第3章线性回归问题与非线性回归分析
- 格式:ppt
- 大小:2.13 MB
- 文档页数:81
回归分析中的线性与非线性模型选择回归分析作为一种常用的数据分析方法,可以用来研究自变量与因变量之间的关系。
在回归分析中,模型的选择是一个关键问题,决定了最终结果的准确性和可解释性。
线性和非线性模型是两种常见的选择,本文将讨论线性和非线性模型在回归分析中的选择问题,并探讨如何判断何时使用线性模型和何时使用非线性模型。
一、线性模型线性模型是回归分析中最基本的模型,它假设自变量与因变量之间存在线性关系。
线性模型的数学形式可以表示为:Y = β0 + β1*X1 + β2*X2 + ... + βn*Xn+ ε其中,Y是因变量,X1、X2、...、Xn是自变量,β0、β1、β2、...、βn是回归系数,ε是误差项。
线性模型的优点是简单、易于解释和计算,模型的形式清晰。
在一些数据集合具有线性关系的情况下,线性模型可以得到较好的拟合效果。
但是,在实际问题中,自变量与因变量之间的关系往往是复杂的,可能存在非线性关系。
二、非线性模型非线性模型是考虑了自变量与因变量之间的非线性关系的模型。
非线性模型的数学形式可以是多项式形式、指数形式、对数形式等。
在回归分析中,选择合适的非线性模型是一个挑战。
一种常见的方法是通过观察自变量与因变量的散点图来判断是否需要使用非线性模型。
如果散点图呈现出明显的非线性趋势,那么使用非线性模型可能会得到更好的拟合效果。
此外,可以使用统计方法来判断是否需要使用非线性模型,例如利用残差分析、F检验、信息准则等。
三、线性与非线性模型的选择在实际应用中,选择线性模型还是非线性模型需要综合考虑多个因素。
以下是一些建议:1. 数据的线性性:观察数据集合自变量与因变量的散点图,判断是否存在明显的非线性趋势。
如果散点图呈现出明显的非线性关系,那么考虑使用非线性模型。
2. 拟合效果:比较线性模型和非线性模型的拟合效果。
可以使用拟合优度指标(如R方值)来评估模型的拟合程度,选择拟合效果较好的模型。
3. 解释性:考虑模型的解释性和可解释性。
可线性化的回归分析[学习目标]1.进一步体会回归分析的基本思想.2.通过非线性回归分析,判断几种不同模型的拟合程度.[知识链接]1.有些变量间的关系并不是线性相关,怎样确定回归模型答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.2.如果两个变量呈现非线性相关关系,怎样求出回归方程答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.([预习导引]1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程曲线方程曲线图形公式变换变换后的线性函数y=ax b·c=ln av=ln xu=ln yu=c+bvy =a e bxc =ln a u =ln yu =c +bxy =a e b x.c =ln a v =1xu =ln yu =c +bvy =a +b ln xv =ln x u =yu =a +bv#要点一 线性回归分析例1 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 35 销售额y (万元)4926…3954(1)由数据易知y 与x 具有线性相关关系,若b =,求线性回归方程y =a +bx ; (2)据此模型预报广告费用为4万元时的销售额.解 (1)x -=4+2+3+54=,y -=49+26+39+544=42,∴a =y --b x -=42-×= ∴回归直线方程为y =+. (2)当x =4时,y =+×4=, 故广告费用为6万元时销售额为万元.跟踪演练1 为了研究3月下旬的平均气温(x )与4月20日前棉花害虫化蛹高峰日(y )的关系,某地区观察了2006年2011年的情况,得到了下面的数据:(1)对变量x,y进行相关性检验;(2)据气象预测,该地区在2012年3月下旬平均气温为27 ℃,试估计2012年4月化蛹高峰日为哪天.解制表.(1)r=∑6i=1xiyi-6x-y-(∑6i=1x2i-6x-2)(∑6i=1y2i-6y-2)≈- 8.由|r|>,可知变量y和x存在很强的线性相关关系.(2)b=错误!≈-,a=错误!-b错误!≈.所以,线性回归方程为y=-.当x=27时,y=-×27=.据此,可估计该地区2012年4月12日或13日为化蛹高峰日."要点二可线性化的回归分析例2 在一化学反应过程中,化学物质的反应速度y(g/min)与一种催化剂的量x(g)有关,现收集了8组观测数据列于表中:催化剂的量x/g15182124273033\ 36化学物质的反应速度y(g·min-1)6830277020565350解根据收集的数据,作散点图(如图),根据已有的函数知识,可以发现样本点分布在某一条指数函数曲数y=c1e c2x的周围,其中c1和c2是待定的参数.