圆和圆的位置关系。
二、教学目的(一)教学知识点1.理解圆与圆之间的几种位置关系.2.理解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联络.(二)才能训练要求1. 经历探究两个圆之间位置关系的过程,训练学生的探究才能.2.通过平移实验直观地探究圆和圆的位置关系,开展学生的识图才能和动手操作才能.(三)情感与价值观要求1.通过探究圆和圆的位置关系,体验数学活动充满着探究与制造,感受数学的严谨性以及数学结论确实定性.2.经历探究图形的位置关系,丰富对现实空间及图形的认识,开展形象思维。
三、课型本课属探究课。
四、课时圆和圆的位置关系共计一课时五、教学重点探究圆与圆之间的几种位置关系,理解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联络.六、教学难点探究两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.七、教学过程教师借助多媒体讲解与学生合作交流探究法Ⅰ.创设征询题情境,引入新课Ⅱ.新课讲解(一)、想一想(二)、探究圆和圆的位置关系我总结出共有五种位置关系,如以下图:(1)外离:两个圆没有公共点,同时每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部(三)、例题讲解两个同样大小的肥皂泡黏在一起,其剖面如以下图(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.1、想一想如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?假设是,它的对称轴是什么?切点与对称轴有什么位置关系?假设⊙O1与⊙O2内切呢?〔如图(2)〕2、议一议投影片设两圆的半径分别为R和r.(1)当两圆外切时,两圆圆心之间的间隔(简称圆心距)d与R和r具有如何样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?(2)当两圆内切时(R>r),圆心距d与R和r具有如何样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?3、随堂练习八、作业安排习题3.9,重点检验学生对本章圆和圆的五种位置关系的掌握情况。
4.2.2 圆与圆的位置关系(一)核心素养通过学习圆与圆的位置关系,掌握解决问题的方法――代数法、几何法. (二)学习目标1.明确两个圆之间的五种位置关系.2.能根据给定的两个圆的方程判断两个圆的位置关系.3.两圆相交时的公共弦方程及弦长计算.(三)学习重点圆与圆的位置关系及其判断方法.(四)学习难点1.用圆的方程解决问题.2.用几何法和代数法判断两圆之间的位置关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材,明确:圆与圆的五种位置关系——外离、外切、相交、内切、内含的几何含义是:(2)记一记:直线与圆的位置关系的判断方法 方法一:几何方法设两圆的圆心距d ,半径12,r r ,则: ①当12d r r >+时,圆1C 与圆2C 相离; ②当12d r r =+时,圆1C 与圆2C 外切; ③当<-||21r r 12d r r <+时,圆1C 与圆2C 相交; ④当12||d r r =-时,圆1C 与圆2C 内切; ⑤当12||d r r <-时,圆1C 与圆2C 内含;步骤:①计算两圆半径12,r r ;②计算两圆圆心距d ;③根据d 与12,r r 的关系判断两圆的位置关系. 方法二:代数方法方程组22111222220x y D x E y F x y D x E y F ⎧++++=⎪⎨++++=⎪⎩ 有两组不同实数解⇔相交;有两组相同实数解⇔相切(内切或外切);无实数解⇔相离(外离或内含). 2.预习自测(1)根据图片说出圆与圆之间的位置关系.【知识点】圆与圆位置关系 【数学思想】数形结合【解题过程】根据图像和定义直接得出结果 【思路点拨】看两圆交点个数【答案】(图一至图六依次为)外离、内含、内含、外切、内切、相交. (2)判断下列两圆的位置关系()()12222=-++y x 与()()165222=-+-y x .【知识点】圆与圆位置关系 【数学思想】数形结合 ()()221222255r r --+-==+,所以两圆外切.【思路点拨】看圆心距和半径间的关系 【答案】外切. (二)课堂设计 1.知识回顾(1)直线与圆的位置关系:相离、相交、相切;(2)判断直线与圆的位置关系的方法:根据圆心到直线的距离;根据直线的方程和圆的方程组成方程组的实数解的个数; (3)与圆相切的直线方程的计算方法. 2.问题探究探究一 圆与圆的位置关系★●活动① 明确概念我们知道根据圆心到直线距离的长度与圆半径长度的比较之后,明确了直线与圆有三种位置关系,分别是:相离、相切和相交. 那么圆与圆之间也同样有这样的关系,我们通过两个圆半径之间与两圆圆心之间距离的长度还有公共点的个数比较来判断两个圆的位置关系:当公共点个数为0时,若21r r d +>,则两圆外离,若21r r d -<,则两圆内含;当公共点个数为1时,若21r r d +=,则两圆外切,若21r r d -=,则两圆内切;当公共点个数为2时,2121r r d r r +<<-,则两圆相交. 【例题】【知识点】圆与圆位置关系 【数学思想】数形结合【解题过程】根据图像和定义直接得出结果 【思路点拨】看两圆圆心距和两半径的关系【答案】(图一至图五依次为)外离、外切、相交、内切、内含. 【设计意图】解决数学问题,体会概念与数形结合方法. ●活动② 给定方程,判断位置关系当我们给定两圆的方程,有几种判别两圆位置关系的方法呢?(抢答)首先是代数法:设两个圆的方程组成的方程组为22111222220,0,x y D x E y F x y D x E y F ⎧++++=⎪⎨++++=⎪⎩ 如果方程组有两组不同的实数解⇔两圆相交; 有两组相同的实数解⇔两圆外切或内切;无实数解⇔ 两圆相离或内含. 其次是几何法:设两圆圆心分别为O 1、O 2,半径为r 1、r 2(r 1≠r 2),则O 1O 2>r 1+r 2⇔相离;O 1O 2=r 1+r 2⇔外切;|r 1-r 2|<O 1O 2<r 1+r 2⇔相交;O 1O 2=|r 1-r 2|⇔内切;O 1O 2<|r 1-r 2|⇔内含.看下面的例题判断两圆07622=-++x y x 与027622=-++y y x 的位置. 【知识点】圆与圆位置关系 【数学思想】数形结合、方程思想【解题过程】第一个圆的方程07622=-++x y x 可以改写为()16322=++y x ,第二个圆的方程027622=-++y y x 可以改写为()36322=++y x ,两圆圆心的的距离为()()23030322=-+-半径和为1021=+r r ,半径差为122r r -=,故两圆相交.【思路点拨】看两圆圆心距和两半径的关系 【答案】相交.【设计意图】通过对概念理解和计算方法的运用,加深对圆与圆位置关系的理解. 探究二 两圆相交时的公共弦方程及弦长计算 ●活动① 根据图像判断公切线的条数在直线与圆的位置关系一节中我们探究了在圆内、圆上、圆外一点做圆的切线的问题,发现在圆内没有切线、在圆上有一条切线、在圆外有两条切线. 同理我们可以探究两圆的位置关系,再以此判断两圆的公切线的条数. 那么大家可以总结出来吗?(抢答)总结公切线条数如下:若两圆外离,两圆有四条公切线;相交,两圆有两条公切线;若两圆外切,两圆有三条公切线;若两圆内切,两圆有一条公切线;若两圆内含,两圆没有公切线.●活动② 给定两圆的方程,判断公切线的条数我们想要判定公切线的条数首先需要我们判定两圆位置关系.【例题】判断两圆07622=-++x y x 与027622=-++y y x 的公切线条数. 【知识点】圆与圆位置关系、公切线【数学思想】数形结合【解题过程】2211(3)16,(3,0),4x y o r ++=-=,2221(3)36,(0,3),6x y o r ++=-=122121210o o r r r r =-=<<+=则,则两圆相交,所以有2条公切线 【思路点拨】两圆的位置关系是相交 【答案】2●活动③ 过两圆交点的圆系方程的应用当两圆相交时,两圆有两个交点,这两个交点所在直线就是一条公共弦,那么这条弦的方程该如何计算呢?(举手回答)法一:联立两圆方程求出两圆交点,并用两点式求出直线方程. 法二:两圆相交,则两圆相减的方程为公共弦方程.例1 圆224410x y x y ++--=与圆222130x y x ++-=相交于,P Q 两点,求直线PQ 的方程.【知识点】圆与圆位置关系、公共弦问题 【数学思想】方程思想【解题过程】两圆的公共弦方程就是两式相减的直线方程,22(441)x y x y ++---22(213)0x y x ++-=可得260x y -+=【思路点拨】两圆方程相减得出一条直线 【答案】260x y -+=;【同类训练】求以圆1C :22122130x y x y +---=和圆2C :221216250x y x y +++-=公共弦为直径的圆的方程.【知识点】圆与圆位置关系、公共弦问题 【数学思想】方程思想【解题过程】解法一:22221221301216250x y x y x y x y ⎧+---=⎪⎨+++-=⎪⎩相减得公共弦所在直线方程4320x y +-=,再由224320122130x y x y x y +-=⎧⎨+---=⎩联立得两交点坐标()1,2A -、()5,6B -.∵所求圆以AB 为直径,∴圆心是AB 的中心点()2,2M -,圆的半径为152r AB ==.于是圆的方程()()222225x y -++=. 解法二:(使用圆系方程求解:120o o λ+=)设所求圆2212x y x +--()222131216250y x y x y λ-++++-=()λ参数,得圆心()()1212162,2121λλλλ⎛⎫---- ⎪ ⎪++⎝⎭, ∵圆心在公共弦AB 所在直线上,∴()()121216243202121λλλλ⎛⎫⎛⎫--⨯-+--= ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,解得12λ=. 故所求圆的方程2244170x y x y +-+-=即()()222225x y -++=. 【思路点拨】圆心在公共弦上 【答案】2244170x y x y +-+-= 探究三 两圆位置关系中的参数问题 ●活动① 已知两圆位置关系,求参数范围同直线与圆位置关系一样,我们在圆与圆位置关系的题目中同样涉及到参数的求解问题,接下来就根据这一道例题来掌握这一类问题中使用的代数思想. 例2 m y x =+22与圆0118622=--++y x y x 相交,求实数m 的范围. 【知识点】圆与圆位置关系 【数学思想】数形结合、方程不等式【解题过程】圆0118622=--++y x y x 改写为()()364322=-++y x ,则两圆圆心距离为5,使得两圆相交,则6562121+=+<<-=-m r r m r r ,最终解出.()121,1∈m【思路点拨】根据定义即可 【答案】()121,1∈m 【同类训练】已知圆0542:2221=-++-+m y mx y x C ,圆03222222=-+-++m my x y x C :,当m 为何值时,(1)圆C 1与圆C 2外切;(2)圆C 1与圆C 2内含?【知识点】圆与圆位置关系 【数学思想】数形结合、方程不等式【解题过程】对于圆C 1与圆C 2的方程,经配方后()()92221=++-y m x C :;()()41222=-++m y x C :. (1)如果C 1与C 2外切,则有()()232122+=+++m m ,()()252122=+++m m ,01032=-+m m ,解得25=-=m m 或.(2)如果C 1与C 2内含,则有()()232122-<+++m m ,1)2()1(22<+++m m ,0232<++m m ,解得12-<<-m ,∴当25=-=m m 或时,圆C 1与圆C 2外切;当12-<<-m 时,圆C 1与圆C 2内含. 【思路点拨】根据定义建立不等式 【答案】25=-=m m 或;12-<<-m 3.课堂总结 知识梳理(1)两个圆的位置关系一共有五种:外离、外切、相交、内切、内含. (2)给定两圆方程来判断两个圆之间的位置关系可以使用代数方法和几何方法. (3)两圆相交时公共弦所在直线和弦长的计算以及该弦的圆系方程. 重难点归纳(1)圆与圆的位置关系及其判断方法. (2)圆系方程解决问题. (三)课后作业 基础型 自主突破1.两个大小不等的圆,其位置关系有几种?分别是什么? 【知识点】考察几种圆与圆位置关系的定义 【数学思想】归类总结 【解题过程】直接根据定义回答 【思路点拨】根据定义即可【答案】五种,内含、内切、相交、外切、外离2.圆4)2(22=++y x 与圆9)1()2(22=-+-y x 的位置关系为__________.【知识点】两圆方程判断两圆位置 【数学思想】【解题过程】∵两圆的圆心距为17)01()22(22=-++, 又∵231723+<<-,∴两圆相交 【思路点拨】定义 【答案】相交3.已知圆0882221=-+++y x y x C :和 圆0144:222=---+y x y x C ,试判断圆C 1与圆C 2的位置关系.【知识点】已知两圆方程判断两圆位置 【数学思想】【解题过程】圆心距:5335-<<+ 【思路点拨】定义解题 【答案】相交4.若圆222x y m +=与圆2268x y x y ++-110-=相交,求实数m 的取值范围. 【知识点】已知位置关系,求参数范围,不等式 【数学思想】不等式方程思想【解题过程】1122(0,0),;(3,4),6O r m O r =-=,125,O O = 则因为两圆相交,所以656,m m -<<+解得m ∈(11,1)(1,11)--.【思路点拨】使用相交时圆心距离与两圆半径之间的关系来求解 【答案】(11,1)(1,11)--.5.判断两圆2220x y x +-=与2240x y y +-=的位置关系,若相交,请求出其公共弦长 .【知识点】两圆位置关系,弦长 【数学思想】方程思想【解题过程】把两圆改写成222212:(1)1;:(2)4;o x y o x y -+=+-=122112o o -<=<+ ,所以两圆相交,两圆相减可得直线方程为20x y -=,1o d l ===到直线的弦长 【思路点拨】定义解题. 6.两圆2222440,2120x y x y x y x ++-=++-=相交于A ,B 两点,则直线AB 的方程是 .【知识点】两圆相交时求公共弦的方程 【数学思想】方程思想【解题过程】()()0122442222=-++--++x y x y x y x 【思路点拨】两圆方程相减即可 【答案】260x y --=. 能力型 师生共研7.已知01r <<+,则两圆222x y r +=与22(1)(1)2x y -++=的位置关系是 .【知识点】圆与圆的位置关系判别 【数学思想】数形结合【解题过程】两圆心距离为2,与两圆半径和与两圆半径差比较 【思路点拨】定义解题 【答案】相交8.已知圆()22422010x y ax ay a +-++-=与圆224x y +=相切,则a 的值为_________.【知识点】圆与圆的位置关系 【数学思想】方程思想.、分类讨论 【解题过程】圆()22422010x y ax ay a +-++-=改写成222(2)()5(2)x a y a a -+-=-,d =圆心距相切可得22+或者22-解得1a =±.【思路点拨】定义解题,得出方程【答案】1a =±探究型 多维突破9.求过圆221:420C x y x y +-+=和圆222:240C x y y +--=的交点,且圆心在直线:2410l x y +-=上的圆的方程. 【知识点】过两圆交点的圆系问题【数学思想】方程思想【解题过程】圆方程可设为222242(24)0x y x y x y y λ+-+++--=,求出圆心21(,)11λλλ-++,带入直线:2410l x y +-=可得13λ=,再代入所设方程可得圆的方程为22310x y x y +-+-=【思路点拨】圆系【答案】22310x y x y +-+-=10.已知圆2260x y x +-=与圆22244x y y m +-=-(0)m >,则m = 时,两圆相切.【知识点】两圆位置【数学思想】分类讨论思想【解题过程】 两圆改成2211(3)9,(3,0),3x y o r -+==,22222(2),(0,2),x y m o r m +-==d =圆心距,若外切则3,3;3m m m =+=-=-,解得3m =+【思路点拨】两圆相切分为两种:内切和外切3±自助餐1.已知圆221:2610C x y x y ++-+=,圆222:42110C x y x y +-+-=,求两圆的公共弦所在的直线方程及公共弦长.【知识点】相交两圆的公共弦问题【数学思想】数形结合【解题过程】两圆相减【思路点拨】结论解题【答案】0643=+-y x ;245. 2.已知圆0342:22=+-++y x y x C .若圆Q 与圆C 关于直线03=--y x 对称,求圆Q 的方程;【知识点】圆与圆位置关系的综合运用【数学思想】数形结合【解题过程】(1)将圆的方程化成标准式()()22122=-++y x ,圆心()21,-C ,半径2=r ,圆心()21,-C 关于直线03=--y x 的对称点()45-,Q ,圆Q 半径2=r ,∴圆Q 的方程为()()24522=++-y x . 【思路点拨】圆关于直线对称还是圆【答案】()()24522=++-y x ; 3.已知点(5,4)P ,圆C :2268110x y x y +---=,过P 作圆D ,使C 与D 相切,并且使D 的圆心坐标是正整数,求圆D 的标准方程.【知识点】位置关系、圆的方程【数学思想】分类讨论思想【解题过程】点P 在圆C 内部,所以圆D 与圆C 内切,设圆D ()()222x a y b r -+-=,由点在圆上和两圆内切得到133a r =-,14r ≤≤,讨论r后只有2r =和4满足,圆D 方程为()()22744x y -+-=或()()221416x y -+-=.【思路点拨】在圆与圆的位置关系中有内切和外切两种【答案】()()22744x y -+-=或()()221416x y -+-=.4.圆经过直线240x y ++=与圆222410x y x y ++-+=的两个交点,并且面积最小,求此圆的方程.【知识点】两圆位置关系、圆系方程【数学思想】数形结合【解题过程】抓住直线即为直径【思路点拨】通过圆系方程可知,该直径是公共弦 【答案】221364()()555x y ++-= 5.已知圆1C :222210x y kx k +-+-=和圆2C :2222(1)20x y k y k k +-+++=,则当它们圆心之间的距离最短时,两圆的位置关系如何?【知识点】两圆位置关系、最值【数学思想】函数思想【解题过程】圆1C 的方程可以改写为()122=+-y k x ,圆2C 改写为()()1122=+-+k y x 两圆圆心距离最短时1222++k k ,21-=k ,此时22min =d 【思路点拨】两圆距离最短不仅大于0而且小于2.【答案】两圆的位置关系为相交.6.在平面直角坐标系xOy 中,已知圆4)1()3(221=-++y x C :和圆4)5()4(222=-+-y x C :.(1)若直线l 过点)04(,A ,且被圆C 1截得的弦长为32,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.【知识点】直线与圆、圆与圆位置关系的综合运用【数学思想】数形结合、方程思想【解题过程】(1)由于直线4=x 与圆C 1不相交,所以直线l 的斜率存在 设直线l 的方程为)4(-=x k y ,圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为32,所以1)3(222=-=d . 由点到直线的距离公式,得21)43(1k k d +---=,从而0)724(=+k k ,即0=k 或247-=k , 所以直线l 的方程为0=y 或028247=-+y x .(2)设点),(b a P 满足条件,不妨设直线l 1的方程为0),(≠-=-k a x k b y ,则直线l 2的方程为)(1a x kb y --=-. 因为圆C 1和C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即2211)4(151)3(1kb a k k b a k +--+=+----,整理得bk a k b ak k --+=-++4531, 从而bk a k b ak k --+=-++4531或bk a k b ak k ++--=-++4531, 即3)2(+-=-+a b k b a 或5)8(-+=+-b a k b a ,因为k 的取值有无穷多个,所以⎩⎨⎧=+-=-+0302a b b a 或⎩⎨⎧=-+=+-0508b a b a , 解得5212a b ⎧=⎪⎪⎨⎪=-⎪⎩或⎪⎩⎪⎨⎧=-=21323b a 这样点P 只可能是点⎪⎭⎫ ⎝⎛-21,251P 或点⎪⎭⎫ ⎝⎛-213,232P . 经检验点P 1和P 2满足题目条件【思路点拨】条件直译【答案】(1)0282470=-+=y x y 或;(2)⎪⎭⎫ ⎝⎛-21,251P 或点⎪⎭⎫ ⎝⎛-213,232P .。
人教A版高中数学必修2《圆与圆的位置关系》教学设计(赛课一等奖)教学设计:人教A版高中数学必修2《圆与圆的位置关系》引言:《圆与圆的位置关系》作为高中数学必修课的一部分,是学生们在学习数学中接触的重要内容之一。
本教学设计旨在通过合理的教学安排和教学活动设计,帮助学生理解圆与圆的位置关系的概念、性质及应用,提高他们的数学思维能力和问题解决能力。
一、教学目标:1. 知识与技能目标:a) 掌握圆与圆的位置关系的基本概念,并能准确运用相关的定理和性质;b) 能够分析和解决与圆相关的实际问题;c) 熟练使用几何绘图工具画出圆与圆的位置关系图形。
2. 过程与方法目标:a) 运用归纳法总结圆与圆的位置关系的定理和性质;b) 通过合作学习、探究学习等方式,激发学生的学习兴趣和问题解决能力;c) 引导学生思考、发现问题并提出解决方案,培养学生的数学思维能力和创新意识。
3. 情感与态度目标:a) 培养学生对数学学习的兴趣和自信心;b) 培养学生的合作与交流能力,提高他们的团队意识和责任感;c) 培养学生对数学知识的应用能力和实际问题解决能力。
二、教学重点和难点:1. 教学重点:a) 圆与圆的位置关系的基本概念和性质;b) 利用所学知识分析和解决与圆相关的实际问题;c) 学会使用几何绘图工具画出圆与圆的位置关系图形。
2. 教学难点:a) 对圆与圆的位置关系的定理和性质的理解和运用;b) 利用所学知识解决复杂的圆与圆的位置关系问题。
三、教学过程:1. 导入:通过展示几个有趣的问题,激发学生对圆与圆的位置关系的兴趣和求解问题的欲望。
2. 概念讲解:通过教师讲解的方式,介绍圆与圆的位置关系的基本概念和常见的定理和性质。
并通过几个具体的例子,引导学生理解和记忆相关概念。
3. 合作探究:组织学生分小组讨论,并给出若干探究性问题,引导学生通过分析、讨论和合作解决问题的方式,发现和总结圆与圆的位置关系的定理和性质。
4. 拓展活动:引导学生通过相关的拓展活动,运用所学知识解决与圆相关的实际问题,提高他们的数学应用能力和问题解决能力。