令z=ln y,则z=ln y=ln c1+c2x,即变换后的样本点应该分布在直线z=a+bx(a=ln c1,b=c2)的周围.由y与x的数据表可得到变换后的z与x的数据表:x15182124!27303336z,作出z与x的散点图(如图).由散点图可观察到,变换后的样本点分布在一条直线的附近,所以可用线性回归方程来拟合.由z与x的数据表,可得线性回归方程:z=+,所以y与x之间的非线性回归方程为y=e-+.*规律方法 可线性化的回归分析问题,画出已知数据的散点图,选择跟散点拟合得最好的函数模型进行变量代换,作出变换后样本点的散点图,用线性回归模型拟合.跟踪演练2 电容器充电后,电压达到100 V ,然后开始放电,由经验知道,此后电压U 随时间t 变化的规律用公式U =A e bt (b <0)表示,现测得时间t (s)时的电压U (V)如下表:t /s 0 1 2 3 4 56(7 8910U /V 100 75 55 40 30$2015101055试求:电压U 对时间t 的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)解 对U =A e bt 两边取对数得ln U =ln A +bt ,令y =ln U ,a =ln A ,x =t ,则y =a +bx ,得y 与x 的数据如下表:x.1 2345678910{y/根据表中数据作出散点图,如下图所示,从图中可以看出,y 与x 具有较强的线性相关关系,由表中数据求得x -=5,y -≈,进而可以求得b ≈-,a =y --bx -=,所以y 对x 的线性回归方程为y =-.由y =ln U ,得U =e y ,U =-=·e -,因此电压U 对时间t 的回归方程为U =·e-.要点三非线性回归模型的综合应用例3 某地区不同身高的未成年男性的体重平均值如下表:身高x/cm60【708090100110体重y/kg-身高x/cm120130140150160170体重y/kg(试建立y与x之间的回归方程.解根据题干表中数据画出散点图如图所示.由图看出,样本点分布在某条指数函数曲线y=c1e c2x的周围,于是令z=ln y. *x 60708090100110120130140¥150160170z&画出散点图如图所示.由表中数据可得z与x之间的线性回归方程:z=+,则有y=+.规律方法根据已有的函数知识,可以发现样本分布在某一条指数型函数曲线y =c1e c2x的周围,其中c1和c2是待定参数;可以通过对x进行对数变换,转化为线性相关关系.*跟踪演练3 对两个变量x ,y 取得4组数据(1,1),(2,,(3,,(4,,甲、乙、丙三人分别求得数学模型如下: 甲 y =+1, 乙 y =-++,丙 y =-·+,试判断三人谁的数学模型更接近于客观实际. 解 甲模型,当x =1时,y =;当x =2时,y =; 当x =3时,y =;当x =4时,y =.乙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.丙模型,当x =1时,y =1;当x =2时,y =; 当x =3时,y =;当x =4时,y =.观察4组数据并对照知,丙的数学模型更接近于客观实际.1.在一次试验中,当变量x 的取值分别为1,12,13,14时,变量y 的值分别为2,3,4,5,则y 与1x的回归方程为( )A .y =1x +1B .y =2x+3C .y =2x +1D .y =x -1 答案 A解析 由数据可得,四个点都在曲线y =1x+1上.2.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:广告费2~5 6 84销售额3040605070@则广告费与销售额间的相关系数为( )A. B.0.919 C. D.答案B3.根据统计资料,我国能源生产发展迅速.下面是我国能源生产总量(单位:亿吨标准煤)的几个统计数据:年份1996200120062011产量·根据有关专家预测,到2020年我国能源生产总量将达到亿吨左右,则专家所选择的回归模型是下列四种模型中的哪一种( )A.y=ax+b(a≠0) B.y=ax2+bx+c(a≠0)C.y=a x(a>0且a≠1) D.y=log a x(a>0且a≠1)答案A4.某种产品的广告费支出x与销售额y之间有下表关系,现在知道其中一个数据弄错了,则最可能错的数据是__________.x/万元)24568y/万元3040605070答案(6,50)一、基础达标1.下表提供了某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据.根据表中提供的数据,求出y关于x的线性回归方程是y=+,那么表中t的值是( )x3456,yt4A.4.5 B.4 C.3 D.答案C2.下列数据x,y符合哪一种函数模型( )x1$2345678910y 。
线性回归与非线性回归分析随着数据科学的发展,回归分析成为一种常用的统计方法,用于预测和建立变量之间的关系模型。
在回归分析中,线性回归和非线性回归是两种常见的分析方法。
本文将就线性回归和非线性回归进行详细探讨,并对它们的应用领域进行比较。
一、线性回归线性回归是最简单、最常用的回归方法之一。
它假设自变量和因变量之间存在线性关系,并试图找到一条直线来拟合数据点。
线性回归的数学表达式为:y = β0 + β1x + ε其中,y是因变量,x是自变量,β0和β1是回归系数,ε表示误差项。
通过最小二乘法,可以求得回归系数的估计值,进而进行预测和推断。
线性回归的优点在于计算简单,易于解释和理解。
它适用于自变量和因变量之间呈现线性关系的情况,比如销售额与广告投入的关系、学习时间与考试成绩的关系等。
然而,线性回归也有其局限性,它无法处理非线性的关系,对于复杂的数据模型拟合效果较差。
二、非线性回归与线性回归相反,非线性回归适用于自变量和因变量之间存在非线性关系的情况。
非线性回归通过引入非线性项或函数来建立数学模型,使得模型能够更好地拟合实际数据。
非线性回归的数学表达式为:y = f(β0 + β1x1 + β2x2 + ... + βnxn) + ε其中,f()表示非线性函数,x1、x2、...、xn是自变量,y是因变量,β0、β1、...、βn是回归系数,ε表示误差项。
通过使用最小二乘法或最大似然估计等方法,可以求得回归系数的估计值,并进行预测和推断。
非线性回归的优点在于能够更准确地拟合复杂的数据模型,能够处理自变量和因变量之间的非线性关系。
它适用于许多实际问题,如生长模型、生态系统模型等。
然而,非线性回归的缺点在于计算复杂度高,模型选择的难度较大。
三、线性回归与非线性回归的比较线性回归和非线性回归在应用领域和适用性方面有所不同。
线性回归适用于自变量和因变量之间呈现线性关系的情况,适合用于预测、关联分析等领域。
而非线性回归适用于自变量和因变量之间存在非线性关系的情况,适合用于复杂模型的拟合和解释。
§1回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析1.了解回归分析的思想和方法.(重点)2.掌握相关系数的计算和判断线性相关的方法.(重点)3.了解常见的非线性回归模型转化为线性回归模型的方法.(难点)[基础·初探]教材整理1回归分析阅读教材P73~P75,完成下列问题.设变量y对x的线性回归方程为y=a+bx,由最小二乘法知系数的计算公式为:b=l xyl xx=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a=y-b x.教材整理2相关系数阅读教材P76~P78,完成下列问题.1.相关系数r的计算假设两个随机变量的数据分别为(x1,y1),(x2,y2),…,(x n,y n),则变量间线性相关系数r=l xyl xx l yy=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2=∑i=1nx i y i-n x y∑i=1nx2i-n x2∑i=1ny2i-n y2.2.相关系数r与线性相关程度的关系(1)r的取值范围为[-1,1];(2)|r|值越大,误差Q越小,变量之间的线性相关程度越高;(3)|r|值越接近0,误差Q越大,变量之间的线性相关程度越低.3.相关性的分类(1)当r>0时,两个变量正相关;(2)当r<0时,两个变量负相关;(3)当r=0时,两个变量线性不相关.判断(正确的打“√”,错误的打“×”)(1)两个变量的相关系数r>0,则两个变量正相关.()(2)两个变量的相关系数越大,它们的相关程度越强.()(3)若两个变量负相关,那么其回归直线的斜率为负.()【答案】(1)√(2)×(3)√教材整理3可线性化的回归分析阅读教材P79~P82,完成下列问题.1.非线性回归分析对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型.2.非线性回归方程A.y =2+13x B .y =2e x C .y =2e 1xD .y =2+ln x【解析】 分别将x 的值代入解析式判断知满足y =2+ln x . 【答案】 D[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑:[小组合作型]i i 3-1-1①,对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图②.