圆与圆位置关系的教案5篇圆与圆位置关系的教案1教学目标:1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.教学重点:两圆的五种位置与两圆的半径、圆心距的数量之间的关系.教学难点:两圆位置关系及判定.(一)复习、引出问题1.复习:直线和圆有几种位置关系?各是怎样定义的?(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?(二)观察、分类,得出概念1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例. (图(6))2、归纳:(1)两圆外离与内含时,两圆都无公共点.(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?结论:在同一平面内任意两圆只存在以上五种位置关系.(三)分析、研究1、相切两圆的性质.让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:如果两个圆相切,那么切点一定在连心线上.这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明2、两圆位置关系的数量特征.设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)两圆外切 d=R+r;两圆相交 R-r两圆内切两圆外离两圆内含d=R-r (R>r); d>R+r; dr);说明:注重“数形结合”思想的教学.(四)应用、练习例1:如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?解:(1)设⊙P与⊙O外切与点A,则PA=PO-OA∴PA=3cm.(2)设⊙P与⊙O内切与点B,则PB=PO+OB∴PB=1 3cm.例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.求证:⊙O与⊙B相外切.证明:连结BO,∵AC为⊙O的直径,AC=12,∴⊙O的半径,且O是AC的中点∴,∵∠C=90°且BC=8,∴,∵⊙O的半径,⊙B的半径,∴BO= ,∴⊙O与⊙B相外切.练习(P138)(五)小结知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;②以及这五种位置关系下圆心距和两圆半径的数量关系;③两圆相切时切点在连心线上的性质.能力:观察、分析、分类、数形结合等能力.思想方法:分类思想、数形结合思想.(六)作业教材P151中习题A组2,3,4题.圆与圆位置关系的教案2教学目标(一)教学知识点1.了解圆与圆之间的几种位置关系.2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.(二) 能力训练要求1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.(三)情感与价值观要求1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.教学方法教师讲解与学生合作交流探索法教具准备投影片三张第一张:(记作3. 6A)第二张:(记作3.6B)第三张:(记作3.6C)教学过程Ⅰ.创设问题情境,引入新课[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.Ⅱ.新课讲解一、想一想[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?[生]如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨论这些位置关系分别是什么.二、探索圆和圆的位置关系在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.[生]我总结出共有五种位置关系,如下图:[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?[生]外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点.[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.经过大家的讨论我们可知:投影片(24.3A)(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离,相切三、例题讲解投影片(24.3B)两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O’是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求TPN的大小.分析:因为两个圆大小相同,所以半径OP=O’P=OO’,又TP、NP分别为两圆的切线,所以PTOP,PNO’P,即OPT=O’PN=90,所以TPN等于36 0减去OPT+O’PN+OPO’即可.解:∵OP=OO’=PO’,△PO’O是一个等边三角形.OPO’=60.又∵TP与NP分别为两圆的切线,TPO =NPO’=90.TPN=360-290-60=120.四、想一想如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2)〕[师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.证明:假设切点T不在O1O2上.因为圆是轴对称图形,所以T关于O1O2的对称点T’也是两圆的公共点,这与已知条件⊙O1和⊙O2相切矛盾,因此假设不成立.则T在O1O2上.由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.在图(2)中应有同样的结论.通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线.五、议一议投影片(24.3C)设两圆的半径分别为R和r.(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d与R和r具有怎样的关系?反之当d与R和r 满足这一关系时,这两个圆一定外切吗?(2)当两圆内切时(R>r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?[师]如图,请大家互相交流.[生]在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是 B.因为切点B在连心线O1O2上,所以O1O2=O1B-O2B,即d=R-r;反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.[师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r.当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切 d=R-r.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.探索圆和圆的五种位置关系;2.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;3. 探讨在两圆外切或内切时,圆心距d与R和r之间的关系.Ⅴ.课后作业习题24.3Ⅵ.活动与探究已知图中各圆两两相切,⊙O的半径为2R,⊙O1、⊙O2的半径为R,求⊙O3的半径.分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O3的半径为r,则O1O3=O2O3=R+r,连接OO3就有OO3O1O2,所以OO2O3构成了直角三角形,利用勾股定理可求得⊙O3的半径r.解:连接O2O3、OO3,O2OO3=90,OO3=2R-r,O2O3=R+r,OO2=R.(R+r)2=(2R-r)2+R2.r= R.板书设计24.3 圆和圆的位置关系一、1.想一想2.探索圆和圆的位置关系3.例题讲解4.想一想5.议一议二、课堂练习三、课时小结四、课后作业圆与圆位置关系的教案3教学目标:探索圆与圆几种位置及两圆相切时两圆圆心距.半径的数量关系的过程.教学重点及教学难点:了解圆与圆的几种位置关系及两圆相切时圆心距d、半径R和r的数量关系一.创设问题情境,引入新课我们已经研究过点和圆的位置关系,还探究了直线和圆的位置关系,它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.二.新课讲解(一). 探索圆和圆的位置关系在一张透明纸上作一个⊙O.在另一张透明纸上作一个与⊙O1半径不等的⊙O2.两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?相互交流,总结出不同的位置关系. 投影片(§3.6.1)(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.?外离?外切(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离?,相切??内切.?内含(二)、例题讲解教师出示投影片(§3.6.2)(本节练习2)然后做好引导。
第4节 直线与圆、圆与圆的位置关系【最新考纲】 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.【高考会这样考】 1.考查直线与圆的相交、相切问题,判断直线与圆、圆与圆的位置关系;2.计算弦长、面积,考查与圆有关的最值;根据条件求圆的方程.要 点 梳 理1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.2.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:[友情提示]1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y =r2.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.基础自测1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.()解析(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.答案(1)×(2)×(3)×(4)√2.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离解析两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+12=17.∵3-2<d<3+2,∴两圆相交.答案 B3.已知直线y=mx与圆x2+y2-4x+2=0相切,则m值为()A.±3B.±33 C.±32 D.±1解析将y=mx代入x2+y2-4x+2=0,得(1+m2)x2-4x+2=0,因为直线与圆相切,所以Δ=(-4)2-4(1+m2)×2=8(1-m2)=0,解得m=±1.答案 D4.已知圆的方程为x2+y2=1,则在y轴上截距为2的切线方程为________.解析在y轴上截距为2且斜率不存在的直线显然不是切线,故设切线方程为y=kx+2,则|2|k 2+1=1,所以k =±1,故所求切线方程为y =x +2或y =-x + 2. 答案 x -y +2=0或x +y -2=05.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析 由⎩⎨⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2. 答案 22题型分类 深度解析考点一 直线与圆的位置关系考点一 直线与圆的位置关系【例1】 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定(2)(一题多解)圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是________. 解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1,故直线与圆O 相交.(2)法一 将直线方程代入圆方程,得(k 2+1)x 2+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2-12(k 2+1)<0,解得-3<k < 3. 法二 圆心(0,0)到直线y =kx +2的距离d =2k 2+1,直线与圆没有公共点的充要条件是d >1, 即2k 2+1>1,解得-3<k < 3. 答案 (1)B (2)-3<k < 3规律方法 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.【变式练习1】 (1)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( )A.相切B.相交但直线不过圆心C.相交过圆心D.相离(2)已知圆C :(x -1)2+y 2=r 2(r >0),设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A.充分不必要条件 B .必要不充分条件 C.充要条件D.既不充分也不必要条件解析 (1)由题意知 圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+12=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.(2)由题意知,圆心C (1,0)到直线x -3y +3=0的距离d =|1+3|2=2,至多有2点到直线的距离为1时,0<r <3;反之也成立,故选C. 答案 (1)B (2)C考点二 圆的切线、弦长问题【例2】 (1)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.(2)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为________.解析 (1)圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.(2)当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0. 综上,切线方程为x =2或4x -3y +4=0. 答案 (1)4π (2)x =2或4x -3y +4=0 规律方法 1.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. (2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2. 2.圆的切线方程的两种求法(1)代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .(2)几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k .【变式练习2】 (1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. (2)过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________.解析 (1)设P (3,1),圆心C (2,2),则|PC |=2,半径r =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-(2)2=2 2.(2)将圆的方程化为标准方程为(x -3)2+(y -4)2=5,则圆心为(3,4),半径长为 5. 由题意可设切线的方程为y =kx ,则圆心(3,4)到直线y =kx 的距离等于半径长5,即|3k -4|k 2+1=5,解得k =12或k =112,则切线的方程为y =12x 或y =112x .联立切线方程与圆的方程,解得两切点坐标分别为(4,2),⎝⎛⎭⎫45,225,此即为P ,Q 的坐标,由两点间的距离公式得|PQ |=4. 答案 (1)22 (2)4 考点三 圆与圆的位置关系【例3】 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为(x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011. (2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5, 所以61-m -11=5,解得m =25-1011.(3)由(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0. 故两圆的公共弦的长为2(11)2-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27.规律方法 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. 【变式练习3】 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离(2)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1 相外切,则ab 的最大值为( ) A.62B.32C.94D.2 3解析 (1)∵圆M :x 2+(y -a )2=a 2,∴圆心坐标为M (0,a ),半径r 1为a ,圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝ ⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1. ∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.(2)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=9,根据基本不等式可知ab ≤⎝ ⎛⎭⎪⎫a +b 22=94,当且仅当a =b 时等号成立. 答案 (1)B (2)C课后练习A 组(时间:40分钟)一、选择题1.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A.-43B.-34C. 3D.2解析 由圆的方程x 2+y 2-2x -8y +13=0得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a 2=1,解之得a =-43. 答案 A2.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A.2x +y -5=0 B.2x +y -7=0 C.x -2y -5=0D.x -2y -7=0解析 ∵过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条, ∴点(3,1)在圆(x -1)2+y 2=r 2上, ∵圆心与切点连线的斜率k =1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y -1=-2(x -3),即2x +y -7=0. 答案 B3.(2018·洛阳一模)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A.充分不必要条件 B .必要不充分条件 C.充要条件D.既不充分也不必要条件解析 依题意,因|AB |=2,则圆心O 到直线l 的距离等于12-⎝ ⎛⎭⎪⎫222=22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件,选A. 答案 A4.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A.1个B.2个C.3个D.4个解析 圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点. 答案 C5.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A.y =-34 B.y =-12 C.y =-32D.y =-14解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12. 答案 B 二、填空题6.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.解析 由圆x 2+y 2=12知圆心O (0,0),半径r =23, ∴圆心(0,0)到直线x -3y +6=0的距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3. ∵直线l 的方程为x -3y +6=0,∴直线l 的倾斜角∠BPD =30°,从而∠BDP =60°, 因此|CD |=|CE |sin 60°=23sin 60°=4. 答案 47.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=________.解析 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴, 则圆心C (2,1)满足直线方程x +ay -1=0, 所以2+a -1=0,解得a =-1,所以A 点坐标为(-4,-1). 从而|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.即|AB |=6. 答案 68.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.解析 把圆C 1、圆C 2的方程都化成标准形式,得 (x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3;圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离,所以,|PQ |的最小值是35-5.答案 35-5 三、解答题9.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解 (1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1. 所以C 点坐标为(1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. 故圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k2=1,解得k =-34,则直线l 的方程为y =-34x .综上所述,直线l 的方程为x =0或3x +4y =0.10.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)易知圆心坐标为(2,3),半径r =1, 由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8.由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2.B 组(时间:20分钟)11.已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.1031B.921C.1023D.911解析 易知P 在圆C 内部,最长弦为圆的直径10, 又最短弦所在直线与最长弦垂直,且|PC |=2, ∴最短弦的长为2r 2-|PC |2=225-2=223, 故所求四边形的面积S =12×10×223=1023.答案 C12.过点A (1,2)的直线l 将圆C :(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.解析 易知点A (1,2)在圆(x -2)2+y 2=4的内部,圆心C 的坐标为(2,0),当直线l 被圆截得的弦的弦心距最长时,劣弧所对的圆心角最小,此时l ⊥CA ,如图所示,所以k =-1k CA =-1-2=22. 答案 2213在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(1)解 不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足方程x 2+mx -2=0,所以x 1x 2=-2.又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12, 所以不能出现AC ⊥BC 的情况.(2)证明 BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2.联立⎩⎨⎧x =-m 2,①y -12=x 2⎝⎛⎭⎫x -x 22,② 又x 22+mx 2-2=0,③由①②③解得x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92. 故圆在y 轴上截得的弦长为2r 2-⎝⎛⎭⎫m22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。
三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。
法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。
法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。
法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。
分析:作出图形后进⾏观察,以找到解决问题的思路。
分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。
例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。
解:因P点在圆上,故可求切线L的⽅程为x+2y=5。