由这两个散点图可以判断()图3-1-1A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关(2)两个变量x,y与其线性相关系数r有下列说法:①若r>0,则x增大时,y也随之相应增大;②若r<0,则x增大时,y也相应增大;③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上,其中正确的有()A.①②B.②③C.①③D.①②③(3)有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量.其中两个变量成正相关的是A.①③B.②④C.②⑤D.④⑤【精彩点拨】可借助于线性相关概念及性质作出判断.【自主解答】(1)由这两个散点图可以判断,变量x与y负相关,u与v正相关,故选C.(2)根据两个变量的相关性与其相关系数r之间的关系知,①③正确,②错误,故选C.(3)其中①③成负相关关系,②⑤成正相关关系,④成函数关系,故选C.【答案】(1)C(2)C(3)C1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r 来检验线性相关显著性水平时,通常与0.75作比较,若r >0.75,则线性相关较为显著,否则为不显著.[再练一题]1.下列两变量中具有相关关系的是( )【导学号:62690052】A .正方体的体积与边长B .人的身高与体重C .匀速行驶车辆的行驶距离与时间D .球的半径与体积【解析】 选项A 中正方体的体积为边长的立方,有固定的函数关系;选项C 中匀速行驶车辆的行驶距离与时间成正比,也是函数关系;选项D 中球的体积是43π与半径的立方相乘,有固定函数关系.只有选项B 中人的身高与体重具有相关关系.【答案】 Bx (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:(1)(2)气象部门预测下个月的平均气温约为6 ℃,据此估计该商场下个月毛衣的销售量.【精彩点拨】 (1)可利用公式求解; (2)把月平均气温代入回归方程求解.【自主解答】 (1)由散点图易判断y 与x 具有线性相关关系.x=(17+13+8+2)÷4=10,y=(24+33+40+55)÷4=38,∑4i=1x i y i=17×24+13×33+8×40+2×55=1 267,∑4i=1x2i=526,b=∑4i=1x i y i-4x y ∑4i=1x2i-4x2=1 267-4×10×38526-4×102≈-2.01,a=y-b x≈38-(-2.01)×10=58.1,所以线性回归方程为y=-2.0x+58.1.(2)气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量为y=-2.0 x+58.1=-2.0×6+58.1≈46(件).1.回归分析是定义在具有相关关系的两个变量基础上的,因此,在作回归分析时,要先判断这两个变量是否相关,利用散点图可直观地判断两个变量是否相关.2.利用回归直线,我们可以进行预测.若回归直线方程y=a+bx,则x=x0处的估计值为y0=a+bx0.3.线性回归方程中的截距a和斜率b都是通过样本估计而得到的,存在着误差,这种误差可能导致预报结果的偏差,所以由线性回归方程给出的是一个预报值而非精确值.4.回归直线必过样本点的中心点.[再练一题]2.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.【解】(1)如图:(2)∑4i=1x i y i=6×2+8×3+10×5+12×6=158,x=6+8+10+124=9,y=2+3+5+64=4,∑4i=1x2i=62+82+102+122=344,b=158-4×9×4344-4×92=1420=0.7,a=y-b x=4-0.7×9=-2.3,故线性回归方程为y=0.7x-2.3.(3)由(2)中线性回归方程得当x=9时,y=0.7×9-2.3=4,预测记忆力为9的同学的判断力约为4.[探究共研型]探究1【提示】非线性回归问题有时并不给出经验公式.这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:探究2已知x和y之间的一组数据,则下列四个函数中,模拟效果最好的为哪一个?①y=32③y=4x; ④y=x2.【提示】观察散点图中样本点的分布规律可判断样本点分布在曲线y=3×2x-1附近.所以模拟效果最好的为①.某地区不同身高的未成年男性的体重平均值如下表:(2)如果一名在校男生身高为168 cm,预测他的体重约为多少?【精彩点拨】先由散点图确定相应的拟合模型,再通过对数变换将非线性相关转化为线性相关的两个变量来求解.