第4讲直线与圆、圆与圆的位置关系1.能根据给定直线、圆的方程判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )相离相切相交图形量化方程观点Δ□1<0Δ□2=0Δ□3>0几何观点d □4>r d □5=r d □6<r 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|O 1O 2|□7>r 1+r 2⇔⊙O 1与⊙O 2相离;|O 1O 2|□8=r 1+r 2⇔⊙O 1与⊙O 2外切;|r 1-r 2|□9<|O 1O 2|<r 1+r2⇔⊙O 1与⊙O 2相交;|O 1O 2|□10=|r 1-r 2|⇔⊙O 1与⊙O 2内切(r 1≠r 2);|O 1O 2|□11<|r 1-r 2|⇔⊙O 1与⊙O 2内含.两圆的位置关系与公切线的条数①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.常用结论1.过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r2.2.过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )·(y -b )=r 2.3.过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)设f(x,y)=0表示直线l,g(x,y)=0表示⊙C,则方程g(x,y)+λf(x,y)=0表示过l与⊙C交点的所有圆.()(4)设f(x,y)=0表示⊙C1,g(x,y)=0表示⊙C2,则方程f(x,y)+λg(x,y)=0表示过⊙C1与⊙C2交点的所有圆.()答案:(1)×(2)×(3)√(4)×2.回源教材(1)直线y=3x被圆C:x2+y2-2x=0截得的线段长为.解析:圆C:x2+y2-2x=0的圆心为(1,0),半径为1,圆心到直线y=3x的距离为d=3 2,故弦长为2×1-(32)2=1.答案:1(2)圆x2+y2-2y=0与圆x2+y2-4=0的位置关系为.解析:圆x2+y2-2y=0的圆心为C1(0,1),半径r1=1,圆x2+y2-4=0的圆心为C2(0,0),半径r2=2,由于|C1C2|=r2-r1,所以两圆内切.答案:内切(3)圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为.解析:2+y2-4=0,2+y2-4x+4y-12=0,得两圆公共弦所在直线方程x-y+2=0.又圆x2+y2=4的圆心到直线x-y+2=0的距离为22= 2.由勾股定理得弦长为24-2=2 2.答案:22直线与圆的位置关系例1(1)(2024·南充高级中学模拟)已知直线l:kx-y-k-2=0和圆C:x2-2x+4y+y2-1=0,则直线l与圆C的位置关系是()A.相切B.相交C.相离D.相交或相切解析:B圆C的标准方程为(x-1)2+(y+2)2=6,圆心C(1,-2),直线l:kx-y-k-2=0可化为y+2=k(x-1),则直线l过定点(1,-2),因此直线l经过圆心C,所以直线l与圆C相交.故选B.(2)(2024·菏泽期中)已知直线l:x-y+2=0与圆C:x2+y2-2y-2m=0相离,则实数m的取值范围是()A.-12,-14 B.(-∞,-14)C.(-12,-14) D.(-12,+∞)解析:C圆C的标准方程为x2+(y-1)2=2m+1,则m>-12,所以圆心为(0,1),半径为2m+1,由直线与圆相离,可知圆心C到直线l的距离12>2m+1,可得-12<m<-14,即实数m的取值范围为(-12,-14).故选C.反思感悟判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系判断.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.训练1(1)(多选)(2021·新高考Ⅱ卷)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切解析:ABD选项A ,∵点A 在圆C 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2=|r |,∴直线l 与圆C 相切,A 正确.选项B ,∵点A 在圆C内,∴a 2+b 2<r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2>|r |,∴直线l 与圆C相离,B 正确.选项C ,∵点A 在圆C 外,∴a 2+b 2>r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b 2<|r |,∴直线l 与圆C 相交,C 错误.选项D ,∵点A 在直线l 上,∴a 2+b 2=r 2,圆心C (0,0)到直线l 的距离d =r 2a 2+b2=|r |,∴直线l 与圆C 相切,D 正确.故选ABD.(2)(2022·新高考Ⅱ卷)设点A (-2,3),B (0,a ),若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是.解析:由题意知点A (-2,3)关于直线y =a 的对称点为A ′(-2,2a -3),所以k A ′B =3-a 2,所以直线A ′B 的方程为y =3-a2x +a ,即(3-a )x -2y +2a =0.由题意知直线A ′B 与圆(x +3)2+(y +2)2=1有公共点,易知圆心为(-3,-2),半径为1,所以|-3(3-a )+(-2)×(-2)+2a |(3-a )2+(-2)2≤1,整理得6a 2-11a +3≤0,解得13≤a ≤32,所以实数a 的取值范围是13,32.答案:13,32圆的切线、弦长问题切线问题例2(2023·新课标Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64解析:B如图,由x 2+y 2-4x -1=0得(x -2)2+y 2=5,所以圆心坐标为(2,0),半径r =5,所以圆心到点(0,-2)的距离为(2-0)2+(0+2)2=2 2.由于圆心与点(0,-2)的连线平分角α,所以sin α2=r 22=522=104,又α2∈(0,π2),所以cos α2=64,所以sin α=2sin α2cos α2=2×104×64=154,故选B.弦长问题例3(2023·新课标Ⅱ卷)已知直线x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.解析:设直线x -my +1=0为直线l ,由条件知⊙C 的圆心为C (1,0),半径R =2,则圆心C 到直线l 的距离d =21+m 2,|AB |=2R 2-d 2=24-(21+m2)2=4|m |1+m 2.由S △ABC =85,得12×4|m |1+m 2×21+m 2=85,整理得2m 2-5|m |+2=0,解得m =±2或m =±12,故答案可以为2.答案:2(答案不唯一,可以是±12,±2中任意一个)最值(范围)问题例4由直线x-y+4=0上一点向圆(x-1)2+(y-1)2=1引切线,则切线长的最小值为()A.7B.3C.22D.22-1解析:A圆(x-1)2+(y-1)2=1的圆心C(1,1),半径为1,由直线x-y+4=0上一点P向圆(x-1)2+(y-1)2=1引切线,设切点为M,连接PC,MC(图略),则|PM|=|PC|2-|MC|2=|PC|2-1,要使切线长最小,则|PC|最小,而|PC|的最小值等于圆心C到直线x-y+4=0的距离,故|PC|min=|1-1+4|2=22,故切线长的最小值为(22)2-1=7.故选A.反思感悟直线与圆问题的解决方法(1)设圆的半径为r,圆心到直线的距离为d,若直线与圆相切,则d=r;若直线与圆相交,则所得弦长l=2r2-d2.(2)涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长度表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.训练2(1)(2024·陕西第一次大联考)已知圆C:x2+y2-4x+8y=0关于直线3x-2ay-22=0对称,则圆C中以(a2,-a2)为中点的弦长为()A.25B.5C.10D.210解析:D圆C的方程可化为(x-2)2+(y+4)2=20,圆心C(2,-4),r=25,∵圆C关于直线3x-2ay-22=0对称,∴直线过圆心C(2,-4),即3×2+8a -22=0,解得a=2.圆心C与点(1,-1)的距离的平方为10,则圆C中以(1,-1)为中点的弦长为2(25)2-10=210,故选D.(2)(2023·全国乙卷)已知实数x,y满足x2+y2-4x-2y-4=0,则x-y的最大值是()A.1+322B.4C.1+32D.72解析:C将方程x2+y2-4x-2y-4=0化为(x-2)2+(y-1)2=9,其表示圆心为(2,1),半径为3的圆.设z=x-y,数形结合知,只有当直线x-y-z=0与圆相切时,z才能取到最大值,此时|2-1-z|2=3,解得z=1±32,故z=x-y的最大值为1+3 2.故选C.圆与圆的位置关系例5(多选)(2024·福建师大附中第三次月考)已知⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,则下列说法中,正确的有()A.若点(1,-1)在⊙O1内,则m≥0B.当m=1时,⊙O1与⊙O2共有两条公切线C.若⊙O1与⊙O2存在公共弦,则公共弦所在直线过定点(13,16)D.∃m∈R,使得⊙O1与⊙O2公共弦的斜率为12解析:BC因为⊙O1:x2+y2-2mx+2y=0,⊙O2:x2+y2-2x-4my+1=0,所以⊙O1:(x-m)2+(y+1)2=m2+1,⊙O2:(x-1)2+(y-2m)2=4m2,则O1(m,-1),r1=m2+1,O2(1,2m),r2=2|m|,则m≠0.对于A,由点(1,-1)在⊙O1内,可得(1-m)2+(-1+1)2<m2+1,即m>0,故A错误;对于B,当m=1时,O1(1,-1),r1=2,O2(1,2),r2=2,所以|O1O2|=3∈(2-2,2+2),所以两圆相交,有两条公切线,故B正确;对于C,⊙O1和⊙O2的方程相减,得(-2m+2)x+(2+4m)y-1=0,即m(-2x+4y)+(2x+2y-1)=02x+4y=0,x+2y-1=0,=13,=16,所以⊙O1与⊙O2的公共弦所在直线过定点(13,16),故C正确;对于D,公共弦所在直线的斜率为2m-22+4m,令2m-22+4m=12,无解,故D错误.故选BC.反思感悟1.判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和与差的绝对值的关系,一般不用代数法.2.两圆公共弦长的求法先求出公共弦所在直线的方程,在其中一圆中,由弦心距d,半弦长l2,半径r构成直角三角形,利用勾股定理求解.训练3(1)圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,则m的取值范围是()A.(-∞,-5]B.[5,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:D将x2+2mx+y2+m2-1=0化为标准方程得(x+m)2+y2=1,即圆心为(-m,0),半径为1,圆x2+(y-2)2=4的圆心为(0,2),半径为2,因为圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,所以两圆的位置关系为外切或相离,所以m2+4≥2+1,即m2≥5,解得m∈(-∞,-5]∪[5,+∞).故选D.(2)(多选)已知圆O1:x2+y2-2x=0和圆O2:x2+y2+2x-8y=0的交点为A,B,则下列结论正确的是()A.直线AB的方程为x-2y=0B.|AB|=255C.线段AB的垂直平分线方程为2x+y-2=0D.若点P为圆O1上的一个动点,则点P到直线AB的距离的最大值为55+1解析:ACD根据题意,由x2+y2-2x=0,得(x-1)2+y2=1,则圆心O1(1,0),半径r=1,由x2+y2+2x-8y=0,得(x+1)2+(y-4)2=17,则圆心O2(-1,4),半径R=17.对于A 2+y2-2x=0,2+y2+2x-8y=0,得x-2y=0,即直线AB的方程为x-2y=0,A正确;对于B,圆心O1到直线AB的距离为d=|1-0|1+4=55,则|AB|=2×1-15=455,B错误;对于C,线段AB的垂直平分线即直线O1O2,由O1(1,0),O2(-1,4),易得直线O1O2的方程为2x+y-2=0,C正确;对于D,由圆心O1到直线AB的距离d=55,知点P到直线AB的距离的最大值为55+1,D正确.故选ACD.限时规范训练(六十)A级基础落实练1.圆(x+1)2+(y-2)2=4与直线3x+4y+5=0的位置关系为()A.相离B.相切C.相交D.不确定解析:B由题意知,圆(x+1)2+(y-2)2=4的圆心为(-1,2),半径r=2,则圆心到直线3x+4y+5=0的距离d=|-3+8+5|32+42=2=r,所以直线3x+4y+5=0与圆(x+1)2+(y-2)2=4的位置关系是相切.2.(2024·南京模拟)在平面直角坐标系中,圆O1:(x-1)2+y2=1和圆O2:x2+(y-2)2=4的位置关系是()A.外离B.相交C.外切D.内切解析:B由题意知,圆O1:(x-1)2+y2=1,可得圆心坐标O1(1,0),半径r1=1,圆O2:x2+(y-2)2=4,可得圆心坐标为O2(0,2),半径r2=2,则两圆的圆心距O1O2=1+4=5,则2-1<5<2+1,即|r2-r1|<O1O2<r1+r2,所以圆O1与圆O2相交.3.(2023·浙江嘉兴期末)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为22,则过圆心C且与直线l垂直的直线的方程为()A.x+y-3=0B.x-y+3=0C.x +y +3=0D.x -y -3=0解析:A 设所求的直线方程为x +y +m =0,圆C 的圆心坐标为(a ,0),则由题意知(|a -1|2)2+2=(a -1)2,解得a =3或a =-1,因为圆心在x 轴的正半轴上,所以a =3.因为圆心(3,0)在所求的直线上,所以有3+0+m =0,得m =-3,故所求的直线方程为x +y -3=0.故选A.4.(2024·深圳罗湖区期末)圆O 1:x 2+y 2-4y -6=0与圆O 2:x 2+y 2-6x +8y =0公共弦长为()A.5B.10C.25D.35解析:C联立两个圆的方程2+y 2-4y -6=0,2+y 2-6x +8y =0,两式相减可得公共弦方程为x -2y -1=0,圆O 1:x 2+(y -2)2=10的圆心坐标为O 1(0,2),半径r =10,圆心O 1(0,2)到公共弦的距离d 1=|0-4-1|1+4=5,公共弦长d =2r 2-d 21=210-5=25,故选C.5.(2024·抚州临川一中期末)已知圆C :(x -3)2+(y -4)2=4和两点A (-3m ,0),B (3m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最小值为()A.6B.5C.2D.3解析:D 由题意得,点P 在以原点为圆心,3m 为半径的圆上,因为点P 在圆C 上,所以只要两圆有交点即可,所以|3m -2|≤5≤3m +2,解得3≤m ≤733,所以m 的最小值为3,故选D.6.(2024·皖江名校第五次联考)已知⊙O :x 2+y 2=4,⊙C 与一条坐标轴相切,圆心C 在直线x -y +7=0上.若⊙C 与⊙O 相切,则满足条件的⊙C 有()A.1个B.2个C.3个D.4个解析:D设圆心C (a ,a +7).当⊙C 与x 轴相切时,半径r =|a +7|,故a 2+(a +7)2=2+|a +7|,即a 2-4=4|a +7|,解得a =-4或a =8,所以⊙C的方程为(x+4)2+(y-3)2=9或(x-8)2+(y-15)2=225.当⊙C与y轴相切时,半径r=|a|,故a2+(a+7)2=2+|a|,即(a+7)2=4+4|a|,解得a=-3或a=-15,所以⊙C的方程为(x+3)2+(y-4)2=9或(x+15)2+(y+8)2=225,则满足条件的⊙C有4个.故选D.7.(2024·长沙模拟)若圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,则正实数a的取值范围为.解析:|C1C2|=9+(a+1)2,因为圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,所以|a-2|<9+(a+1)2<a+2,解得a>3.答案:(3,+∞)8.若一条光线从点A(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为.解析:点A(-2,-3)关于y轴的对称点为A′(2,-3),故可设反射光线所在直线的方程为y+3=k(x-2),化为kx-y-2k-3=0,∵反射光线与圆(x+3)2+(y-2)2=1相切,∴圆心(-3,2)到直线的距离d=|-3k-2-2k-3|k2+1=1.化为24k2+50k+24=0,∴k=-43或-34.答案:-43或-349.(2024·苏北四市模拟)过点P(1,1)作圆C:x2+y2=2的切线交坐标轴于点A,B,则PA→·PB→=.解析:∵12+12=2,∴点P 在圆C 上,∴PC ⊥AB .∵k CP =1-01-0=1,∴直线AB 的斜率k AB =-1,∴直线AB 的方程为y -1=-(x -1),即x +y -2=0.不妨设直线AB 与x 轴交点为A ,与y 轴交点为B ,得点A (2,0),B (0,2),∴PA →=(1,-1),PB →=(-1,1),∴PA →·PB →=-1-1=-2.答案:-210.已知圆C :x 2+y 2-6x -8y +21=0,直线l 过点A (1,0).(1)求圆C 的圆心坐标及半径长;(2)若直线l 与圆C 相切,求直线l 的方程;(3)当直线l 的斜率存在且与圆C 相切于点B 时,求|AB |.解:圆C 的方程为(x -3)2+(y -4)2=22.(1)圆C 的圆心坐标是(3,4),半径长是2.(2)①当直线l 的斜率不存在,即其方程是x =1,满足题意.②当直线l 的斜率存在时,可设直线l 的方程是y =k (x -1),即kx -y -k =0.由圆心(3,4)到直线l 的距离等于圆C 的半径,即|3k -4-k |k 2+1=2,解得k =34,此时直线l 的方程是3x -4y -3=0.综上,直线l 的方程是x =1或3x -4y -3=0.(3)由(2)得直线l 的方程是3x -4y -3=0.圆C 的圆心是点C (3,4),则|AC |=4+16=25,所以|AB |=|AC |2-|BC |2=20-22=4.11.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0.(1)设直线l 与圆C 交于不同两点A ,B ,求弦AB 的中点M 的轨迹方程;(2)若定点P (1,1)分弦AB 为AP ∶PB =1∶2,求此时直线l 的方程.解:(1)直线l :mx -y +1-m =0变形为m (x -1)-y +1=0,可知直线l 恒过点(1,1),由圆C 的方程可知圆心C (0,1),过C 作CM ⊥l 于M ,可知M 为线段AB 的中点,设M (x ,y ),则有x 2+(y -1)2+(x -1)2+(y -1)2=12,化简得x 2+y 2-x -2y +1=0,点(1,1)也满足此方程,故M 的轨迹方程为x 2+y 2-x -2y +1=0.(2)设A (x 1,y 1),B (x 2,y 2),由AP ∶PB =1∶2,得1-x 1=12(x 2-1),化简得x 2=3-2x 1,①-y +1-m =0,2+(y -1)2=5,消去y 得(1+m 2)x 2-2m 2x +m 2-5=0,②∴x 1+x 2=2m 21+m 2,③由①③解得x 1=3+m 21+m 2,代入②式,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0.B 级能力提升练12.(2024·南通海安期末)已知圆心均在x 轴上的两圆外切,半径分别为r 1,r 2(r 1<r 2),若两圆的一条公切线的方程为y =24(x +3),则r 2r 1=()A.43B.2C.54D.3解析:B不妨设两圆为圆C 1和C 2,圆C 1:(x -a )2+y 2=r 21,圆C 2:(x -b )2+y 2=r 22,其中r 1>0,r 2>0,-3<a <b .由于两圆的公切线方程为x -22y +3=0,则r 1=|a +3|1+(-22)2=a +33,r 2=|b +3|1+(-22)2=b +33.由两圆外切,得|C 1C 2|=b -a =r 1+r 2=a +33+b +33,化简得b =2a +3,则r 2r 1=b +3a +3=2,故选B.13.(多选)有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),则下列命题正确的是()A.不论k 如何变化,圆心C k 始终在一条直线上B.所有圆C k 均不经过点(3,0)C.存在定直线始终与圆C k 相切D.若k ∈(-22,322),则圆C k 上总存在两点到原点的距离均为1解析:ABC圆C k 的圆心C k (k ,k ),在直线y =x 上,A 正确;由(3-k )2+(0-k )2=4,化简得2k 2-6k +5=0,Δ=36-40=-4<0,无实数解,B 正确;由A 选项的分析知,圆心C k 在直线y =x 上,半径为定值2,假设存在定直线始终与圆C k 相切,则定直线的斜率一定为1,设为y =x +b ,则圆心到定直线的距离为|b |2=2,得b =±22,故存在定直线y =x ±22始终与圆C k 相切,C 正确;圆C k 上总存在两点到原点的距离均为1,可转化为圆x 2+y 2=1与圆C k 有两个交点,则2-1<|2k |<2+1,得-322<k <-22或22<k <322,即k ∈(-322,-22)∪(22,322),D 错误.故选ABC.14.已知圆C :(x -3)2+(y -4)2=4.(1)若直线l :(m -2)x +(1-m )y +m +1=0(m ∈R ),证明:无论m 为何值,直线l 都与圆C 相交;(2)若过点P (1,0)的直线m 与圆C 相交于A ,B 两点,求△ABC 面积的最大值,并求此时直线m 的方程.解:(1)证明:转化l 的方程(m -2)x +(1-m )y +m +1=0,可得m (x -y +1)-2x +y +1=0,-y +1=0,2x +y +1=0,=2,=3,所以直线l 恒过点(2,3),由(2-3)2+(3-4)2=2<4,得点(2,3)在圆内,即直线l恒过圆内一点,所以无论m为何值,直线l都与圆C相交.(2)由C的圆心为(3,4),半径r=2,易知此时直线m的斜率存在且不为0,故设直线m的方程为x=my+1(m≠0),直线m的一般方程为my-x+1=0,圆心到直线m的距离d=|4m-3+1|m2+(-1)2=|4m-2|m2+1,所以|AB|=2r2-d2=24-(4m-2)2 m2+1,所以S2=(12|AB|·d)2=4-(4m-2)2m2+1·(4m-2)2m2+1,令t=(4m-2)2m2+1,可得S2=4t-t2,当t=2时,S2max=4,所以△ABC面积的最大值为2,此时由2=(4m-2)2m2+1,得7m2-8m+1=0,得m=1或m=17,符合题意,此时直线m的方程为x-y-1=0或7x-y-7=0.。
2.5.2 圆与圆的位置关系(人教A 版普通高中教科书数学选择性必修第一册第二章)一、教学目标1.知识与技能(1)圆与圆的位置关系的判断方法.(2)圆与圆的位置关系的应用(3)轨迹方程培养学生“数形结合”的意识.2.过程与方法几何法:设两圆的连心线长为,则判断圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;(5)当时,圆与圆内含.代数法: 有两组不相同的实数解⇔ 两圆相交 ;有两组相同的实数解⇔两圆相切(内切或外切);无实数解⇔两圆相离(外离或内含).3.情态与价值观 (1)动点圆的轨迹问题,数形结合的思想.,培养数学抽象能力.(2)根据圆的方程判断圆与圆的位置关系.培养数学运算能力.(3)综合应用圆与圆的位置关系解决问题.培养学生逻辑推理能力.二、教学重难点重点:掌握圆与圆的位置关系的判断方法难点:能综合应用圆与圆的位置关系解决问题.l 21r r l +>1C 2C 21r r l +=1C 2C 2121r r l r r +<<-1C 2C 21r r l -=1C 2C 21r r l -<1C 2C ⎩⎨⎧=++++=++++0022********F y E x D y x F y E x D y x 方程组:三、教学过程1.1创设情境,引发思考【实际情境】每逢节假日农村集市上套圈游戏盛行,商家圈起来一小片空地,撒满一元,五角和一角的硬币,玩家10元钱可套20环,看似简单套起来却没有那么容易,要求圆环落地后不能触碰硬币,毕竟硬币面值越大,想套中就越难。