【自主解答】(1)根据表中的数据画出散点图,如下:由图看出,这些点分布在某条指数型函数曲线y=c1e c2x的周围,于是令z=ln y,列表如下:作出散点图,如下:由表中数据可求得z与x之间的回归直线方程为z^=0.693+0.020x,则有y =e0.693+0.020x.(2)由(1)知,当x=168时,y=e0.693+0.020×168≈57.57,所以在校男生身高为168 cm,预测他的体重约为57.57 kg.两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y=c1e c2x,我们可以通过对数变换把指数关系变为线性关系,令z=ln y,则变换后样本点应该分布在直线z=bx+a(a=ln c1,b=c2)的周围.[再练一题]3.在一次抽样调查中测得样本的5个样本点,数据如下表:【解】作出变量y与x之间的散点图如图所示.由图可知变量y与x近似地呈反比例函数关系.设y=kx,令t=1x,则y=kt.由y与x的数据表可得y与t的数据表:作出y 与t 的散点图如图所示.由图可知y 与t 呈近似的线性相关关系.又t =1.55,y =7.2,∑i =15t i y i =94.25,∑i =15t 2i =21.312 5,b =∑i =15t i y i -5t y∑i =15t 2i -5t 2=94.25-5×1.55×7.221.312 5-5×1.552≈4.134 4,a =y -b t =7.2-4.134 4×1.55≈0.8, ∴y =4.134 4t +0.8.所以y 与x 的回归方程是y =4.134 4x+0.8.[构建·体系]1.下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.A .①②B .①②③C .①②④D .①②③④【解析】 函数关系和相关关系的区别是前者是确定性关系,后者是非确定性关系,故①②正确;回归分析是对具有相关关系的两个变量进行统计分析的一种方法,故③错误,④正确.【答案】 C2.下表是x 和y 之间的一组数据,则y 关于x 的线性回归方程必过点( )C.(2.5,4) D.(2.5,5)【解析】线性回归方程必过样本点的中心(x,y),即(2.5,4),故选C.【答案】 C3.对具有线性相关关系的变量x和y,由测得的一组数据求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为________.【导学号:62690053】【解析】由题意知x=2,y=3,b=6.5,所以a=y-b x=3-6.5×2=-10,即回归直线的方程为y=-10+6.5x.【答案】y=-10+6.5x4.部门所属的10个工业企业生产性固定资产价值与工业增加值资料如下表(单位:百万元):【解析】x=3+3+5+6+6+7+8+9+9+1010=6.6.y=15+17+25+28+30+36+37+42+40+4510=31.5.∴r=∑10i=1(x i-x)(y i-y)∑10i=1(x i-x)2∑10i=1(y i-y)2=0.991 8.【答案】0.991 85.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)x =16(8+8.2+8.4+8.6+8.8+9)=8.5, y =16(90+84+83+80+75+68)=80, ∵b =-20,a =y -b x , ∴a =80+20×8.5=250, ∴回归直线方程为y =-20x +250.(2)设工厂获得的利润为L 元,则L =x (-20x +250)-4(-20x +250)=-20⎝ ⎛⎭⎪⎫x -3342+361.25, ∴该产品的单价应定为334元时,工厂获得的利润最大.我还有这些不足:(1) (2)我的课下提升方案: (1) (2)。
线性回归和非线性回归
1 线性回归
线性回归是一种广泛使用的机器学习算法,它用于预测一个或多个连续的输入x变量和一个输出y变量之间的关系。
它是一种拟合数据模型的方法,试图找到一个线性关系,可以近似地预测未知输入变量。
给定一组输入变量x1,x2,...,xn,以及一系列输出y,线性回归提供一个称为线性模型的参数形式a1, a2, ..., an,以及偏置b 的等式,这样可以表示为:y = a1x1 + a2x2 + ... + anxn + b。
如果x, y的关系是线性的,那么我们可以使用线性回归找到当前数据关系的最佳参数模型。
2 非线性回归
非线性回归是一种用于预测一个变量与多个输入变量之间关系的机器学习算法。
与线性运动不同,它假设输入变量和输出变量之间的关系是非线性的。
非线性回归模型可以产生任意曲线和非线性模式,在复杂的数据集中表现很好。
通常,使用回归杂波分析,根据提供的数据和观察结果,可以选择正确的非线性函数。
例如,可以考虑使用多项式函数,偏微分方程,自定义神经网络或其他函数。