问题1:(1)一次套圈中把玩家的目标硬币和圆环看成两个圆,那么这两个圆满足什么位置关系才算套中?(2)为什么硬币面值越大,想套中就越难?(3)两个圆的位置关系和圆心距以及半径存在怎样的数量关系?【预设的答案】(1)内含(2)硬币面值越大,套中时要求两个圆心距离越近,难度越大相交,外切和内切(3)类比研究判断直线与圆的位置关系的方法.【设计意图】问题的提出源于实际生活,结合学生已有的知识经验,启发学生思考,激发学生学习兴趣.【数学情境】尺规作图,请同学们在纸上分别画出半径为3cm 和5cm 的圆,以小组为单位进行汇总,看看可以画出多少种位置关系,并探讨不同位置关系的圆心距满足的条件.【设计意图】创设数学情境,通过动手画图,小组讨论的形式,让学生处于数学学习的主导地位,增强学生的学习兴趣和自主学习能力.【活动预设】学生以小组为单位总结出判断两个圆位置关系的几何法:利用两圆半径的和或差的绝对值与圆心距作比较,满足相应的条件,判断两圆的位置关系.设两圆的圆心距为,则判断圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;d 21r r d +>1C 2C 21r r d +=1C 2C 2121r r d r r +<<-1C 2C 21r r d -=1C 2C(5)当时,圆与圆内含.问题2:如果建立平面直角坐标系,目标硬币和圆环看成两个圆,得到两个圆的方程,类比直线与圆的位置关系,是否可以通过方程组解的个数,来判断两个圆的位置关系?【设计意图】进一步引导学生用代数法判断两个圆的位置关系,把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.1.2探究典例,初步应用活动:已知圆C 1:x 2+y 2-2ax -2y +a 2-15=0(a >0),圆C 2:x 2+y 2-4ax -2y +4a 2=0(a >0).试求a 为何值时,两圆C1,C2的位置关系为: (1)相切;(2)相交;(3)外离;(4)内含【活动预设】根据数学情景总结出的结论,把圆的一般方程化为标准方程,比较两个圆的圆心距与两半径的和或两半径的差的绝对值的大小,满足相应条件,求解参数a.【预设的答案】(1)当a =5时,两圆外切;当a =3时,两圆内切.(2)当3<a <5时,两圆相交.(3)当a >5时,两圆外离.(4)当0<a <3时,两圆内含.【设计意图】理论结合实际,运用几何法判断两圆位置关系.1.3具体感知,理性分析活动:已知圆C1:,圆C 2: 分别用几何法和代数法判断圆C1与圆C2的位置关系.【设计意图】(1)灵活运用判断两圆的位置关系的两种方法:几何法和代数法.(2)比较两种方法判断两个圆位置关系的异同 .问题3:用代数法判断两个圆的位置关系时,如果两圆方程联立消元后得到的方程的 ,它说明什么?你能据此确定两圆是内切还是外切吗?如何判断两圆是内切还是外切呢?21r r d -<1C 2C 088222=-+++y x y x 024422=---+y x y x 0=∆【预设的答案】如果,则两圆相切;此时无法判定两圆是内切还是外切,还要根据两圆的半径与连心线的长作进一步判断.【设计意图】(1)更深入的理解判别式对两圆位置关系的影响根源在于交点个数;(2)仅仅由交点个数无法判断两个圆的位置关系.问题4:在平面直角坐标系中画出活动2中两个圆的图像,若将两个圆的方程相减,你发现了什么?并求出圆C1与圆C2的交点坐标.【预设的答案】两相交圆方程相减得公共弦方程,交点坐标.【活动预设】教师引导学生阅读教科书中的相关内容,学生观察图形并思考,发表自己的解题方法.【设计意图】运用数形结合的思想,探究相交的两个圆引出的公共弦方程,以及交点坐标问题.2. 初步应用,理解概念例1.(2021·皖南八校联考)已知圆O1的方程为x2+y2=4,圆O2的方程为(x -a)2+y2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( )A .{1,-1}B .{3,-3}C .{1,-1,3,-3}D .{5,-5,3,-3}【预设的答案】C 两圆只有1个公共点,则两圆外切或内切.如果两圆外切,则|a|=2+1=3,a =±3;如果两圆内切,则|a|=1,a =±1.综上,a∈{1,-1,3,-3}【设计意图】巩固判断两个圆的位置关系的两种方法.A.(1,0)和(0,1)B.(1,0)和(0,-1)C. (-1,0)和(0,-1)D.(-1,0)和(0,1)0=∆012=-+y x )1,3(),1,1(--B A 的交点坐标为()与圆圆例01221.22222=++++=+y x y x y x【预设的答案】C【设计意图】求相交圆的交点坐标:(1)代数法(2)答案带入题目检验例3.已知两圆和.求公共弦的长度.【预设的答案】解法一:两方程联立,得方程组Error!两式相减得x =2y -4 ③,把③代入②得y 2-2y =0,∴y 1=0,y 2=2.∴Error!或Error!∴交点坐标为(-4,0)和(0,2). ∴两圆的公共弦长为(-4-0)2+(0-2)2=25.解法二:两方程联立,得方程组Error!两式相减得x -2y +4=0,即两圆相交弦所在直线的方程;由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心为C 1(1,-5),半径r 1=52.圆心C 1到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35,∴两圆的公共弦长为2r 2-d 2=250-45=25.两圆的公共弦长为.【设计意图】探讨求公共弦长的方法.(1)代数法:求交点的坐标,利用两点间的距离公式求出公共弦长.(2)几何法:利用圆的半径、公共弦的一半、圆心到弦的垂线段构成的直角三角形,根据勾股定理求出公共弦长.02410222=-+-+y x y x 082222=-+++y x y x 52【设计意图】利用中点坐标公式,坐标系解决平面几何问题.3. 归纳小结,文化渗透思考:构成奥运五环中的圆之间有哪些位置关系,生活中的日用百货,建筑学领域,还有哪些涉及两个圆的位置关系?【设计意图】(1)梳理对判断两个圆的位置关系方法的理解和应用;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会学习两个圆位置关系的必要性 .四、归纳小结,课后作业1.判断圆与圆的位置关系的两种方法:几何法和代数法2.求两个相交圆公共弦长的两种方法:几何法和代数法3.满足某种几何条件的动点圆的轨迹问题,用的是坐标法.这种方法建立了几何与代数之间的联系,体现了数形结合思想.例4(1)如图所示,圆O 1和圆O 2的半径长都等于1,|O 1O 2=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN(M ,N 为切点),使得|PM|=2|PN|.试建立平面直角坐标系,并求动点P 的轨迹方程.(2)已知圆x 2+y 2=4上一定点A(2,0),B(1,1)为圆内一点,P ,Q 为圆上的动点.①求线段AP 中点的轨迹方程;②若∠PBQ =90°,求线段PQ 中点的轨迹方程.1.教科书130页练习.习题4.2 A组第4、9、10、11题.2.步步高《圆与圆的位置关系》习题。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改4.2.2圆与圆的位置关系教学要求:能根据给定圆的方程,判断圆与圆的位置关系; 教学重点:能根据给定圆的方程,判断圆与圆的位置关系教学难点:用坐标法判断两圆的位置关系教学过程:一、复习准备1. 两圆的位置关系有哪几?2.设两圆的圆心距为d.当d R r >+时,两圆 , 当d R r =+时,两圆当||R r d R r -<<+ 时,两圆 ,当||d R r =+时,两圆当|d R r <+时,两圆3.如何根据圆的方程,判断两圆之间的位置关系?(探讨)二、讲授新课:1.两圆的位置关系利用半径与圆心距之间的关系来判断例1. 已知圆221:2880C x y x y +++-=,圆0244:222=---+y x y x C ,试判断圆1C 与圆2C 的关系?方法(一)(配方→圆心与半径→探究圆心距与两半径的关系)方法(二)解方程组探究:相交两圆公共弦所在直线的方程。
2. 两圆的位置关系利用圆的方程来判断方法:通常是通过解方程或不等式和方法加以解决 (以例1为例说明)例2.圆1C 的方程是:2222450x y mx y m +-++-=圆2C 的方程是: 2222230x y x my m ++-+-=,m 为何值时,两圆(1)相切.(2)相交(3)相离(4)内含思路:联立方程组→讨论方程的解的情况(消元法、判别式法)→交点个数→位置关系)练习:已知两圆2260x y x +-=与224x y y m +-=,问m 取何值时,两圆相切。
例3.已知两圆221:420C x y x y +-+=和圆222:240C x y y +--=的交点为A 、B,(1)求AB 的长; (2)求过A 、B 两点且圆心在直线:2410l x y +-=上的圆的方程.3.小结:判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定.(2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系.三、巩固练习:1.求经过点M(2,-2),且与圆2260x y x +-=与224x y +=交点的圆的方程2.已知圆C 与圆2220x y x +-=相外切,并且与直线0x +=相切于点,求圆C 的方程.3.求两圆221x y +=和()2234x y -+=的外公切线方程四、作业:《习案》作业二十八。
高中数学圆与点位置教案
教学目标:
1. 了解圆的基本概念和性质;
2. 掌握圆上点的位置关系;
3. 能够运用所学知识解决相关问题。
教学重点:
1. 圆的定义和性质;
2. 圆上点的位置关系。
教学难点:
1. 圆与点的具体位置关系;
2. 解决实际问题。
教具准备:
1. 黑板、彩色粉笔;
2. 教材课本;
3. 尺规、圆规、直尺。
教学过程:
一、导入(5分钟)
引入圆的定义和性质,引导学生思考圆的特点及其在几何学中的应用。
二、讲解(15分钟)
1. 讲解圆的定义和性质,包括圆心、半径、直径等;
2. 讲解圆内外的点与圆的位置关系,例如圆心、直径上的点等;
3. 通过图例展示圆与点的各种位置关系。
三、练习(20分钟)
1. 让学生独立完成练习册中有关圆与点位置的练习;
2. 带领学生讨论解答过程,引导学生学会分析问题、解题思路。
四、拓展(10分钟)
1. 提出一些拓展问题,激发学生的思维能力;
2. 结合实际生活中的例子,引导学生应用所学知识解决问题。
五、总结(5分钟)
总结本节课的学习内容,强调圆与点的位置关系对于几何学的重要性。
六、作业布置(5分钟)
布置作业,包括整理本节课的学习内容和完成书上相关习题。
教学反思:
通过本节课教学,学生能够掌握圆与点的位置关系,提高对圆的理解和应用能力。
在未来教学中,可以引导学生多进行实际练习和应用,加深对几何学的理解和认识。
直线与圆、圆与圆的位置关系大单元教学
设计
用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习圆与圆的位置关系作了铺垫,对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系, 以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位, 直线和圆的位置关系应用也比较广泛、图形之间的位置关系, 既可以直观定性描述, 也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法, 通过运算求解, 得到图形之间的位置关系, 也可以综合运用几何方法和代数方法, 这种综合是充分借助图形的几何性质, 一定程度上简化代数运算, 最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题, 是初中平面几何的综合运用, 是在学习了点和圆的位置关系的基础上进行的, 又为后面学习圆与圆的位置关系作了铺垫, 对解题及几何证明将起到重要的作用.
本单元综合运用直线和圆的方程研究直线与圆、圆与圆的位置关系,以及一些简单的数学问题和实际问题. 直线与圆的教学在平面解析几何乃至整个中学数学中都占有重要的地位,直线和圆的位置关系应用也比较广泛、图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以是完全运用代数的方法,通过运算求解,得到图形之间的位置关系,也可以综合运用几何方法和代数方法,这种综合是充分借助图形的几何性质,一定程度上简化代数运算,最后得到图形之间的位置关系的方法.利用直线与圆的位置关系解决实际问题,是初中平面几何的综合运用,是在学习了点和圆的位置关系的基础上进行的,又为后面学习。
《圆与圆的位置关系》教学设计1.教学目标(1)知识与技能目标:通过探索两圆的位置关系,了解两圆位置关系的定义,熟练掌握不同位置关系的性质及判定方法,并能在实际生活中运用。
发展学生分类讨论的思想、数形结合的思想、运动变化、相互联系、相互转化的思想。
(2)过程与方法目标:通过几何画板的演示和作图活动,发展学生观察、比较、猜想、分析、综合、抽象和概括的能力。
(3)情感态度和价值观目标:通过学生自主探索与合作交流,培养学生与人合作、与人交流的良好品质,形成事物运动变化。
培养用数学的意识,感受数学的美,激发学生对数学的热爱。
2.教学重点与难点重点:圆与圆的五种位置关系的性质和判定的探究及应用。
难点:圆与圆位置关系的数量关系的发现。
3.教学方法采用“情境─问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。
借助几何画板、Powerpoint和自制的两张圆形硬纸板等工具,加强直观性,分散知识难点。
4. 设计思路笔者结合几何画板,制作了多媒体课件采用情境—问题的教学模式,先通过日食现象使生活中的问题联系到数学问题,引出圆与圆的位置关系,再运用课前准备好的教具让学生分组演示两圆位置关系与公共点个数的联系,然后通过几何画板进行演示,得出两圆的五种位置关系,并通过等圆情况下的位置关系进一步巩固知识点。
结合电脑演示与学生讨论,利用圆心距d、R、r分析五种两圆的位置关系。
通过习题一题多解的形式引出判断两圆位置关系的两种不同的方法:几何法、代数法,并通过课堂设计引导学生比较两种方法的优缺点,又进一步加深学习了共点圆系方程的概念及其应用,最后利用相关习题进行巩固。
5.教学过程(1)创造情景,引出主题展示日食现象的动画,问:首先我们来欣赏一段动画,你们见过这种现象吗?目的:创造现实情景,引导学生发现现实数学问题,引导学生了解知识,使学生理解生活中存在数学问题,数学源自生活。
(2)学生活动引导学生利用课前准备的教具分组试验,合作探究,分类讨论弄清两圆的各种位置关系。
4.2.2 圆与圆的位置关系一、教材分析本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到圆与圆的位置关系的几何方法,用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的常用方法.因此,增加了用代数方法来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.根据学生的基础,学习的自觉性和主动性,自主学习和探究学习能力,平时的学习养成的善于观察、分析和思考的习惯,同时由于本节课从内容结构与思维方法上与直线与圆的位置关系相似,学生对上节课内容掌握较好,从而本节课从学生学习的角度来看不会存在太多的障碍,因而教学方法可以是引导学生从类比直线与圆位置关系来自主研究圆与圆的位置关系.二、教学目标1.知识与技能(1)理解圆与圆的位置的种类;(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;(3)会用连心线长判断两圆的位置关系.2.过程与方法设两圆的连心线长为l,则判断圆与圆的位置关系的依据有以下几点:(1)当l >r1r2时,圆C1与圆C2相离;(2)当l = r1r2时,圆C1与圆C2外切;(3)当|r1–r2|<l<r1r2时,圆C1与圆C2相交;(4)当l = |r1–r2|时,圆C1与圆C2内切;(5)当l<|r1 –r2|时,圆C1与圆C2内含.3.情态与价值观让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想. 三、教学重点与难点教学重点:求弦长问题,判断圆和圆的位置关系.教学难点:判断圆和圆的位置关系.四、安排1五、教学设计(一)导入新课思路1.平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O1O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系.两圆的位置关系:外离外切相交内切内含d>Rr d=Rr |Rr|<d<Rr d=|Rr| d<|Rr|在解析几何中,我们用代数的方法如何判断圆与圆之间的位置关系呢?这就是我们本堂课研究的课题,教师板书课题圆与圆的位置关系.思路2.前面我们学习了点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系. (二)推进新课、新知探究、提出问题①初中学过的平面几何中,圆与圆的位置关系有几种?②判断两圆的位置关系,你有什么好的方法吗?③你能在同一个直角坐标系中画出两个方程所表示的圆吗?④根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢?⑤如何判断两个圆的位置关系呢?⑥若将两个圆的方程相减,你发现了什么?⑦两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?活动:教师引导学生回顾学过的知识、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.学生观察图形并思考,发表自己的解题方法.教师应该关注并发现有多少学生利用“图形”求解,对这些学生应该给予表扬.同时强调,解析几何是一门数与形结合的学科.启发学生利用图形的特征,用代数的方法来解决几何问题.教师指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置.学生互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径.讨论结果:①初中学过的平面几何中,圆与圆的位置关系有五类,分别是外离、外切、相交、内切、内含.②判断两圆的位置关系,我们可以类比直线与圆的位置关系的判定,目前我们只有初中学过的几何法,利用圆心距与两圆半径的和与差之间的关系判断.③略.④根据所画出的图形,可以直观判断两个圆的位置关系.用几何的方法说就是圆心距(d)与两圆半径(r,R)的和与差之间的关系.⑤判断两个圆的位置关系.一是可以利用几何法,即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:1°当d>Rr时,圆C1与圆C2外离;2°当d=Rr时,圆C1与圆C2外切;3°当|Rr|<d<Rr时,圆C1与圆C2相交;4°当d=|Rr|时,圆C1与圆C2内切;5°当d<|Rr|时,圆C1与圆C2内含;二是看两圆的方程组成的方程组的实数解的情况,解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离.总结比较两种方法的优缺点.几何方法:直观,容易理解,但不能求出交点坐标.代数方法:1°只能判断交点,并不能准确的判断位置关系(有一个交点时不能判断内切还是外切,无交点时不能判断内含还是外离).2°优点是可以求出公共点.⑥若将两个圆的方程相减,得到一个一元一次方程,既直线方程,由于它过两圆的交点,所以它是相交两圆的公共弦的方程.⑦两个圆的公共点的问题可以化归为这条公共直线与两个圆中的一个圆的公共点的判定问题.由点到直线的距离公式来判断.(三)应用示例思路1例1 已知圆C 1:x 2yx8y8=0,圆C 2:x 2y 24x4y2=0,判断两圆的位置关系.活动:学生思考交流,教师引导提示,判断两圆的位置关系有两种基本的方法,要合理使用.方法一看两圆的方程组成的方程组的实数解的情况,方法二利用圆心距与两圆半径的和与差之间的关系判断.解:方法一:圆C 1与圆C 2的方程联立得到方程组⎪⎩⎪⎨⎧=---+=-+++)2(.0244)1(,08822222y x y x y x y x①②得x2y1=0, ③ 由③得y=21x +,把上式代入①并整理得xx3=0. ④ 方程④的判别式Δ=(2)24×1×(3)=16>0,所以方程④有两个不等的实数根,即圆C 1与圆C 2相交.方法二:把圆C 1:x 2yx8y8=0,圆C 2:x 2y 24x4y2=0,化为标准方程,得(x1)2(y4)2=25与(x2)2(y2)2=10.圆C 1的圆心是点(1,4),半径长r 1=5圆C 2的圆心是点(2,2),半径长r 2=10.圆C 1与圆C 2的连心线的长为22)24()21(--+--=35,圆C 1与圆C 2的半径长之和为r 1r 2=510,半径长之差为r 1r 2=510.而510<35<510,即r 1r 2<35<r 1r 2,所以圆C 1与圆C 2相交,它们有两个公共点A 、B.点评:判断两圆的位置关系,一般情况下,先化为标准方程,利用几何法判断较为准确直观. 变式训练判断下列两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x2)2(y2)2=1与(x2)2(y5)2=16,(2)x 2y 26x7=0与x 2y 26y27=0.解:(1)根据题意,得两圆的半径分别为r 1=1和r 2=4,两圆的圆心距d=22)25()2(2[-+--=5.因为d=r 1r 2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x3)2y 2=16,x 2(y3)2=36.故两圆的半径分别为r 1=4和r 2=6,两圆的圆心距d=23)03()30(22=-+-.因为|r 1r 2|<d <r 1r 2,所以两圆相交.例2 已知圆C 1:x 2yx6y1=0,圆C 2:x 2y 24x2y11=0,求两圆的公共弦所在的直线方程及公共弦长.活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x 1,y 1)、B(x 2,y 2),则A 、B 两点坐标满足方程组⎪⎩⎪⎨⎧=-+-+=+-++)2(.01124)1(,01622222y x y x y x y x①②,得3x4y6=0.因为A 、B 两点坐标都满足此方程,所以3x4y6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(1,3),半径r=3.又点C 1到直线的距离为d=22)4(3|63431|-++⨯-⨯-=59. 所以AB=2524)59(322222=-=-d r ,即两圆的公共弦长为524. 点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.思路2例1 求过点A(0,6)且与圆C:x 2y 210x10y=0切于原点的圆的方程.图1活动:学生思考交流,回顾圆的方程的求法,教师引导学生注意题目的条件,灵活处理,如图1.所求圆经过原点和A(0,6),且圆心应在已知圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.解:将圆C 化为标准方程,得(x5)2(y5)2=50,则圆心为C(5,5),半径为52.所以经过此圆心和原点的直线方程为xy=0.设所求圆的方程为(xa)2(yb)2=r 2.由题意,知O(0,0),A(0,6)在此圆上,且圆心M(a,b)在直线xy=0上,则有⎪⎩⎪⎨⎧=-=-+-=-+-,0,)6()0(,)0()0(222222b a r b a r b a 解得⎪⎩⎪⎨⎧===.23,3,3r b a于是所求圆的方程是(x3)2(y3)2=18.点评:求圆的方程,一般可从圆的标准方程和一般方程入手,至于选择哪一种方程形式更恰当,要根据题目的条件而定,总之要让所选择的方程形式使解题过程简单.例2 已知⊙O 方程为x 2y 2=4,定点A(4,0),求过点A 且和⊙O 相切的动圆圆心的轨迹方程.活动:教师引导学生回顾学过的知识,两圆外切,连心线长等于两圆半径之和,两圆内切,连心线长等于两圆半径之差,由此可得到动圆圆心在运动中所应满足的几何条件,然后将这个几何条件坐标化,即得到它的轨迹方程.解法一:设动圆圆心为P(x,y),因为动圆过定点A,所以|PA|即为动圆半径.当动圆P 与⊙O 外切时,|PO|=|PA|2;当动圆P 与⊙O 内切时,|PO|=|PA|-2.综合这两种情况,得||PO|-|PA||=2.将此关系式坐标化,得 |2222)4(y x y x +--+|=2.化简可得(x -2)2-32y =1. 解法二:由解法一可得动点P 满足几何关系||OP|-|PA||=2,即P 点到两定点O 、A 的距离差的绝对值为定值2,所以P 点轨迹是以O 、A 为焦点,2为实轴长的双曲线,中心在OA 中点(2,0),实半轴长a=1,半焦距c=2,虚半轴长b=322=-a c ,所以轨迹方程为(x -2)2-32y =1. 点评:解题的过程就是实现条件向结论转化的过程,对于圆与圆,要综合平面几何知识、解析几何、代数知识,将条件转化成我们熟悉的形式,利用常规思路去解,求点的轨迹更要注意平面几何的知识运用.(四)知能训练课堂练习P 141练习题(五)课堂小结本节课主要学习了圆与圆的位置关系,判断方法:几何方法和代数方法.(六)作业习题4.2 A 组8、9、10、11.。